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Abstract: We are proposing a model mathematical description of droplet evaporation using the
kinetic approach. We have obtained the basic equation of the theory by using the law of conserving
the full power of the vapor–liquid system, which has not been done before. We have found the range
of droplet sizes at which it is stable. We have given a comparison of the obtained results with the
known traditional ones. We have given numerical estimates for the critical size of the fine-dispersed
phase up to the value of which ordinary evaporation takes place (that is for Knudsen number Kn = l

R ,
inequality Kn� 1 must be fulfilled, where l− is the free path of the molecule and R− is the droplet
radius). We have given the optimal droplet size which is the most effective from the point of view of
technical use in extinguishing flammable oil transformers.
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1. Introduction

The problem discussed in this article is not new and has about a century of history. It
must be said that for many physical problems devoted to the study of the properties of fine
media (fogs, vapor, smoke, dust, etc.), in the vast majority of cases, it is characteristic that
their solution is mainly purely empirical or experimental in nature. Although the number
of theoretical studies in this direction has been growing exponentially in recent years, the
derivation of all the basic equations is based on purely experimental dependencies.

In this paper, we will somewhat depart from the established stereotype of solving
problems in this direction and use the general principles of the theory of non-equilibrium
processes using a dissipative function

.
Q = T

.
S as the main description parameter, where

T− is the equilibrium temperature, S− is the entropy and the “dot” above the letter
traditionally indicates differentiation in time.

At the same time, we consider the system conservative and its full volume V is
permanent. It is the sum of the volumes of the water drop V1 and the surrounding volume
of gas V2. That is V = V1 + V2 = const. The value Q as defined ∆Q = T∆S is the total
amount of heat transferred to the system according to the first law of thermodynamics
when ∆

.
Q =

.
Q = 0. In the non-equilibrium case that we are considering,

.
Q = T

.
S 6= 0.

Before proceeding to the analytical part of the problem, it should be noted that the
main purpose of this study is to demonstrate a mathematical tool based on the use of the
method of conserving the full power of the system in question, the general descriptive
approach of which was described in detail in study [1]. In study [2], this approach was
applied already in the framework of solving a specific problem. A comparison with the
traditional results described in detail in the monograph [3] showed the full validity of this
approach. Furthermore, it is worth emphasizing that all problems solved in this direction
(see for example studies [4–9]) can be described using the proposed method. This indicates
the relevance of our study which is devoted to the study of the evaporation of a liquid
droplet from an alternative point of view.
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2. Derivation of the Basic Equation and It Analysis

To get the equation we need, we will use the law of conservation of power which is
elementarily obtained from the law of conservation of energy. Indeed, according to the
law of conservation of energy ∑

i
Ei = const. Differentiating this equality over time we have

d
dt ∑

i
Ei = ∑

i
Wi = 0, where

.
Ei = Wi.

We will define this system in the form of two phase components, one of which is a gas
and the other is a liquid droplet. Taking into account the interaction of gas phase molecules
and molecules in a droplet at the boundary of their contact, the balance equation can be
represented in the only way as the sum of three terms (it is easy to understand that there
are simply no other components in the problem being solved):

T
d
dt

∫
V1

s1dV + T
d
dt

∫
V−V1

s2dV +
d
dt

∫
σ

αdσ = 0 (1)

where s1− is the droplet entropy attributed to the unit of its volume, s2− is the entropy of
the unit of volume of the gas phase surrounding the liquid droplet including the molecules
of the already evaporated substance of the droplet, V1− is the variable volume of the
droplet, V = V1 + V2 = const− is the total volume occupied by the droplet and gas, σ− is
the surface area of the droplet, T− is the temperature, α− is the surface tension coefficient.
The Equation (1) describes the total power balance of the conservative system under study:
drop + gas.

Looking ahead a little, we note that as a result of solving Equation (1), we will come
to the correct answer both qualitatively and quantitatively which is not in contradiction
with the well-known result given in the traditional Fuchs monograph [3] but complements
it with the qualitatively new result obtained below. This also answers the question of the
relevance of our approach when comparing it with the results of other authors working in
this direction (see the articles mentioned above [4–9]).

Once again, we emphasize that the principle of preserving the total full power of any
dissipative system (and it does not matter whether it is closed or open) leads to correct
equations which was strictly proved in concrete physical examples in study [1]. We will
not reproduce the details of this study here since in this message we are talking about a
specific isolated case which will now be considered in detail.

Performing a simple differentiation in (2) we find
(All variables appearing in Equation (2) are explained after Equation (1)).

