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Abstract: Mechanical systems with inherent chaotic behavior are of notable practical interest due
to their applicability in many fields of technology, from industrial mills and concrete mixers to
microscopic micromechanical random bit generators. One of the most generic mathematical models
for designing chaotic mechanical systems is the Duffing oscillator, which demonstrates chaotic motion
under periodic excitation. The mechanical implementation of Duffing oscillator requires nonlinear
springs, which can be implemented using different physical principles. In the current study, we
propose the mechanical Duffing oscillator with magnetic springs as a low-wear, robust and easy-to-
implement solution. We show by simulation and experimentation that the developed mechanical
system performs chaotic oscillations in a wide range of parameters. The proposed design can be
revised in a problem-specific manner and achieve many practical applications.

Keywords: Duffing equation; mechanical chaos; nonlinear oscillator; chaotic system; magnetic
bearing

1. Introduction

Chaotic behavior in mechanical systems has been extensively investigated since the
1980s when the theory of chaotic motion became well-established. Examples of early
reports on mechanical chaotic systems include works on the parametrically excited pen-
dulum [1], double pendulum [2], a mechanical system with piecewise nonlinearity [3],
and many others. However, the studies of that period mostly targeted at not explaining
any practically observed phenomena but to verify the universal nature of chaos. Later,
it was discovered that chaotic motion can be found in such real engineering systems as
airfoils [4,5], suspension systems [6], drilling systems [7,8], etc. In most of these cases, chaos
was considered an unintended side effect and an undesirable phenomenon. Meanwhile,
in recent years, researchers have focused on the beneficial properties of chaos. An inspiring
example of mechanical engineering is a successful and diverse experience of developing
electrical chaotic circuits, including GHz frequency devices [9], applied for sensing [10–12],
secure and ultra-wideband communications [13–15], random bit generation [16] and others.
One of the promising applications of mechanical chaotic systems is micromachines with
chaotic motion. In particular, they are of great interest in advanced medical solutions for
diagnostics and targeted drug delivery [17]. Another example includes hardware chaotic
generators fabricated as a MEMS device for random number generation [18]. Chaotic
MEMS devices can also be used for machine learning based on reservoir computing [19].
Damage detection in the fluid-structural system by mechanical chaos [20], as well as in-
dustrial vibrators, e.g., chaotic 4-DOF screen [21], are also promising types of applications.
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Thus, developing and investigating mechanical chaotic devices is a relevant field in non-
linear science. In addition, the design of advanced control systems requires experimental
environments with mechanical nonlinear oscillators.

It is known that a majority of mechanical chaotic systems can be reduced to various
modifications of the well-known Duffing oscillator [22]. This canonical oscillator is one
of the simplest and thus is very popular for physical implementations. It is described
by a second-order non-autonomous differential equation and is usually applied for the
simulation of various driven and damped oscillators, e.g., elastic pendulum and nonlinear
pendulum with external excitation. The most straightforward realization of the mechanical
Duffing oscillator is based on the inverted pendulum, such as the model proposed by
Shaw and Rand in 1989 [23]. A practical design based on this idea was independently
invented by Berger and Nunes in 1997, who developed a laboratory bench for educational
purposes [24]. The main drawback of the inverted pendulum as the generator of mechanical
chaotic vibration is the dependency on the gravity field, which prevents it from being used
in mechanisms pivoted relative to the horizon during their operation. Another type of
implementation includes flexible cantilevers. Two possible macroscopic examples of such a
design are described in recent works [25,26], and a microscopic (MEMS) implementation is
given in [18].

In this study, we propose and investigate an original implementation of the mechanical
Duffing system based on magnetic springs. The dynamics of the system are thoroughly
analyzed, and the presence of chaos is confirmed. Magnetic springs used in the proposed
design are a known but underestimated solution in engineering, which gained close at-
tention only in recent years. Several works confirm their advantages in practice, namely
compact size, absence of failure or wear and noise [27–29].

