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Abstract: In this paper, an original mathematical model and experimental results for the vibra-
tion generator and the magnetic spring prototype that converts mechanical energy to electrical
energy are proposed. The magnetic spring model is developed by a robotic approach based on
Denavit–Hartenberg’s notation and designed by the 2-degrees of freedom kinematic chain for de-
termination of its motion and estimation of several resonance frequencies useful in many energy
harvesting applications. The vibration generator that moves the magnetic spring is modeled by neural
networks and the magnetic spring potential energy is calculated by the finite elements method (FEM).
Furthermore, the magnetic spring and the vibration generator are designed by the Simulink block
diagram. Testing results of the magnetic spring and vibration generator displacement conducted in
laboratory have shown good agreement with simulation results.

Keywords: energy harvesting; magnetic spring; mathematical modelling; vibration generator;
Denavit–Hartenberg notation; neural network; kinematic chain; finite elements method

1. Introduction

Recently, the magnetic spring attracted a great deal of attention to investigate and
improve energy harvesting systems [1]. A magnetic spring is a system of at least two per-
manent magnets that repel each other, and at least one of these magnets moves freely. The
repulsion force between magnets is a non-linear conservative force, so it can be treated
as a non-linear spring force. The energy harvesters based on magnetic springs are cheap,
do not require external electrical power, and can obtain higher power for low resonance
frequency and high amplitude. Therefore, they can be used in hybrid grid systems to
recharge the battery of electric cars or supply measuring instruments and sensors in buoys
and airplanes [2–4]. Such energy harvesters convert mechanical kinetic energy to electrical
energy, according to Lorentz’s law, and are designed to work at the resonance frequency in
order to obtain the maximum output power [5–7]. The resonance frequency of the magnetic
spring in an energy harvester is related to the magnetic force acting on the levitated perma-
nent magnet and to its movement [7–9]. Thereby, different methodologies, e.g., Newton’s
second law equation or the Euler–Lagrange equation, are applied to model the energy
harvester movement. In the literature, most of the magnetic spring models are focused on
the calculation of the magnetic force using magnetic flux density, and the movement of
the levitated magnets is usually considered linear [9–11]. The assumption of the magnet’s
linear motion is acceptable when the magnet is located on the internal rod and its rotational
movement is limited [7]. However, the description of the levitated magnet movements
is usually more complex and the rotational movement formulation can be achieved by
the comparison of the magnetic spring to the kinematic chain of the robot [12–14]. In
robotics, the kinematic chain of the manipulator is depicted by the rotational and linear
joints connected by links, and coordinate systems are associated with the joints [15]. The
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Euler–Lagrange equation that describes the displacements of joints can be derived by the
homogenous transformation based on the Denavit–Hartenberg (D-H) notation [15]. This
methodology allows for the adjustment of the complexity of the model for the system de-
scription, i.e., including the additional significant degrees of freedom. Moreover, the D–H
notation does not require high computing power, such as in an Finite Elements Method
(FEM) analysis of electromechanical systems. To determine the movements of the joints
and to obtain a canonical form of the Euler–Lagrange equation, mathematical operations,
such as matrix inversion, are performed [15,16].

In this paper, a novel mathematical model of the magnetic spring for energy harvesting
based on a 2-Degrees of Freedom (DoF) kinematic chain derived by the D–H notation is
proposed. The magnetic spring that consists of the moveable permanent magnet which
levitates between two fixed magnets is investigated in the 1-DoF kinematic chain model
carried out by the same authors in the previous study [17]. The mathematical model of
the developed magnetic spring prototype has been improved to detect several resonance
frequencies significant for energy harvester optimization and guaranteeing more applica-
tions in engineering technology. The magnetic spring can move freely through the external
mechanical energy provided by environmental vibrations, such as human motion, waves,
hydro, wind and machinery, and building vibrations. Mechanical energy gained through
vibrations resembled by a vibration generator is converted by the magnetic spring into
electrical energy. The relationship between the amplitude and frequency of the current and
the amplitude of the vibration generator displacement is nonlinear and complex. Therefore,
the mathematical relationship between input and output data achieved by the vibration
generator is established using artificial neural networks (ANNs).

In this paper, the authors have focused the research on the mechanical system of the
energy harvester, especially the displacement of the levitated magnet in a magnetic spring
vibrating at a set frequency. In addition, the electric circuit has been calculated theoretically
using an FEM simulation in ANSYS Maxwell.

The measurements of the amplitude of the magnetic spring and vibration generator
movement in relation to the frequency were conducted in the laboratory of the Department
of Mechatronics at the Silesian University of Technology, Gliwice, Poland.

This manuscript is structured as follows. Section 2 describes the materials and methods.
Section 2.1 contains laboratory stands and measurement descriptions. Section 2.2 includes
the 2-DoF kinematic chain mathematical model of the magnetic spring with spring force
and torque, calculated in by the Finite Elements Method (FEM) program. Section 2.3
presents the ANN vibration generator model. In Section 2.4, a simulation model of the
movement of the magnetic spring is presented. In Section 3, the results and validation of
experimental data are described. Section 4 concludes the manuscript.