T
.
S1 + Ts1

.
V1 + T

.
S2 − Ts2

.
V1 + α

.
σ1 = 0 (2)

Introducing here the latent heat of vaporization.
we get from (2)

∆QV = T(s1 − s2). (3)

T
.
S1 + T

.
S2 + ∆QV

.
V1 + α

.
σ1 = 0 (4)

Our problem now is to calculate the first two terms included in Equation (4). According
to the definition of entropy in the language of the distribution function which according to
the evidence given in ref. [10] is considered valid for both liquids and gases, we have

S1 = − 1
Z1

∫
n1 ln

n1

e
d3 p. (5)

where n1− is the non-equilibrium function of the distribution of liquid molecules in

the momenta, Z1 =
∫

n1d3 p is the normalization factor and n1 = e−
ε1(p)−µ1(P,T)

T is the
equilibrium distribution function, where P− is a pressure.
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The ratio (5) according to its definition in [10] is fair in both equilibrium and non-
equilibrium cases. Note also that for convenience and reduction of the record, we will
consider the Boltzmann constant to be equal to one. That is, we believe that kB = 1. This
can always be done since in the final result, in which the temperature will appear in order
to obtain the correct dimension, it will only need to be multiplied by kB.

The relationship between the equilibrium and non-equilibrium distribution functions
is determined from the conditions of continuity allowing it to be written that lim

t→∞
n(t) = n.

ε1(p) = p2

2m1
is the kinetic energy of molecules in a liquid, µ1(P, T)− is their chemi-

cal potential.
Quite similarly we have

S2 = − 1
Z2

∫
n2 ln

n2

e
d3 p. (6)

Considering the temperature constant (that is Z1 = const, Z2 = const), the differentia-
tion of Formulas (5) and (6) in time leads us to the following relations

.
S1 = − 1

Z1

∫
.
n1 ln n1d3 p,

.
S2 = − 1

Z2

∫
.
n2 ln n2d3 p. (7)

According to the Boltzmann kinetic equation we have the right to write that

.
n1 = L1(n1, n2),

.
n2 = L2(n2, n1). (8)

where L1(n1, n2), L2(n2, n1)− are the integrals of collisions of liquid and gas molecules at
the boundary of their contact, respectively.

As for the “internal” collision integrals, that is collisions of gas molecules with each
other and liquid molecules with each other in accordance with the Bogolyubov hierarchical
principle which allows moving to quasi-equilibrium distribution functions (see (5) and (6))
and “uncoupling” the corresponding correlators, they can be ignored. This remarkable
principle makes it possible to find solutions to a variety of problems, the number of which
is currently extremely large.

In formal mathematical language, this means that the relaxation times for internal
intermolecular collisions τ11, τ22 are much smaller than the collision times of gas and liquid
molecules τ12, τ21 at the external interface of contact.

That is τ11 � τ12, τ22 � τ21. Only when this condition is met do we have the right to
introduce a quasi-equilibrium (equilibrium) distribution function into consideration.

Taking into account (6)–(8), Equation (4) will take the following form

− T
Z1

∫
L1(n1, n2) ln n1d3 p− T

Z2

∫
L2(n2, n1) ln n2d3 p + ∆QV

.
V1 + α

.
σ1 = 0 (9)

We will look for the solution of kinetic equations using the BGK method [11] according
to which the collision integrals can be replaced with approximate expressions

L1 ≈ −
δn1

τ12
, L2 ≈ −

δn2

τ21
. (10)

where τ12− is the relaxation time of liquid molecules when they are scattered on gas
molecules and τ21− is the relaxation time of gas molecules when they are scattered on
liquid molecules. It is quite clear that these times are different. We will now find corrections
to the distribution function δn1,2 due to interaction.

According to kinetic Equation (8), we have

.
n1 =

∂n1

∂t
+ v · ∇n1 + F · ∂n1

∂p
= −n1 − n1

τ12
. (11)
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Since we are looking for a stationary solution, then ∂n1
∂t = ∂n2

∂t = 0. In addition, it
should be considered that the force F = 0.
Finally,

v · ∇n1 = −n1 − n1

τ12
. (12)

Similarly,

v · ∇n2 = −n2 − n2

τ21
. (13)

We will search for solutions of Equations (12) and (13) by the method of successive
approximations assuming that

n1 = n1 + δn1, n2 = n2 + δn2. (14)

Therefore, we get
l12 · ∇δn1 + δn1 = −l12 · ∇n1,
l21 · ∇δn2 + δn2 = −l21 · ∇n2.