The rest of the paper is organized as follows. In Section 2, general principles of
constructing a mechanical Duffing system are given, including the choice of nonlinear
springs. In Section 3, the developed physical prototype is described, and the experimental
results are reported. Section 4 discusses the results and provides some remarks on possible
applications. Section 5 concludes the paper.

2. Materials and Methods
2.1. General Considerations

The forced Duffing oscillator is described by the following equation [22]:

ẍ + σẋ + αx + βx3 = γ cos(ωt), (1)

where the frequency of harmonic excitation is ω and its amplitude is A. Typical parameters
needed for the emergence of chaos are α = 1, β = 5, σ = 0.02, γ = 8 and ω = 0.5.

It can be implemented as a mechanical system using various physical principles,
but the overall structure of this system remains the same. If transnational movement is
considered, the system is represented as shown in Figure 1a.

The system shown in Figure 1a is a simple mechanical oscillator with damping Ff (v).
A special shape of the elastic force Fe(x) is shown in Figure 1b. When there are no external
forces, it drives the mass m into two possible stable states: x = a or x = c, so the system
is bistable. The point b is an unstable equilibrium, from which the mass escapes under
infinitesimal perturbations. When such a bistable system is excited by harmonic oscillations,
with the growth of oscillation amplitude or frequency, it experiences a set of period-
doubling bifurcations and eventually falls into a chaotic regime.
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(a) (b)

Figure 1. Mechanical Duffing system: (a) Overall schematics of the system, where Fe(x) is a nonlinear
elastic force, Ff (v) is a damping force. Fractions 1

2 are due to symmetry. (b) Special shape of the
nonlinear elastic force with three equilibrium points: a and c are points of a stable equilibrium and b
is a point of an unstable equilibrium.

The equation of motion of such a system is as follows:

mẍ + Ff (ẋ) + Fe(x) = γ cos(ωt),

which, after denoting the velocity as v, reads{
ẋ = v,
v̇ = (−Ff (v)− Fe(x) + γ cos(ωt))/m.

(2)

The classical choice for the elastic force is a cubic parabola. Together with linear
damping, we get a canonical form of the excited Duffing system (1). Nevertheless, two
factors restrict the relevance of (1) in describing real mechanical systems and, vice versa,
designing practical systems which directly implement this equation. The first one is that
precise cubic nonlinearity is impossible in physical systems, and we may deal only with
the approximation by a cubic parabola. The second factor restricting the relevance of (1) is
that linear (viscous) friction in mechanical systems is usually combined with nonlinear dry
friction, which is not taken into account in (1).

Further, we consider both factors and substantiate the proposed design.

2.2. Choice of Nonlinear Springs

Cubic or nearly cubic nonlinearity can be achieved in many ways. Some special
approaches to designing elastic elements with such a nonlinearity can be found in the
literature, including conic springs [30] and cam-guided or cam-wrapped springs [31].
However, the truly cubic behavior of F(x) is unnecessary. The only requirement is that
the elastic force is nonlinear and drives the system into the interval [a, b]. An example of a
system with backlash from [3] shows that even the use of a piecewise-linear function

F(x) =


k(x− c), x > c,
0, a ≤ x ≤ c,
−k(x− a), x < a,

which provides an infinite number of neutral equilibria inside the interval [a, b], results in
an attractor, which is very similar to the attractor of the original Duffing system.

Both considered approaches, the use of nonlinear mechanical springs and the use of
backlash, have their drawbacks in real designs. Specially shaped mechanical springs are
bulky, difficult to manufacture in a laboratory without special equipment, and costly in
mass production. Backlash in a real system will result in a noisy and wear-prone solution.

Therefore, in the current study, we consider magnetic springs as an alternative solution.
The magnetic springs possess several notable advantages over mechanical springs: they
possess no wear, no noise, no undesirable extra vibrations, and higher power density [28].
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Moreover, the interaction between magnets is naturally nonlinear, which simplifies our
design, reduces production costs, and makes experimental prototypes easy to construct for
scientific and/or educational purposes.