2. Materials and Methods
2.1. Laboratory Stands for the Magnetic Spring and Vibration Generator

A measuring station consists of two Keyence LK-G3000 series laser distance meters:
LK-G32 and LK-G152 by Keyence, Mechelen, Belgium; the magnetic spring, and the
vibration generator as shown in Figure 1a. The vibration of the casing that is stiffly joined
to the vibration generator was measured by LK-G32 and the vibration of the levitated
magnet in the magnetic spring was measured by LK-G152, with a sampling cycle of 200 µs.
The magnetic spring is formed of the casing, the levitated magnet, and two fixed magnets
(Figure 1b). Magnets were distributed by the ENES Magnesy, Stare Babice, Poland. The
fixed magnets are permanent cylindrical magnets with a 5 mm height and a 5 mm diameter.
The levitated magnet is a permanent cylindrical magnet with a 3 mm height and a 10 mm
diameter. Magnets have a relative permeability of 1.0535 and a magnetic coercivity of
937.4 kA/m, as reported in [18]. An electromagnetic vibration generator that moves the
magnetic spring was designed and built in the laboratory of the Mechatronics Department
at the Silesian University of Technology in Gliwice, Poland. The vibration generator consists
of a cylindrical copper coil, a permanent ring ferrite magnet with an external diameter of
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80 mm and internal diameter of 40 mm, a magnetic core and two fastening rings made of
steel, and two planar springs made of beryllium copper. The vibration generator casing is
made of aluminum. The coil consists of 280 turns in 5 layers wounded in a copper wire
0.3 mm in diameter and is positioned inside a ferrite magnet ring. The inner and outer
diameters of the coil are 35 mm and 39 mm, respectively, and the height is 17.5 mm. The
coil resistance equals 6.2 Ω. The movement of the vibration generator planar springs is
ensured by the electromagnetic field.
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Figure 1. (a) Measuring station for the vibration generator and movable magnet position. (1) LK-G32,
(2) LK-G152, (3) magnetic spring, (4) vibration generator [17], (b) magnetic spring (1) the casing of
the magnetic spring, (2) the levitated magnet, (3) fixed magnets.

The vibration generator is powered by a signal generator, AGILENT 33210a (Keysight,
Santa Rosa, CA, USA), and the signals are amplified by the amplifier IRS2092. The input
sinusoidal current amplitude was kept constant with the peak minimum and maximum
amplitude, respectively, of 0.35 A and 0.75 A. The amplitude of the current was limited by
the vibration generator model, heating, and mechanics of the planar spring. The frequency
of the current varied in the range of 2 Hz to 140 Hz.

2.2. The Magnetic Spring as a 2-DoF Kinematic Chain

In the previous paper [17], the authors show a 1-DoF model of the magnetic spring
in an electromagnetic energy harvester. The electromagnetic energy harvester consists of
the mechanical system—the magnetic spring and the electromagnetic system—coils, and
magnets. The energy harvesting system structure, which consists of axially magnetized
cylindrical permanent magnets in a magnetic spring and a coil located around the magnetic
spring, is shown in Figure 2a. In the magnetic spring, the fixed magnets are placed at the
top and bottom of the magnetic spring and a levitated magnet is located between them.
The levitation of the magnet is ensured by the repulsion force of the fixed magnets and the
levitated magnet. The low height of the levitated magnet enables its rotation and causes
its instability for higher air gaps between the magnets in the magnetic spring. The casing
that contains the magnetic spring has a gap which reduces pressure inside the magnetic
spring and also allows the levitated magnet to move with lower air resistance. In Figure 2a,
the levitated magnet moves linearly along the symmetry axis z and rotates around the axis
perpendicular to its symmetry axis, as described by the θ angle. The voltage is induced in
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the coils due to the relative movement of the magnet and coils. For its calculation, Lorentz’s
law has been used.
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matic chain.

The repulsive forces of fixed and levitated magnets are considered as spring and
damping forces; therefore, the magnetic spring with one moveable permanent magnet
which levitates between two fixed magnets can be modeled as the mass between two springs
and dampers. The novel approach of the magnetic spring modeling is based on the 2-DoF
kinematic chain presented in Figure 2b. The linear movement of the levitated magnet along
the magnetization axis is illustrated by the prismatic joint and rotational movement around
the radial axis by the rotational joint.

In Figure 2b, the mass mh1 is the symbolic representation of the mass center for the
first joint and the mass of the levitated magnet is mh2. In this case, the value of mass mh1 is
equal to 0. The stiffnesses of the springs kh1(z) and kh2(z) have the same value equal to 1

2 of
the magnetic spring’s stiffness. The stiffnesses of the springs kh1(z) and kh2(z) depend on
the position of the magnet. The damping coefficients bh1 and bh2 of the magnetic spring are
equal and were calculated using optimization in Matlab [17]. The force Fz is the external
force caused by the vibration generator movement. The magnetic spring is acting as an
inertial generator; therefore, the force Fz is considered an inertial force (1):

Fz = mhav (1)

where mh is the the proof mass and the levitated magnet mass, and av is the acceleration of
the vibration generator [5].

The equations describing the levitated magnet movement are derived using the
Denavit–Hartenberg notation [15]. Table 1 presents the kinematic parameters of the kine-
matic chain shown in Figure 2b), where i is the ordinal number of the link relative to the
kinematic chain, ai is the distance between axes zi and zi-1, αi is the angle between axes zi
and zi-1, di is the distance between axes xi and xi-1, θi is the angle between axes xi and xi-1,
d1 * is the displacement of the prismatic joint, and θ2 * is the displacement of the rotational
joint. The * sign means that the parameter changes with the time.
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Table 1. Kinematic parameters of the 2-DoF kinematic chain representing the magnetic spring.

i ai αi di θi

1 0 π
2 d1 * 0

2 a2 −π2 0 θ2 *

The kinematic parameters for the gravity centers are presented in Table 2.

Table 2. Kinematic parameters of the gravity centers of the 2-DoF kinematic chain representing the
magnetic spring.

i ai αi di θi

1 0 0 dc1 * 0

2 ac2 0 0 θc2 *

The homogenous transformation is obtained by rotation around the x and z axes and
translation along the x and z axes. The homogenous transformations Ai for each joint
formulated based on Tables 1 and 2 can be presented in (2):

Ai =


cθi −sθicαi sθi sαi aicθi
sθi cθicαi −cθisαi ai sθi
0 sαi cαi di
0 0 0 1

 (2)

where cθi = cosθi, sθi = sinθi, cαi = cosαi, and sαi = sinαi.
The homogenous transformation for the whole kinematic chain T2 is given by (3):

T2= A1A2 =


cθ2 0 −sθ2 a2cθ2
0 1 0 0

sθ2 0 cθ2 d1+a2sθ2
0 0 0 1

 (3)

where d1 is the position of the levitated magnet in the direction of the magnetization, θ2 is
the rotation of the magnet around the radial axis of the magnetization, and a2 is the radius
of the levitated magnet.

The homogenous transformation for the last gravity center Tc2 is shown in (4):

Tc2= A1Ac2 =


cθ2 −sθ2 0 ac2cθ2
0 0 −1 0

sθ2 cθ2 0 d1+ac2sθ2
0 0 0 1

 (4)

where ac2 is the distance between the geometry center of the levitated magnet and the
gravity center of the levitated magnet.