(15)

where vectors of free path lengths l12 = vτ12, l21 = vτ21 are introduced.
It is convenient to search for the solution of Equation (15) by decomposing the desired

functions into the Fourier integral. Indeed, we have for an arbitrary (so far) function

f (r) =
∞∫
−∞

eikr fk
d3k

(2π)3 . (16)

where by the symbol of a one-dimensional integral we mean a three-dimensional integral,
fk− Fourier image of function f . Substituting (16) into any of the Equation (15) we easily
find

∫
(1 + ikl)δnk

d3k
(2π)3 = −l · ∇

∫
nkeikr d3k

(2π)3 .

From where

δnk = −i
(k · l)nk
1 + ik · l . (17)

where nk− Fourier is the image of the equilibrium distribution function of molecules n(r).
Substituting solution (17) into definition (16), now we obtain the correction to the

equilibrium distribution function that interests us

δn = − i

(2π)3

∫
(k · l)nk
1 + ik · l eikrd3k. (18)

Here and further we simplify the recording of the Fourier integral by omitting the
limits of integration. To calculate the resulting integral, it is convenient to use the following
artificial technique. Let us represent function 1

1+ikl as an integral

1
1 + ikl

=

∞∫
0

e−x(1+ikl)dx. (19)

Then from (18) it follows

δn = − i

(2π)3

∞∫
0

e−xdx
∫

(k · l)nkeik(r−xl)d3k. (20)

Further since
nk =

∫
n
(

r
′
)

e−ikr
′

d3r
′
. (21)
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Then after substituting the Fourier image (21) into the solution (20), we will have as a
result a simple rearrangement of the multipliers

δn = − i

(2π)3

∞∫
0

e−xdx
∫

n
(

r
′
)

d3r
′
∫
(k · l)eik(r−r

′−xl)d3k. (22)

To calculate the internal integral appearing here we proceed as follows. Let us write it
down as

∫
eik(R−lx)(kl)d3k = i ∂

∂x

∫
eik(R−lx)d3k = i(2π)3 ∂

∂x δ(R− lx).
where δ(x)− is the delta function and R = r− r

′
.

As a result, it follows from (22) δn =
∞∫
0

e−xdx ∂
∂x

∫
n
(

r
′
)

δ
(

r− r
′ − lx

)
d3r

′
=

∞∫
0

e−x ∂
∂x n

(r− lx)dx.

δn =

∞∫
0

e−x ∂

∂x
n(r− lx)dx =

∞∫
0

e−xn(r− lx)dx− n(r). (23)

We take the resulting integral using integration in parts. Really
Remembering now the translational transfer operator, namely the rule n(r− xl) =

e−xl·∇n(r).

δn =

∞∫
0

e−x(1+l·∇)n(r)dx− n(r). (24)

we get from (23)
Therefore, for the desired corrections in our case, we obtain such solutions of Equation (15)

δn1 =
∞∫
0

e−x(1+l12·∇)n1(r)dx− n1(r),

δn2 =
∞∫
0

e−x(1+l21·∇)n2(r)dx− n2(r).
(25)

and, therefore, in accordance with (9) and (10), we find

T
Z1

∫
δn1

τ12
ln n1d3 p +

T
Z2

∫
δn2

τ21
ln n2d3 p + ∆QV

.
V1 + α

.
σ1 = 0 (26)

where corrections δn1, δn2 are given by solutions (25).
By virtue of the definition of the equilibrium distribution functions, then the dissipative

balance equation follows from (26)

− T
Z1

∫
(ε1 − µ1)

τ12
δn1d3 p− T

Z2

∫
(ε2 − µ2)

τ21
δn2d3 p + ∆QV

.
V1 + α

.
σ1 = 0 (27)

Note that the last term in (27) is conveniently represented as
∫

αdS = ε1N1 = ε1
∫

c1dV1.
where ε1− is some average energy per one particle of a liquid, c1− is their concentration. In
accordance with (25), the solution can be written as an infinite series

δn =
∞∫
0

e−x(1+l·∇)n(r)dx− n =

=
∞∫
0

e−x
{

1− xl · ∇+ x2

2 (l · ∇)2 − x3

3! (l · ∇)
3 + . . .

}
n(r)dx− n.

.

δn =
[
1− l · ∇+ (l · ∇)2 − (l · ∇)3 + . . .

]
n− n =

=
[
−l · ∇+ (l · ∇)2 − (l · ∇)3 + (l · ∇)4 . . .

]
n.