Attractive and repulsive forces between permanent magnets can be calculated using
complex FEM analysis, but for our purposes, simpler approximate models are also feasible.
A recent investigation by W. Schomburg et al. [32] found the following approximation for
the normal force between magnets:

F⊥(x) =
d2

e
(x + de)2 F0, (3)

where F0 is the force when the magnets lean against each other, and de is the effective
distance, at which the force is 1/4 of F0: F⊥(de) =

1
4 F0.

The following approximation for the lateral force between magnets was also proposed:

F‖(x) =


(

LS
2

)4

(
LS
2

)4
+
(

x− LL
2

)4 −

(
LS
2

)4

(
LS
2

)4
+
(

x + LL
2

)4

F‖m, (4)

where F‖m is the maximum force in the lateral direction, LS is a width of a peak at half
maximum, and LL is the distance between peaks in positive and negative directions.

Combining normal and lateral types of attracting and repulsive forces through design-
ing various configurations of magnets, it is possible to obtain almost any shape of the force
in the mechanical system.

Further, we give an illustration of the described approximations. Figure 2a shows a
plot of (3) with the parameters de = 2 · 10−3 m and F0 = 4 N. Figure 2b shows a plot of (4)
with the parameters LS = 1.5 · 10−3 m, LL = 2 · 10−3 m, F‖m = 0.5 N. Arrows explain the
physical meaning of LS and LL.
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Figure 2. Forces between magnets: (a) Normal direction, approximated by the model (4). (b) Lateral
direction, approximated by the model (3).

2.3. Design of the Mechanical Oscillator

The idea of the proposed design is to use a conventional DC vibration motor as a
source of harmonic excitation. This motor is attached to a carriage with an overall mass
of m. To restrict the possible motion of the carriage, it is placed on linear guides, so it can
move only along the x axis. An important condition for the oscillator operation is the good
sliding of the carriage along the guides. Figure 3a shows a cross-section of the experimental
setup, and Figure 3b presents a 3D view of our mechanical design.
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(a) (b)

Figure 3. Side view (a) and 3D view (b) of the mechanical system design. Here: (1) frame; (2) carriage;
(3) linear guide; (4) top frame; (5) top pair of repulsive magnets; (6) excitation vibration motor;
(7) right pair of repulsive magnets; (8) left pair of repulsive magnets, fully symmetric to the right pair.
D is the width of the magnetic spring.

Let us consider forces acting on the carriage with attached magnets. Two pairs of
repulsive magnets (7) and (8) acting in a normal direction push the carriage from the sides.
A pair of repulsive magnets (5) acting in a lateral direction pushes the mass out of the
vicinity of the zero position. These three pairs of magnets give the following set of forces:

F⊥1(x) = d2
e

(D−x+de)2 F0,

F⊥2(x) = d2
e

(D+x+de)2 F0,

F‖(x) =

( (
LS
2

)4

(
LS
2

)4
+
(

x− LL
2

)4 −
(

LS
2

)4

(
LS
2

)4
+
(

x+ LL
2

)4

)
F‖m,

Fc(x) = F⊥1(x)− F⊥2(x)− F‖(x),

(5)

where D is the distance between two repulsive magnets (7) and (8) from each side of a
carriage when it is in the zero position. Figure 4 shows a plot of a composite function Fc
from the Formula (5). All parameters are similar to those used for plotting Figure 2.
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c
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Figure 4. Approximation of the cubic parabola by formula (5).

2.4. Equation of Nonlinear Friction

Having defined equations for the nonlinear magnetic springs, let us consider the
issue of the carriage sliding along linear guides. While guides are made of polished
steel and the carriage is made of durable photopolymer resin with a rather low friction
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coefficient, the small mass of the carriage makes the system rather sensitive to dry friction.
During operation, the carriage nearly sticks at low velocity, and as it moves faster, the
force decreases, so we looked for a model which could reproduce these effects. Multiple
dry friction models have been developed; several notable ones are summarized in the
review [33]. We have simplified the Karnopp model which represents switching of the dry
friction force Ff depending on the velocity v:

Ff (v) =

{
Fs sign(v) + σv, |v| ≤ vd,
Fd sign(v) + σv, |v| > vd,

(6)

where Fs is a static friction force, Fd is a dynamic friction force (it is lower than Fs), σ is a
linear friction coefficient, and vd is the velocity tolerance.