To obtain equations of the levitated magnet movement, the Euler–Lagrange equation
can be used:

D[

..
d1..
θ2
] + C[

.
d1.
θ2
] + [F pi] = [F i−Fbi] (5)

where D is the inertia matrix, C is the Christoffel matrix, Fpi is the potential force or torque
acting on the i joint, Fi is the external force or torque acting on the i joint, and Fbi is the
damping forces or torques acting on the i joint.
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The inertia matrix D is obtained as a part of a kinetic energy Ek:

Ek =
1
2

.
qT

n

∑
i=1

(miJT
vci(q)Jvci(q) + JT

ωci(q)Ri(q)IiRT
i (q)Jωci(q))

.
q =

1
2

.
qTD(q)

.
q (6)

where Jvi is the Jacobian matrix of the linear speed of the i joint, Jwi is the Jacobian matrix
of the rotational speed of the i joint, mi is the mass of the i link, Ii is the moment of inertia
of the i link, and q is the joint displacement [15].

The Jacobian matrix of the linear and rotational speed can be obtained by the z-axis
and the coordinate of the joint center [15]. The Jacobian matrix for the prismatic joint
gravity center Jc1 can be obtained by Equation (7) and the rotational joint gravity center Jc2
by Equation (8):

Jc1 =

[
Jvc1 0
Jωc1 0

]
=

[
z0 0
0 0

]
=



0 0
0 0
1 0
0 0
0 0
0 0

 (7)

where the z0 is referred to the base coordinate system {0}—[0,0,1] (Figure 2).

Jc2 =

[
Jv1 Jvc2
Jω1 Jωc2

]
=

[
z0 z1 × (oc2−o1)
0 z1

]
=



0 −ac2sθ2
0 0
1 ac2cθ2
0 0
0 −1
0 0

 (8)

where oc2 is the center of the second gravity center, o1 is the center of the first gravity center,
and z1 is referred to in Figure 2.

The external force Fi expressed in the coordinate system of the the i joint is calculated
by Equation (9):

[Fi] = Jc2
T



0
0
Fz
0
0
0

 =

[
Fz

Fzac2cθ2

]
(9)

The inertia matrix is:

D =

[
m1+m2 ac2m2cθ2

ac2m2cθ2 m2ac2
2+I2

]
(10)

where m1 is the mass of the first joint and is equal to 0, m2 is the mass of the levitated
magnet, and I2 is the moment of inertia of the levitated magnet calculated along the radius.

The Christoffel matrix is calculated by the inertia matrix D [15], as shown in Equation (11):

C =

[
0
0

−
.
θ2ac2m2sθ2

0

]
(11)

where
.
θ2 is the rotational velocity of the levitated magnet.

Finally, the movement of the levitated magnet can be presented by Equation (12):
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[
d1
θ2

]
=

Fz(I2+ac2
2m2−ac2

2m2c2θ2)−Fp1(I2+ac2
2m2)−Fb1(I2+ac2

2m2)+τp2ac2m2cθ2+τb2ac2m2cθ2+ac2
3

.
θ2

2
m2

2sθ2+I2ac2
.
θ2

2
m2sθ2

−ac2
2m2

2c2θ2+ac2
2m2

2+I2m2

−ac2
2

.
θ2

2
m2

2cθ2sθ2−τp2m2−τb2m2+Fp1ac2m2cθ2+Fb1ac2m2cθ2

−ac2
2m2

2c2θ2+ac2
2m2

2+I2m2

(12)

where Fp1 is the potential force acting on the first joint and the spring force of the magnetic
force presented in Equation (15), Fb1 is the damping force acting on the first joint presented
in Equation (13), τp2 is the potential and damping torque acting on the second joint pre-
sented in Equation (16), and τb2 is the damping torque acting on the second joint presented
in Equation (14). The spring constant force and gravitational force are in equilibrium.

Fb1= b1
.
d1 (13)

where b1 is the linear damping of the spring and
.
d1 is the linear velocity of the levitated magnet.

τb2= b2
.
θ2 (14)

where b2 is the rotational damping of the spring, and
.
θ2 is the rotational velocity of the

levitated magnet.
The resonance frequency and movement of the levitated magnet in a magnetic spring

depend on the spring force and the torque value. The spring force and torque change
with the displacement. Thus, the relationship between the force and torque to linear and
rotational displacement of the levitated magnet has been determined using the simulation
modeling conducted in ANSYS Maxwell 3D.

In the magnetic spring, the repulsive force of the two magnets is considered a nonlinear
restoring force depending on the magnetic field intensity, distance of the magnet, and
potential energy [10]. Therefore, the passive nonlinear spring force acts on the levitated
magnet [7,10,11]. In this simulation model, the force in the magnetic spring is considered a
combination of two parallel spring forces of equal intensity.

The magnetic property of the magnets used in the simulation model of the magnetic
spring is a relative magnetic permeability of 1.0535 and a magnetic coercivity of 800 kA/m.
The magnetic coercivity used in the simulation differs from that given by the producer
(937.4 kA/m) [18]. Magnets in the magnetic spring have different manufactured properties
and are probably demagnetized during vibration tests. The coercivity in the simulation was
obtained based on the magnetic repulsive forces measured between the levitated magnet
and the external magnet.

In the simulation model, the levitated magnet moves linearly and rotates. The force
was calculated along the z-axis and torque was considered around the xm-axis (Figure 3).
The exterior boundaries were set to Neumann boundaries and the interior boundaries
between magnets were set to natural boundaries.

The levitated magnet changes its position linearly along the z-axis direction in the
range of −3.2 mm to 3.2 mm and also rotationally around the xm-axis in the range of 0◦ to
10◦. The force approximation and torque equation by Matlab are presented, respectively, in
Equations (15) and (16):

Fp1(z, θ) = pf70d1
7+pf61d1

6θ2+pf60d1
6+pf52d1

5θ2
2+pf51d1

5θ2+pf50d1
5+ . . . + pf12d1θ2

2+pf11d1θ2+pf10d1+pf00 (15)

τp2(z, θ) = pt60d1
6+pt51d1

5θ2+pt50d1
5+pt42d1

4θ2
2+pt41d1

4θ2+pt40d1
4+ . . . + pt12d1θ2

2+pt11d1θ2+pt10d1+pt00 (16)

where d1 is the position of the levitated magnet, θ2 is the angle of the rotational variation
of the levitated magnet, pf00, . . . , pf70 are coefficients of the force approximation equation,
and pt00, . . . , pt60 are coefficients of the torque approximation equation. These coefficients
are shown, respectively, in Tables 3 and 4.
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Table 3. Coefficients of approximating polynomials of the magnetic force.