(28)

Integrating each term here by x, we come to this solution
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Where, for the sake of brevity of the record solutions (25) are presented using the
uniform notation δn and l, that is δn = {δn1, δn2} and l = {l12, l21}. If we now substitute
solution (28) into the balance Equation (27), then due to momentum integration

− T
Z1

∫ (ε1−µ1)
τ12

[
(l12 · ∇)2 + (l12 · ∇)4 + (l12 · ∇)6 . . .

]
nd3 p−

− T
Z2

∫ (ε2−µ2)
τ21

[
(l21 · ∇)2 + (l21 · ∇)4 + (l21 · ∇)6 . . .

]
nd3 p + ∆QV

.
V1 + α

.
σ1 = 0

(29)

all odd degrees (l · ∇) will disappear and instead of (27) we get
Leaving in (29) only the terms quadratic in the free path length and taking into

account the explicit form of the equilibrium distribution function, as a result of elementary
differentiation we come to the following equation

− (T−ε1−µ1)
T

l2
12

τ12

(
∆µ1 +

(∇µ1)
2

T

)
−

− (T−µ2)
T

l2
21

τ21

(
∆µ2 +

(∇µ2)
2

T

)
+ ∆QV

.
V1 + α

.
S

∣∣∣∣∣∣∣∣
r=R

= 0 (30)

Since the entropy continuity condition must be fulfilled at the boundary of the
two phases in the absence of chemical reactions, it is quite clear that the following equality
takes place

∆QV = T(s1 − s2)|r=R = 0 (31)

As you can see, this condition is true if the temperature is constant. At the same time,
it is quite clear that the equality of entropies at the contact boundary of a droplet and a gas
mixture does not at all mean equality of their specific heat capacities since from a formal
point of view, equality (31) should be written in a slightly different form namely as

s1|r=R−0 = s2|r=R+0. (32)

where the limits are taken to the left and right of the contact boundary.
Therefore, due to the piecewise smoothness of entropy, an additional condition for

temperature derivatives of entropy follows from (32) which also binds the heat capacities
of both phases. This means that the following equality must take place

c1|r=R−0 = c2|r=R+0 + ∆c. (33)

where ∆c represents the final jump in the heat capacity at the interface of both phases and
the isobaric heat capacity is introduced here in accordance with the generally accepted
definition [10] ci = T

(
∂si
∂T

)
P

where the index i = 1, 2 numbers the phases.
As for the physical side of Equation (30), it is immediately necessary to emphasize

that as soon as we introduce the concept of variable entropy, we automatically proceed
to take into account the dissipative properties of matter. That is, in the non-equilibrium
case which is described by Equation (30), the entropy increase condition takes place (the
famous H− Boltzmann theorem [10]). As it will become clear now, taking into account the
interaction between the molecules of both phases that is the transfer of energy from water
molecules to gas molecules and vice versa leads to the destruction of the weak surface
tension of a droplet. For an analytical description of this process, it is necessary to focus
on the remarkable property of any natural physical phenomenon such as the hierarchy of
relaxation times [11–13].

Indeed, in order of magnitude, the free path length of molecules in a liquid l12 turns out
to be significantly less than the free path length of gas molecules l21, that is the inequality
l12 � l21 holds.

This means that in terms of the hierarchy of times by virtue of the condition τ12 � τ21
which actually follows from the condition n1 >> n2 where n1, n2− are the average concen-
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trations of liquid and gas molecules, respectively, the main evaporation process belongs to
the first term in (30) and it is this important fact that allows us to neglect the second term.

Otherwise, the first process as the fastest one has already occurred and the droplet
has begun to evaporate and the second one has not yet had time to begin. This, however,
does not mean at all that it does not contribute to the evaporation process; at a later period
of time, this contribution may manifest itself but only if the droplet has not had time to
evaporate by this point in time.

Thus, taking into account the condition of continuity of entropy at the contact bound-
ary according to (32) and taking into account all that has been said from Equation (30), we
come to such an equation

− (T − ε1 − µ1)

T
l2
12

τ12

(
∆µ1 +

(∇µ1)
2

T

)
+ α

.
S

∣∣∣∣∣
r=R

= 0 (34)

Note also that for the chemical potentials of both phases at the boundary of their
contact, the following equilibrium condition must also be met

µ1|r=R = µ2|r=R. (35)

Since
.
S = 8πR

.
R, we find the following from (34)

8παR
.
R =

(µ1 − ε1 − T)
T

l2
12

τ12

(
∆µ1 +

1
T

(
∂µ1

∂R

)2
)

. (36)