The original Karnopp model introduces a special velocity tolerance vd, and when the
velocity falls below this speed, it sets to zero. The mass can move again under the action of
the external force only if its absolute value exceeds the static friction force Fs. Since stiction,
or zeroing velocity for a certain time, was not observed in a real-life experiment, our model
does no take it into account.

2.5. Equations of a System Excited by a Vibration Motor

A vibration motor is an electric motor with an asymmetric mass mounted on its axis.
This mass transmits a force of inertia, emerging when rotating, through the motor body
to an object to which the motor is attached. This force causes the vibration, or mechanical
oscillations, of an object. In our case, the object on which the motor is tightly fixed is the
carriage. When the acceleration of the carriage is much smaller than the acceleration of the
asymmetric mass, we may consider the dynamics of the vibration motor independent from
the dynamics of the carriage and assume that the projection of the inertial force of this mass
on the x axis is harmonic.

We use a QX-6A-3V motor with a half-cylinder rotating mass with height h and radius
R, so its mass can be expressed from its volume and density of steel ρS as

mrot = ρShπR2.

The distance from the center of rotation to the center of mass is d = 4/(3π)R, so the
amplitude of the force of inertia is expressed as

A = mrotω
2d, (7)

where ω is an angular frequency of rotation.
The overall equation describing the motion of the proposed mechanical system is{

ẋ = v,
v̇ = (−Ff (v)− Fc(x) + A cos(ωt))/m,

(8)

where the friction force Ff (v) is defined by Equation (6), magnetic spring force Fc(x)
is defined by Equation (5), and the amplitude of the excitation force A is defined by
Equation (7).

3. Results
3.1. Numerical Analysis

Using numerical simulation, we investigated the model (8) by substituting measured
and approximated physical parameters of the experimental setup. For convenience, all
parameters are given in Table 1.
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Table 1. Defined parameters.

Parameter Value Unit

Frequency of vibromotor rotation, f 64 Hz
Radius of the vibration head, R 2.9 × 10−3 m
Height of the vibration head, H 4.5 × 10−3 m

Density of steel, ρS 7700 kg/m3

Mass of the carriage, m 6.57 × 10−3 kg
Dynamic friction force, Fd 0.03 N

Static friction force, Fs 0.05 N
Velocity tolerance, vd 0.02 m/s

Linear friction coefficient, σ 0.01 N s/m
Effective distance between magnets (7) and (8), de 2 × 10−3 m

Force at close contact for magnets (7) and (8), F0 4 N
Distance between magnets at zero position, D 0.0025 m

Maximum force between magnets (5) F‖m 0.5 N
Width of the peak at half maximum, LS 2 × 10−3 m

Distance between peaks, LL 2 × 10−3 m

In all numerical simulations, we use the 8th-order Dormand–Prince integration
method with integration step size h = 10−4. The initial conditions of all variables were
zeroes. The time series and phase portrait of the proposed mechanical chaotic oscillator
obtained by numerical simulation are shown in Figure 5.
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/
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(a) (b)

Figure 5. Time domain (a) and phase portrait (b) of Duffing oscillator obtained by numeri-
cal simulation.

Let us investigate the model by changing the frequency of vibration f and the initial
distance between side magnets D. Bifurcation diagrams while varying parameters f and
D are shown in Figures 6 and 7, respectively. Note that chaotic motion presents only in
a certain frequency band. This phenomenon is common for physical implementations of
the Duffing oscillator, e.g., compare the obtained results with the results obtained for the
electrical model in [12].
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Figure 6. Bifurcation diagram of Duffing oscillator on f .

1:5 2 2:5 3 3:5 4 4:5 5

D, m #10!3

!2

!1

0

1

2

3

4

x
,
m

#10!3

Figure 7. Bifurcation diagram of Duffing oscillator on D.