Coefficients F1 Coefficients F1 Coefficients F1

pf00 −2.722 × 10−4 pf01 −3.933 × 10−5 pf02 1.819 × 10−5

pf10 −0.528 pf11 4.439 × 10−4 pf12 −8.381 × 10−5

pf20 5.516 × 10−4 pf21 −3.026 × 10−4 pf22 2.552 × 10−5

pf30 −8.839 × 10−3 pf31 −2.663 × 10−4 pf32 4.041 × 10−5

pf40 −9.927 × 10−5 pf41 4.18 × 10−5 pf42 −3.334 × 10−6

pf50 3.023 × 10−4 pf51 2.141 × 10−5 pf52 −1.275 × 10−6

pf60 −4.222 × 10−6 pf61 −5.648 × 10−7

pf70 8.719 × 10−6

Table 4. Coefficients of approximating polynomials of the magnetic torque.

Coefficients τ2 Coefficients τ2 Coefficients τ2

pt00 −1.453 × 10−6 pt01 −1.218 × 10−4 pt02 −8.364 × 10−8

pt10 3.055 × 10−6 pt11 −1.97 × 10−6 pt12 2.304 × 10−7

pt20 9.485 × 10−6 pt21 −8.295 × 10−6 pt22 −1.351 × 10−7

pt30 −4.63 × 10−7 pt31 9.043 × 10−8 pt32 −2.009 × 10−8

pt40 −2.757 × 10−6 pt41 4.552 × 10−7 pt42 1.484 × 10−8

pt50 3.719 × 10−8 pt51 4.386 × 10−9

pt60 1.853 × 10−7

The force and torque, as a function of the linear and rotational position of the levitated
magnet are presented, respectively, in Figure 4a,b.
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levitated magnet.

In Figure 4a, the force changes as a function of the rotational angle of the levitated
magnet, especially when the levitated magnet is near the fixed magnet. The force values
vary from −1.5 N to 1.5 N. In Figure 4b, the lower torque values in the range between 0 Nm
and −1.5 × 10−3 Nm are due to the low values of the magnetic field intensity during the
rotational movement of the levitated magnet. The highest value of the torque is reached for
the highest rotational angle of the levitated magnet. The torque value is the lowest when
the levitated magnet is in the middle position between the fixed magnets. Therefore, the
entire spring is affected more by the applied force than the torque.

The displacement of the levitated magnet dm for a 2-DoF magnetic spring in the z0-axis
(Figure 2) is calculated as:

dm = dc1+a2sin(θ2) (17)

where dc1 is the linear displacement of the levitated magnet, a2 is the radius of the levitated
magnet, and θ2 is the angular position of the levitated magnet.

In this paper, only the theoretical analysis of generated electrical power of an elec-
tromagnetic generator was conducted. Two coils connected in series, wounded around a
magnetic spring using copper wire at a diameter of 0.18 mm with 400 turns, with 5 mm of
height, 12 mm of internal diameter, and 18 mm of external diameter were considered. In
the coil, the voltage is induced according to Faraday’s law. In this case, the transducer force
FT (18), derived from the induced voltage, is included in the external force Equation (1):

FT =
e2RL

(2Rc + RL)
2 .
dm

(18)

where RL is the the load resistance, RC is the resistance of the one coil, and e is the
induced voltage.

The voltage induced in the coils takes the form:

e = − ∂φ

∂dm

∂dm

∂t
(19)

where dm is the displacement of the magnet, and φ is the magnetic flux.
This force causes additional damping in the movement of the levitated magnet. The

external force Fz (1) is given by:
Fz = mhav − FT (20)
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The magnetic flux in coils was calculated in ANSYS Maxwell. The magnetic flux
approximation equation by Matlab is defined as:

φ(dm) = p3dm
3+p2dm

2+p1dm (21)

where dm is the relative displacement of the levitated magnet in coil, and p1, p2, and p3 are
coefficients of the magnetic flux approximation equation. These coefficients are shown in
Table 5 for each coil, respectively.

Table 5. Coefficients of approximating polynomials of the magnetic flux for first coil φ1 and second
coil φ2.

Coefficients φ1 Coefficients φ2

p1 −2.267 × 10−3 p1 2.265 × 10−3

p2 −1.418 × 10−1 p2 −1.161 × 10−1

p3 −8.599 p3 −7.507

The electrical power obtained by an electromagnetic generator can be calculated by:

P =
e2RL

(2Rc + RL)
2 (22)

The maximum power is generated when the load resistance is equal to the resistance
of the coil.

2.3. The Neural Network Model of the Vibration Generator

The vibration generator movements affect the magnetic spring displacement. In order
to control the vibrations, the mathematical model presented in the literature of the vibration
generator needs to be improved. The vibration generator displacement amplitude and
frequency characteristic are nonlinear and complex. Therefore, in this research, the vibration
generator is modeled using an artificial neural network (ANN) in order to establish an
accurate relation between the amplitude and frequency of current and the amplitude of
vibration generator displacement obtained by measurements in the laboratory. The ANN
can work continuously and more efficiently than the analytical model and provides a high
accuracy after extensive parameter optimization, contrary to the SVM model. Basically,
SVM utilizes nonlinear mapping to make the data linear and separable; hence, the kernel
function is the key. However, the ANN employs multi-layer connection and various
activation functions to deal with nonlinear problems, as in this case.