Due to the fact that the distribution of the inhomogeneous chemical potential at the
contact of two media (see [14]) obeys the equation

∆µ +
µ

δ2 −
ξµ3

δ2T2 = 0 (37)

where δ− is the length of the inhomogeneity satisfying inequality δ << lmin where
lmin = min{l12, l21} and ξ− is a certain coefficient leading to a correct solution (see Formula
(38)), then in the one-dimensional case, we obtain the following from Equation (37)

µ(r) =
µ1 + µ2

2
− µ1 − µ2

2
th
(

δr
δ

)
. (38)

Therefore, at the contact boundary we have

∂µ

∂r

∣∣∣∣
r=R

=
µ2 − µ1

2δ
. (39)

and thus Equation (39) takes the following form

8παR
.
R = − (µ1 + ε1 − T)

T
l2
12µ1

τ12δ2

(
µ1

4T

(
1− µ2

µ1

)2
+

ξµ2
1

T2 − 1

)
. (40)

from where after direct integration taking into account the initial condition R(0) = R0 we get

R =
√

R2
0 − DTt. (41)

where the diffusion coefficient is

DT =
(µ1 + ε1 − T)

4παT
µ1l2

12
τ12δ2

(
µ1

4T

(
1− µ2

µ1

)2
+

ξµ2
1

T2 − 1

)
. (42)
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Equality (41) means that the evaporation time of the liquid droplet we are interested
in must be from the condition of equality to zero of the root expression that is

tvap =
R2

0
DT

. (43)

A characteristic change in the size of the evaporating droplet (41) is shown in Figure 1.
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R0
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R2
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As for the relaxation time τ12, it can be easily estimated based on the following formula
(see [14])

1
τ12

=
2r2

2n1

3π
√

2π

m2
1µ1

(m1 + m2)
3

√
m2

T
. (44)

where r2− is the radius of a gas molecule, µ1− is their average chemical potential, m1− is
the mass of a water molecule, m2− is the mass of a gas molecule, n1− is the average concen-
tration of water molecules. In order of magnitude, it follows from (44) that τ12 ≈ 10−10 s. A
similar formula holds for relaxation time τ21. It is obtained from formula (44) by formally
replacing the indices “1” with “2”. It can be shown that in order of magnitude τ21 ≈ 10−8 s.

The calculation of the evaporation time by formula (42) also dictates the need to
substitute the chemical potentials of gas and liquid into it. If we proceed from the gen-
eral definition of the average energy of a large statistical system of particles, namely
Ω = µ(P, T)N, where N− is the number of particles in the system then for its differential
we have

dΩ =

(
∂µ

∂T

)
P

NdT +

(
∂µ

∂P

)
T

NdP + µdN. (45)

According to example [10] in variables (T, P, N), the Helmholtz energy differential is

dΦ = −SdT + VdP + µdN. (46)

From the comparison of (45) and (46), we see that

S = −N
(

∂µ

∂T

)
P

, V = N
(

∂µ

∂P

)
T

. (47)

It is known from [10] that the entropy per particle can be calculated as

s =
S
N

= − 1
Z

∫
n ln

n
e

d3p. (48)
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where Z =
∫

nd3p is the normalization factor and

n = e−
ε(p)−µ

T (49)

is the equilibrium Maxwell distribution function, p− is the molecule momentum. Neglect-
ing in (48) the processes of scattering of molecules, we have for entropy

S = −N
Z

∫
n ln nd3p =

N
ZT

∫
(ε− µ)e−

(ε−µ)
T d3p. (50)

The chemical potentials in exponential exponents under the integral in (53) and in the
normalization factor will decrease and as a result of a simple calculation, we will come to
this answer

S = N
(

3
2
− µ

T

)
. (51)

Remembering now definition (47), we obtain the following differential equation for
determining µ (

∂µ

∂T

)
P
=

µ

T
− 3

2
. (52)

Simple integration leads us to the following result

µ(P, T) = C(P)T − 3
2

T ln T. (53)

where dependence C(P) is easily found from the second relation in (47), that is

V = N
(

∂µ

∂P

)
T
= NT

dC
dP

. (54)

Since the Clapeyron–Mendeleev equation PV = NT holds for an ideal gas, we imme-
diately get from here that

C(P) = A + ln P. (55)

where A− is the constant.
Assuming A = 1 and substituting (55) into (53), we find the desired dependence

µ(P, T) = T + T ln
(

P
P0

)
− 3

2
T ln

(
T
T0

)
. (56)

where T0, P0− is the temperature and pressure under normal conditions that is T0 = 300 K,
P0 = 1atm = 105 Pa. That is, for the gas phase, the chemical potential is determined using
(56) as

µ2 = T + T ln
(

P2

P0

)
− 3

2
T ln

(
T
T0

)
. (57)

As for a droplet of water, it is very problematic to use the gas approximation for it and
in this case you can use for example the Van der Waals equation. As a result, the chemical
potential can also be calculated analytically but we will not do this now but will proceed to
the estimation of the evaporation time considering for simplicity that µ1 : µ2. Note, by the
way, that this ratio is quite correct.