The ANN is able to perform computational tasks involving multiple entities called
neurons (neurons), organized in a network divided into levels (layers), which calculate the
value of parameters (weight) useful to minimize a cost function. ANNs are composed of an
input layer, one or more hidden layers, and an output layer. Each node, or artificial neuron,
has an associated weight and threshold. Each layer, except the last one, is fully connected
with neurons to the subsequent layer. A bias neuron represents a biasing feature and
produces 1 output in every situation. Input–output transfer functions of neural networks
can be easily obtained by a supervised learning process based on empirical data. The
network is trained by a suitable algorithm, usually a backpropagation learning algorithm.
The latter is used to change the weights wi and parameters (thresholds) within the same
network to minimize the sum of the squared error functions. The weight of an input is the
number which, when multiplied by the input xi, gives the weighted input. The function g
is the unit’s activation function:

y(x)= g

(
d

∑
i=1

wixi+w0

)
(23)
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where
w1 = iw [1, 1], w2 = iw [1, 2], b1 = b [1], b2 = b [2] (24)

Each input weight, layer weight, and bias vector has as many rows as the size of the i
layer, after the training network bias and weights change. In our case, iw [1,1] is the weight
to layer 1 from input 1, iw [1,2] is the weight to layer, b [1] is the bias to layer 1, and b [2]
is the bias to layer 2. In a multi-layer feed-forward neural network, artificial neurons are
arranged in layers, and all the neurons in each layer are connected to all neurons in the
next layer. Each connection between these artificial neurons is assigned a weight value that
represents the weight of the connection.

Given the frequency and amplitude current input values of the vibration generator,
the neural network feedforward is used to compute the amplitude of the movement of the
vibration generator at the output of the multi-layer perceptron (MLP) neural network. In
the feedforward process, external input values are first multiplied by their weights and
summed. The output y = f (x) is a weighted sum function, called the activation function. The
relation between the input variable X and the output variable Y is achieved by adjusting
the parameters and weights to reduce errors. The process of finding a set of weights so
that the network produces the desired output for a given input is called training. Neural
networks learn the relations between different input and output patterns.

The feedforward backpropagation neural network was used to determine a nonlinear
mapping from the input vector of the current, specifically frequency and amplitude, and the
amplitude of vibration. The input x is defined as a vector of frequency and amplitude of the
current whose waveform was obtained by signal generator AGILENT 33210a amplified by
amplifier IRS2092. The amplitude of the current was calculated using fast Fourier transform
(FFT). The output y(x) is expressed by the amplitude of the vibration generator obtained by
the FFT applied to the signal of laser distance meters LK-G32 (25). The training dataset for
the network has 140 samples and the validation dataset has 70 samples. The feedforward
backpropagation neural network is composed of the input layer with two neurons arranged
in the first hidden layer and other two neurons arranged in the second hidden layer using
a Log-sigmoid transfer function (logsig), and an output layer with hyperbolic tangent
sigmoid transfer function (tangsig), as shown in Figure 5.
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Figure 5. A multi-layer feedforward ANN of the vibration generator model with an input layer, two
hidden layers, and an output layer.

The hyperbolic tangent function has the properties to be differentiable and the output
has a range of values of [−1, 1] (different from that [0, 1] of the logistic function), which
leads each output of the level to be more or less normalized (i.e., centered around the
value 0) at the beginning of training. This often helps speed convergence. The input–output
mathematical relation obtained by the ANN is described as follows:

y(x)= tansig(Wologsig(Whlogsig(Wix + bi)+bh)+bo) (25)



Inventions 2023, 8, 34 12 of 23

where W i is an array containing weights to layer 1 from input 1, Wh is an array containing
weights to the hidden layer, Wo is an array containing weights to the output layer, bi is
an array containing bias values to layer 1, bh is an array containing bias values to hidden
layer 2, and bo is an array containing bias values to the output layer. The weights and
biases are shown in Table 6.

Table 6. Values of weights and biases for the neural network model of the vibration generator.

Name Values Obtained by the ANN Model Details

W i [2.7365 0.028886; 17.1944 −0.055445] Weights to layer 1 from input 1

Wh [−0.53955 2.742; −9.1492 9.123] Weights to the hidden layer

Wo [−7.2542 9.7889] Weights to the output layer

bi [2.6625; 13.5824] Bias to layer 1

bh [−0.11812; −3.5193] Bias to layer 2

bo [4.0911] Bias to the output layer

The mechanism to update the weight and bias values corresponding to Levenberg–
Marquardt optimization was conducted using the network training function (trainbr). The
process called Bayesian regularization using trainbr has combined the minimization of the
squared error and weights of the network in order to generalize the ANN. The gradient
descent with momentum weight and bias learning function (learngdm) is selected for the
calculation. The learning curve has exhibited the good performance of the ANN and after
293 epochs obtained an MSE of 0.036 and an excellent generalization due to the fact that
the test curve is always under the training curve, as shown in Figure 6.
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2.4. The Simulink Model of Magnetic Spring Based on the Input Signal of the Vibration Generator
Obtained by the Neural Network

The magnetic spring and the vibration generator were designed and simulated using
a block diagram by Simulink/Matlab to define the mathematical relation between the
input (current of vibration generator) and output (displacement of magnetic spring) signal,
including the results obtained by the 2-DoF kinematic chain model (12), the ANN (25), and
simulation modeling in ANSYS (15) and (16). The input signal of the model is represented
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by the amplitude and frequency values of the current that supply the vibration generator.
The force generated by the vibration generator is the input of the magnetic spring model.
The output of the simulated model is represented by the linear and rotational displacement
of the magnetic spring. The magnetic spring model is controlled by the magnetic spring
force and torque that depend on its displacement. The used model algorithm represents
the physical system in multidomain blocks (Figure 7).
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The displacement of the vibration generator is obtained by the input–output equation
based on the ANN (Figure 8).
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In the simulation model (Figure 7), the inputs I and f are, respectively, the current
amplitude and frequency of the vibration generator. The neural network of the vibration
generator is identified by the block Fz shown in Figure 8. In Figure 7, the transposition
of the Jacobian of the second joint mass center Jc2

T is obtained by Equation (8). The
potential force presented in Equation (15) and damping force for the first joint presented in
Equation (13) are contained in block F1. The potential torque presented in Equation (16)
and damping torque for the second joint presented in Equation (14) are contained in block
τ2. The inversion of the inertia matrix D presented in Equation (10) and Christoffel matrix
C presented in Equation (11) are contained, respectively, in blocks D−1 and C. The result
of the model is vector q of the linear and rotational movement of the levitated magnet. In
integration blocks, 1/s acceleration and velocity of the levitated magnet are integrated. The
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movement of the magnet is limited by the magnetic spring design. The derivation block
du/dt is a derivative of the position of the levitated magnet velocity.

In Figure 8, block y(x) contains the input–output function for the vibration generator
model by the ANN presented in Equation (25). The block sin(2πft) contains a sinusoidal
function with the input frequency f and simulation time t. The m2 contains the mass of the
levitated magnet.

The mass of the levitated magnet m2 is 1.77 × 10−3 kg and the inertia moment I2 of
the levitated magnet around the axis perpendicular to linear movement is calculated from
the magnet’s height and radius and equals 1.24 × 10−8 kgm2. The distance a2 between
the geometry center of the levitated magnet and the point on which the movement was
measured is equal to the radius of the levitated magnet 5 × 10−3 m. The distance ac2
between the geometry center of the levitated magnet and the gravity center of the levitated
magnet is assumed to be equal to 5 × 10−4 m. The linear damping coefficients bh1 and
bh2 were calculated in the optimization process and each equals 0.045 Ns/m. The linear
damping coefficient of the whole magnetic spring b1 is the sum of the linear damping
coefficients bh1 and bh2 and it is equal to 0.09 Ns/m. The rotational damping coefficient b2
of the whole magnetic spring is equal to 2 × 10−7 Nms/rad.

In order to take into account the electrical power induced by the inertial generator
that contains the magnetic spring, the transducer force is included in the external force
block diagram. For the simulation of the magnetic spring without a coil transducer force,
FT is equal to 0. For the simulation with the coil transducer force, FT is calculated based
on Equation (18). Transducer force depends on the velocity of the magnet in the coil.
The voltage is calculated by Equation (19) and the magnetic flux by Equation (21). The
generated power is calculated by Equation (22). The voltage and electrical power depend
on the velocity of the levitated magnet. The magnetic flux depends on the position of the
levitated magnet. The position and velocity are obtained from the simulation in Simulink.
The load resistance equals the resistance of the coil, which is 24 Ω.

2.5. The FEM Transient Model of the Magnetic Spring

To improve the completeness of the research, the energy harvester was analyzed using
another FEM model. This model took into account also the current induced by the inner
magnet movement and its impact on the characteristic of the whole device. The model,
presented in Figure 9, was performed using the Ansys Electronics Desktop program and
set up as a 2D transient model, axisymmetric around axis z. All the moving elements of
the device have an assigned motion band, which is a type of Ansys object allowing for a
movement consideration in the used FEM environment.

In the model, magnets Mu and Mb, and coils Lu and Lb move harmonically along the
z-axis, with velocity v set according to the following equation:

v = Aωcos(2π f t) (26)

where A is the amplitude of the harmonic displacement and f is the frequency of the
movement. This harmonic movement generates a variable spring force on the inner magnet
M, causing its movement. In this model, only the linear movement of the magnet, along
the z-axis was considered. The relative motion of the M magnet and the generating coils
causes a time-varying magnetic flux and induces a voltage in the coils. The dimensions
and parameters of the model are the same as reported in Section 2.2. The electric power
on the purely resistive load RL was calculated. The possible eddy currents that could be
induced in the magnets were omitted in this model.
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Figure 9. The FEM model of an investigated harvester.

3. Results and Discussion
3.1. The Displacement Results

The amplitude frequency characteristics results conducted in the laboratory are shown
in Figure 10. In order to achieve the amplitude of the vibration generator and levitated
magnet movements obtained by laser distance meters, the fast Fourier transformation (FFT)
has been performed in Matlab. The red curve in the plot of Figure 5 indicates the amplitude
of the vibration generator movement that was measured by the LK-G32 laser distance
meter. The blue curve in the plot of Figure 5 indicates the amplitude of the levitated magnet
movements in the magnetic spring placed on the vibration generator measured by the
LK-G152 laser distance meter.
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Figure 10. The amplitude frequency characteristics of the vibration generator and levitated magnet
movement for the amplitude of input current (a) 0.35 A and (b) 0.75 A.

In Figure 10a,b, the measurements of the vibration generator movements have shown
four resonance frequencies of 2 Hz, 30 Hz, 46 Hz, and 68 Hz. For the magnetic spring, the
resonance frequency is about 86 Hz. The amplitudes of the levitated magnet movement
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in the frequency range of 80–120 Hz for input current 0.35 A and 0.75 A are shown in
Figure 11a,b, respectively. It can be seen that the magnetic spring has two resonance
frequencies. The second resonance frequency of the magnetic spring corresponds with the
visible rise of the amplitude of the magnetic spring movement at 106 Hz.
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Figure 11. The amplitude frequency characteristics of the levitated magnet movement for constant
input current (a) 0.35 A and (b) 0.75 A in the frequency range of 80–120 Hz.

The amplitude frequency characteristics of experimental results for the vibration gen-
erator for input current amplitude 0.35 A and 0.75 A are shown in Figure 12a,b, respectively.
It can be seen that the higher the input current amplitude, the higher the vibration ampli-
tude of the vibration generator. It can be seen (in Figures 10 and 12) that, for the lower
frequencies, the amplitude of displacement of the vibration generator in absence of the
magnetic spring is higher than the amplitude of displacement of the vibration generator
with the magnetic spring. For the frequencies closer to resonance frequencies of the mag-
netic spring, the displacement of the loaded vibration generator is higher than for the
vibration generator in absence of the magnetic spring. It can be caused by the influence of
the levitated magnet movement.
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The amplitude as a function of the frequency of the vibration generator and the
levitated magnet movements relative to the measurements and simulation model for the
input current 0.35 A are shown, respectively, in Figures 13a and 14a. The amplitude as a
function of the frequency of the vibration generator and the levitated magnet movements
relative to the measurements and simulation model for the input current 0.75 A are shown,
respectively, in Figures 13b and 14b.
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Figure 14. The amplitude as a function of the frequency of the measured and simulated levitated
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In Figure 13, two resonance frequencies at 2 Hz and 30 Hz relative to the vibration
generator are obtained by the neural network model. In Figure 14, the magnetic spring
has two resonance frequencies at 86 Hz and 120 Hz obtained in the simulation model,
and two resonance frequencies at 86 Hz and 106 Hz obtained in measurements. Most
electromagnetic energy harvesters are designed to work at the resonance frequency for the
highest output power. Therefore, more resonance frequencies in the energy harvester are
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requested for many applications in environmental vibrations caused by wind, tidal waves,
vehicles, and human motions.