To numerically estimate the evaporation time, we will use the general expression (40).
The physical parameters present in Formula (40) can be selected as follows:

α = 70 erg
cm2 , µ1 : µ2 = 6 · 10−14 erg, T = 300 K = 4 · 10−14 erg,

R0 = 5 · 10−1 cm, τ12 = 10−10 s, δ ≈ 10−6 cm.
Note that in all the estimates below we will use the Gaussian system of units.
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As a result, we get that

tvap = τ12
4παR2

0δ2(
µ1
4T

(
1− µ2

µ1

)2
+

ξµ2
1

T2 −1
)(

µ1+ε1
T −1

)
µ1l2

12

≈

≈ 10−10 4π·70·25·10−2·10−12

3·6·10−14·10−10 = 2·70·25
3 ≈ 1.15 · 103 s.

(58)

That is, a droplet of water with a diameter of five millimeters evaporates in about
twenty minutes. Result (60) is in full correlation with the traditional formula given in [3]
which gives us reason to assert the correctness of the results obtained above.

Looking at Equation (36), we quite clearly see before us an equation of the type of
thermal conductivity equation with a thermal conductivity coefficient χ or a diffusion-type
equation with a diffusion coefficient D which are determined in order of magnitude by the
coefficient of the right side of Equation (36), that is

D ∼ χ ∼
l2
12

τ12
=

v2
1Tτ2

12
τ12

= v2
1Tτ12. (59)

This remarkable result is evidence that the evaporation process is purely dissipative in
nature and under isothermal conditions is determined by the heterogeneity of the chemical
potential at the interface between liquid and gas. In light of the above, it can be argued
that according to (59), the described evaporation effect is nothing more than isothermal
diffusion. In fact, the problem of the analytical description of the droplet evaporation
process can be considered solved by evaluation (58).

3. Comparison of the Obtained Formulas with Traditional Results

The theoretical approach described above should be compared with the approach
described for example in the traditional monograph of Fuchs [3]. In this regard, it should
be emphasized right away that the mentioned monograph is entirely based on the inter-
pretation of purely empirical dependencies, that is, dependencies obtained experimentally.
However, the formulas given in it allow us to draw some parallels with the theoretical
analysis given just above.

Indeed, if we enter the Sherwood number by the formula (see [3,14])

Sh =
I f

2πRD(c0 − c∞)
. (60)

where I f− is the evaporation rate having dimension g
s , D− is the diffusion coefficient with

dimension cm2

s , c0− is the vapor concentration in the immediate vicinity of the droplet (its
dimension is g

cm3 ), c∞− is the vapor concentration at infinity with the same dimension,
then in the case of a stationary droplet, the Sherwood number is exactly 2. Using the
empirical dependence (60), it is easy to determine the dependence of the radius of the
evaporating droplet on time. Assuming that I f =

.
m, where m = ρkV = 4π

3 ρkR3 is
the droplet mass and taking into account that Sh = 2, we have the following from (60)
4πρkR2

.
R = 4πRD(c0 − c∞).

or

R
.
R =

D(c0 − c∞)

ρk
. (61)

from where the solution is immediately obtained in the following form

R(t) =
√

R2
0 − De f f t. (62)

where the effective diffusion coefficient is

De f f =
D(c0 − c∞)

ρk
. (63)
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Comparing (62) with our solution (41), we see their complete identity.
However, our diffusion coefficient (42) and diffusion coefficient (63) obtained using

the empirical formula differ quite a lot from each other qualitatively. Although it is clear
that in order of magnitude, they both give the correct value of the evaporation time of a
stationary droplet provided that in Formula (63) the difference is c0 − c∞ chosen equal to
1 g

cm3 and the diffusion coefficient is set equal as in our theory to value D = 5 · 10−5 cm2

s .
In principle, this is quite understandable since the rigorous analytical solution of the

problem based on the equation of conservation of the sum of dissipative functions (1) and the
experimentally obtained dependence (60) are based on two different physical assumptions.

4. Dynamics of Droplet Passage through A Hot Medium

In the event that a purely technical problem is set related to extinguishing a fire, for
example, a burning transformer box, we need to provide an analytical solution to this
problem and describe the dynamics of droplets passing through the flame to the surface of
the boiling transformer oil taking into account all the basic physical conditions.

If we assume, for example, that the velocity of water from the hose is equal to 3 · 103 cm
s ,

and the distance that the water jet passes to the source of ignition is put equal say 103 cm,
then the time of passage of the jet ∆tb will be about three-tenths of a second.

Based on estimate (61), it can be assumed that the complete evaporation of a droplet
with a diameter of half a centimeter occurs in about an hour; therefore, the droplet does not
actually have time to evaporate and passing through the flame, it hits the surface of the oil
with almost the same size. It is possible for water droplets to reach the oil surface if the
obvious inequality is met

∆tB =
h

vW
≤ tvap =

R2
0

DT
(64)

Whence it follows that the droplet size must obey the condition

R0 ≥

√
DT

h
vW

. (65)

As can be seen from the above assessment, the situation is not quite simple in terms of
analytical determination of the most effective droplet size. In fact, if we achieve the droplet

size, for example, such R0 =
√

DT
h

vW
, then it simply evaporates quickly without having

time to reach the oil surface. This means that here the problem of determining the optimal
size of the droplet arises, which despite its small size will still have time to reach the oil
surface evaporating directly on it which is the main criterion in the conditions of ignition
of oil transformers.

This means that the following strict inequalities must be met

R < R0 < R. (66)

where R =
√

DT
h

vW
and the value of the right side of inequality (66) R must be found.

To calculate it, we will use the equation of motion of a droplet in the gravity field taking
into account the drag force and the buoyant force in the following form (see, for example,
study [15–17])

.
u +

u
τ(R)

= g
(

1− ρ2

ρ1

)
. (67)

where the attenuation coefficient due to the consideration of the Stokes resistance force is

1
τ(R)

=
9η2

2ρ1R2(t)
. (68)
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Recall that index “1” refers to a droplet and index “2” refers to a gas. Function R(t)
is given by dependency (41) which is convenient to write taking into account (43) in the
following form

R(t) =
√

R2
0 − DTt. (69)

Taking into account (68), Equation (67) can be presented in a more convenient form as

.
u +

u

τ0

(
1− t

tvap

) = g
(

1− ρ2

ρ1

)
. (70)

where 1
τ0

= 9η2
2ρ1R2

0
and tvap =

R2
0

DT
. The solution of Equation (70) is trivial. In fact, by solving

a homogeneous equation we get du
u = dt

τ0

(
t

tvap −1
) .

hence

u = C
(∣∣∣∣ t

tvap
− 1
∣∣∣∣)β

. (71)

where β =
tvap
τ0

is the index. Considering constant C as a function of time and then

substituting (71) into Equation (70), we find
.
C = g(∣∣∣ t

tvap −1
∣∣∣)β

(
1− ρ2

ρ1

)
.

that is

C(t) = C−
gtvap

(β− 1)
(∣∣∣ t

tvap
− 1
∣∣∣)β−1

(
1− ρ2

ρ1

)
. (72)

where C− is the integration constant. Substituting (72) into (71), we find the following solution

u = C
(∣∣∣∣ t

tvap
− 1
∣∣∣∣)β

+
gtvap

∣∣∣ t
tvap
− 1
∣∣∣

(1− β)

(
1− ρ2

ρ1

)
. (73)

To determine constant C, we use initial condition u(0) = u0. As a result,
C = u0 − g

(1−β)

(
1− ρ2

ρ1

)
and the final solution will take the following form

u = u0

(
1− t

tvap

)β

+
g
(
tvap − t

)
(1− β)

(
1− ρ2

ρ1

)[
1−

(
1− t

tvap

)β−1
]

. (74a)

In a dimensionless view, we have

y = (1− x)β +
λ(1− x)
(1− β)

(1− ε)
[
1− (1− x)β−1

]
. (74b)

where x = t
tvap

, λ =
gtvap

u0
, y = u

u0
, ε = ρ2

ρ1
and 0 ≤ x ≤ 1.