In order to compare the results for the magnetic spring presented as a 1-DoF kinematic
chain [17] and the magnetic spring presented as a 2-DoF kinematic chain, the simulation
was repeated for the 1-DoF kinematic chain magnetic spring. The input force was generated
by the neural network model of the vibration generator. The amplitude frequency graphs
for input current 0.35 A and 0.75 A are shown in Figure 15a,b, respectively.
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Figure 15. The amplitude as a function of the frequency of the 1-DoF and 2-DoF levitated magnet
movement simulation for constant input current (a) 0.35 A and (b) 0.75 A.

One resonance frequency is visible on the graphs of a 1-DoF model, as noticed in
the previous paper [17]. In the results of the levitated magnet for the 2-DoF model, two
resonance frequencies are exhibited, in agreement with the measurement results. The
2-DoF kinematic chain representation is an accurate model for the realized prototype
magnetic spring that is useful for two different applications corresponding to two different
resonance frequencies. It is more suitable and efficient than the 1-DoF kinematic chain
model, from which only one resonance frequency was obtained. The 2-DoF model can
be used to improve the modeling of the magnetic spring and its optimization, such as
adjusting resonance frequency.

The simulation of the movement of the levitated magnet for a magnetic spring excited
by the sinusoidal force of constant amplitude was performed. In this case, only the ampli-
tude of levitated magnet displacement in absence of external vibration amplitude is shown.
The force was calculated by Equation (1) for external sinusoidal vibration, with amplitude
varying in the range from 0.0001 mm to 0.1 mm. Exemplary results for an external vibration
amplitude of 0.001 mm, 0.005 mm, 0.01 mm, and 0.05 mm for the 1-DoF model and 2-DoF
model are shown in Figure 16a,b respectively.

In Figure 16, the amplitude of the levitated magnet displacement for the 2-DoF kine-
matic chain model is slightly lower at the first resonance frequency than for the 1-DoF
model. The second resonance frequency at 120 Hz for the 2-DoF model is presented by the
significant rise in the characteristic. The 2-DoF model, for this magnetic spring, is more
accurate than the 1-DoF model, although the 1-DoF model can be applied to the magnetic
spring with the guiding rod for the levitated magnet.
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The presented method for the magnetic spring was compared to the FEM simulation
using a transient solver in Ansys Electronics Desktop. In Figure 17, amplitude as a function
of the frequency for the 1-DoF and 2-DoF kinematic chain models and the FEM model
are compared. The external vibration that caused the magnetic spring movement was
sinusoidal with an amplitude of 0.05 mm. In this case, electric circuit coils wounded around
the magnetic spring was taken also into consideration. The external force for the 2-DoF and
1-DoF kinematic chain models was calculated by Equation (23). For both kinematic chain
models, resonance frequency was recognized at 86 Hz. The second resonance frequency is
recognized only for the 2-DoF kinematic chain model. For the FEM calculation, resonance
frequency is visible at 100 Hz and the amplitude of the levitated magnet displacement has
the highest peak for that model due to differences in the damping forces in the magnetic
spring and the properties of the magnets. In this case, the transient FEM model does not
agree with the measurements.
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3.2. The Theoretical Electrical Power Outcome

The theoretically calculated electrical power for the 1-DoF and 2-DoF models is shown
as the amplitude frequency graph in Figure 18a,b respectively. The external force was
calculated by Equation (23) and the electrical power was calculated by Equation (25).
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Figure 18. The amplitude as a function of the frequency of the generated power was calculated for
(a) 1-DoF and (b) 2-DoF for external excitation with constant amplitude of sinusoidal force.

The peak values of the electrical power for the 1-DoF and 2-DoF models for external
vibration amplitude varying from 0.0001mm to 0.1 mm are shown in Table 7. For the 2-DoF,
two peak values of electrical power were chosen.

Table 7. Peak power for the 1-DoF and 2-DoF models.

External Amplitude
[mm] 1-DoF Power [nW] 2-DoF Power [nW]

First Peak
2-DoF Power [nW]

Second Peak

0.0001 1.958 × 10−4 1.401 × 10−4 1.208 × 10−4

0.0005 5.775 × 10−3 3.516 × 10−3 3.000 × 10−3

0.001 2.356 × 10−2 1.407 × 10−2 1.199 × 10−2

0.005 5.982 × 10−1 3.519 × 10−1 2.998 × 10−1

0.01 2.396 1.408 1.202

0.05 59.931 35.340 32.007

0.1 277.931 137.643 88.231

In Figure 18 and Table 7, the mean electrical power obtained by the 1-DoF kinematic
chain model at 86 Hz is almost two times higher than the 2-DoF model. Yet, in the 2-DoF
model, the maximum values of mean electrical power correspond to the frequencies 86 Hz
and 120 Hz. In that way, the 2-DoF magnetic spring is useful to harvest electrical power
for two different frequencies of external vibrations. The 1-DoF magnetic spring is more
suitable for one, well-established, resonance frequency.

The comparison of power was obtained by the Simulink simulation based on the
kinematic chain model for 1-DoF and 2-DoF, and by the FEM transient simulation is shown
in Figure 19. The external sinusoidal vibration amplitude equals 0.05 mm. The electrical
power calculated in the FEM model has a higher maximum value (100 nW) than for the
1-DoF (59.931 nW) and 2-DoF (35.340 nW) kinematic chain models.
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In summary, the 2-DoF kinematic chain model allows determining more resonance
frequencies compared to the 1-DoF kinematic chain and ANSYS Maxwell in the 2-D
transient solver model. The kinematic chain model does not consider the influence of the
coil’s magnetic field on the resonance frequency of the magnetic spring. The FEM transient
calculations are more time-consuming and require more computing power. Therefore, the
kinematic chain model is faster and better for optimization purposes of the magnetic spring.
The resonance frequency value obtained by the FEM transient model differs by around
15% compared to the measurement value. Hence, FEM transients are not well suited for
such magnetic spring modeling. It can be stated that the 2-DoF kinematic chain describes
in the best way the magnetic spring prototype referred to in the previously discussed
simulation models.

3.3. Future Research

This research focused on the mechanical part of the electromagnetic energy
harvester—the displacement of the magnet in the magnetic spring. The simulation using
the FEM combined with Simulink/Matlab revealed that the coil is influencing the move-
ment but the impact is not significant for the resonance frequency determination. Therefore,
to properly establish the resonance frequency of the magnetic spring, it is sufficient to
measure the displacement of the levitated magnet. Hence, this 2-DoF kinematic chain
model of the magnetic spring is suitable for the resonance frequency optimization for the
chosen application.

In future research, the simulation model will be enhanced by considerations of the
rotational movement around the magnetization axis of the levitated magnet in the magnetic
spring. It can be performed using the advantageous novel method of modeling.

This article presentspreliminary research on the electromagnetic energy harvester
focusing on the mechanical part of the magnetic spring modeling. In future works, we will
consider the problem of controlling the electrical power by varying the load of the energy
harvester. The electric circuit will be added to the magnetic spring to measure obtained
electrical power. The proposed methodology with the FEM simulation will be used to
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determine the coil position, dimension, and type to maximize the electrical power outcome.
To validate the results, the measurement of the magnetic flux density will be carried out for
the magnetic spring. The influence of the coil’s magnetic field on the magnetic spring force
and the influence of the different loads on the electromagnetic vibration will be investigated
and added to the kinematic chain model.

4. Conclusions

In this paper, a mathematical model of a levitated magnet motion in the energy har-
vester and vibration generator are presented. The novelty of the paper is the resonance
frequency detection based on a new method of modeling. The novel 2-DoF kinematic chain
model derived from the Denavit–Hartenberg notation is developed for the simulation of the
linear and rotational movement of the magnetic spring. That model allows us to determine
two resonance frequencies in a magnetic spring prototype useful in energy harvesting sys-
tems to enhance output power and guarantee more applications in engineering technology,
such as in health monitoring systems, automotive. and naval applications. The magnetic
spring is supplied by the vibration generator that was modeled using the ANN. The mag-
netic spring force and torque equations in relation to the linear and rotational displacement
of the levitated magnet were calculated in ANSYS. The magnetic spring and the vibration
generator displacement were simulated using a block diagram by Simulink/Matlab and
the FEM simulation using the transient solver in Ansys Electronics Desktop. The theoretical
electrical power generated by the energy harvester has been calculated in nW. Such a level
of electrical power is sufficient to supply sensors and hybrid grid systems. Measurement
tests of the magnetic spring and vibration generator displacement are carried out in a
laboratory stand and are in agreement with the results obtained by the 2-DoF kinematic
chain mathematical and simulation models.

Author Contributions: Conceptualization, J.B., G.L.S., Z.K., T.T. and M.S.; methodology, J.B., G.L.S.,
Z.K. and T.T.; formal analysis, J.B., G.L.S., Z.K. and T.T.; investigation, J.B., G.L.S., Z.K. and M.S.;
resources, M.S.; data curation, J.B. and M.S.; writing—original draft preparation, J.B. and G.L.S.;
writing—review and editing, G.L.S., Z.K., T.T. and M.S.; supervision, T.T. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Carneiro, P.; Soares dos Santos, M.P.; Rodrigues, A.; Ferreira, J.A.; Simões, J.A.O.; Marques, A.T.; Kholkin, A.L. Electromagnetic

energy harvesting using magnetic levitation architectures: A review. Appl. Energy 2020, 260, 114191. [CrossRef]
2. Jia, Y.; Li, S.; Shi, Y. An Analytical and Numerical Study of Magnetic Spring Suspension with Energy Recovery Capabilities.

Energies 2018, 11, 3126. [CrossRef]
3. Vella, N.; Foley, J.; Sloat, J.; Sandoval, A.; D’Attile, L.; Masoumi, M. A Modular Wave Energy Converter for Observational and

Navigational Buoys. Fluids 2022, 7, 88. [CrossRef]
4. Le, M.Q.; Capsal, J.-F.; Lallart, M.; Hebrard, Y.; Van Der Ham, A.; Reffe, N.; Geynet, L.; Cottinet, P.-J. Review on energy harvesting

for structural health monitoring in aeronautical applications. Prog. Aerosp. Sci. 2015, 79, 147–157. [CrossRef]
5. Wei, C.; Jing, X. A comprehensive review on vibration energy harvesting: Modelling and realization. Renew. Sustain. Energy Rev.

2017, 74, 1–18. [CrossRef]
6. Saha, C.; O’Donnell, T.; Wang, N.; McCloskey, P. Electromagnetic generator for harvesting energy from human motion. Sens.

Actuators A Phys. 2008, 147, 248–253. [CrossRef]
7. Yang, X.; Cao, Y.; Liu, S.; Wang, Y.; Dong, G.; Yang, W. Optimization Design of a Vibration-Powered Generator with Annular

Permanent Magnetic Spring and Soft Magnetic Pole. IEEE Trans. Appl. Supercond. 2014, 24, 0501204. [CrossRef]
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13. Bijak, J.; Trawiński, T.; Szczygieł, M. A car wheel energy harvesting system regarded as a robotic kinematic chain system. Int. J.
Appl. Electromagn. Mech. 2022, 69, 263–278. [CrossRef]

14. Rodríguez-León, J.; Cervantes, I.; Castillo-Castañeda, E.; Carbone, G.; Cafolla, D. Design and Preliminary Testing of a Magnetic
Spring as an Energy-Storing System for Reduced Power Consumption of a Humanoid Arm. Actuators 2021, 10, 136. [CrossRef]

15. Spong, M.W.; Hutchinson, S.; Vidyasagar, M. Robot Dynamics and Control, 2nd ed.; John Wiley&Sons Inc.: Hoboken, NJ, USA, 2008.
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