The dependence (74b) is shown in Figure 2.
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It is taken into account here that always t < tvap. Integrating (74) in time, we find the
droplet path length

z(t) = C1 +
u0tvap

β + 1

(
1− t

tvap

)β+1
+

gt2
vap

(
1− t

tvap

)2

2(1− β)

(
1− ρ2

ρ1

)[
1− 2

1 + β

(
1− t

tvap

)β−1
]

. (75)

From the initial condition z(0) = h, we get

C1 = h−
u0tvap

β + 1
+

gt2
vap

2

(
1− ρ2

ρ1

)
. (76)

therefore,

z(t) = h +
u0tvap
β+1

[(
1− t

tvap

)β+1
− 1
]
+

+
gt2

vap
2(1−β)

(
1− ρ2

ρ1

){(
1− t

tvap

)2
[

1− 2
1+β

(
1− t

tvap

)β−1
]
+ 1− β

}
.

(77a)

In a dimensionless view, the dependence (77a) can be written as

Z = 1 + γ
β+1

[
(1− x)β+1 − 1

]
+

+ σ
2(1−β) (1− ε)

{
(1− x)2

[
1− 2

1+β (1− x)β−1
]
+ 1− β

} (77b)

where the parameters are

ε = ρ2
ρ1

, γ =
u0tvap

h , σ =
gt2

vap
h , Z = z(t)

h ,
γ = 10, σ = 10, ε = 0.01
The dependence (77b) is illustrated in Figure 3.
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From condition z = 0, we can calculate the time of the droplet movement to the oil
surface of our interest taking into account its evaporation. This algebraic equation must be
solved under the condition that t < tvap. Therefore, by decomposing function z(t)

z(t) ≈ h− u0t +
gtvap · t

2(1 + β)

(
1− ρ2

ρ1

)
. (78)

by degrees of ratio t
tvap

, we find approximately
From here taking into account evaporation, the travel time will be

∆t f =
h

u0 −
gtvap

2(1+β)

(
1− ρ2

ρ1

) . (79)

During this period of time, the droplet size decreases and becomes equal according to (69)

R
(

∆t f

)
=

√√√√R2
0 −

DTh

u0 −
gtvap

2(1+β)

(
1− ρ2

ρ1

) . (80)

Thus, from solution (80), taking into account the explicit form for β, it follows that the
initial droplet size should be

R0 ≥
√√√√ DTh

u0 −
gtvapτ0

2(τ0+tvap)

(
1− ρ2

ρ1

) . (81)

In turn, remembering that τ0 =
2ρ1R2

0
9η2

, we get a biquadrate inequality to determine the
possible values R0. In fact, from (84) we get

R2
0 ≥

DTh

u0

1− gρ1R2
0

9η2u0

(
2ρ1R2

0
9η2tvap +1

)(1− ρ2
ρ1

) . (82)
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It is convenient to bring this inequality to the following form

R2
0 ≥

R2
31− R2

0

R2
2

(
1+

R2
0

R2
1

)


. (83)

where R1 = 3
√

η2tvap
2ρ1

, R2 = 3
√

η2u0
g(ρ1−ρ2)

, R3 =
√

DT h
u0

.

Moreover, the hierarchy of these parameters is as follows

R3 � R2 � R1. (84)

Therefore, using condition R0 � R1 and leaving only one in the lowest fraction, we
easily solve the simplified biquadrate inequality which leads us to the following condition

R3 ≤ R0 ≤ R2 � R1. (85)

Substituting explicit expressions for radii from (83), we find√
DTh
u0
≤ R0 ≤ 3

√
η2u0

g(ρ1 − ρ2)
� 3

√
η2tvap

2ρ1
. (86)

From where we find the condition for the initial velocity of the droplet

u0 ≥ ucr. (87)

where ucr =
1
3

√
DT gh(ρ1−ρ2)

η2
.

From the example, we can take the following parameters
DT = 5 · 10−5 cm2

s , g = 103 cm
s2 , h = 103 cm, η2 = 10−2 g

cm·s ,
ρ1 = 1 g

cm3 , ρ2 = 0.01 g
cm3 .

,

then we get

ucr = 1, 3 · 103 cm
s

. (88)

The numerical value (88) is in full accordance with the known practical results; there-
fore, the solution of the problem can be considered complete in accordance with estimates
(86) and (87).

5. Conclusions

Summing up the above research, it is worth noting the following three important points:
We have proposed a theory of evaporation of droplets of a finely dispersed medium

based on the condition of preserving the system power (the dissipated energy cannot
disappear without a trace, but transforms into something);

We have proposed an analytical description of the complex dynamics of the droplet
motion in a high-temperature medium taking into account its evaporation;

We have given numerical estimates of the droplet size and initial jet velocity corre-
sponding to experimental values using the obtained formulas.
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