We also provide a two-dimensional bifurcation diagram about parameters f and D,
see Figure 8. The pseudoimage of a two-dimensional bifurcation diagram is obtained using
the kernel density estimation (KDE) algorithm [34] applied to each point of the diagram.

Red regions of the two-dimensional bifurcation diagram correspond to parameter
values where oscillations are more irregular. Blue regions are the regions of periodic oscilla-
tions.
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Figure 8. Two-dimensional bifurcation diagram of the proposed oscillator about the frequency of
vibration motor rotation f (Hz) vs. distance between magnets D (m).

3.2. Experimental Results

The experimental setup was created using 3D photopolymer printing and parts of the
industrial CNC machines. The design contains only four specific 3D-printed details: two
side frames, a carriage, and a top frame. Magnets, screws, a DC vibration motor, and an
aluminum profile were on-the-shelf products. Linear guides are identical to those used
in DVD drives. Figure 9 presents the physical prototype. The numbers in the annotation
correspond to the numbers in Figure 3a. One can see the features of the implemented
design in detail: the repulsive magnets, vibration motor (DC motor with an unbalanced
rotor), displacement measurement optical system and other features.

(a) (b)

Figure 9. Side view (a) of the developed mechanical system. (1) frame; (2) carriage; (3) linear guide;
(4) top frame; (6) excitation vibration motor; (7) right pair of repulsive magnets; (8) left pair of
repulsive magnets, fully symmetric to the right pair. D is the width of the magnetic spring. Top frame
repulsive magnets can be seen in (b): a photograph of the mechanical prototype with measurement
optical system switched on. Green LED and a photodiode are used to measure the displacement
during the vibration.
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To measure the displacement x of the carriage, the optical sensor was utilized. The move-
ment measurement system consists of a green LED, a shutter, a photodiode, an amplifier,
and an oscilloscope. Plastic parts used in optical measurements, including the shutter, were
painted in black. When the carriage moves, the shutter partially closes the light stream
from the LED to the photodiode and the voltage at the amplifier changes, see Figure 10.

Figure 10. Optical displacement measurement system. (1) Green LED; (2) 3D-printed photopolymer
shutter painted in black; (3) photodiode..

To convert the photodiode voltage to a displacement, we performed a set of measure-
ments using the digital oscilloscope with a software DC meter, and the dial test indicator
(Figure 11a). Obtained voltage–distance pairs were approximated by a linear function, see
Figure 11b, with resulting RMS error ε = 2.917 · 10−5 m.

(a)

-0.045 -0.04 -0.035 -0.03 -0.025 -0.02 -0.015

u, V

0

1

2

3

4

d
,
m

#10!4

Photodiode Out
Fit

(b)

Figure 11. The photograph of the measurement process using dial test indicator (a) and the linear
approximation of the optical measurement system output (b).

The value of v was reconstructed from x computationally by numerical differentiation.
Figure 12 demonstrates time domain and phase portrait obtained at the following values of
parameters: initial distance D = 4 mm, excitation frequency f = 26.4 Hz.
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Figure 12. Time domain (a) and phase portrait (b) of Duffing oscillator obtained by experimental
data, where v—velocity (m/s) and x—coordinate (m) of oscillator.

4. Discussion
4.1. Correspondence between Model and Experiment

One can visually compare the phase space shown in Figure 12 and the numerically
obtained attractor in Figure 5, and conclude that they are generally similar. The more
complex shape of the experimental attractor is conditioned by the inaccuracy of the model
(8). The exact identification of the considered mechanical system is a very difficult problem.
There are multiple sources of discrepancy between the simulated and mechanical system,
including friction, lack of rigidity in real mechanics, electromagnetic interference in data
acquisition channels, etc. Standard least-square identification procedures work well when
all terms are of almost similar scale, but in the considered system, one of the most important
terms—namely, friction—is rather small. In this case, even a moderate level of noise in
the data prevents one from accurately identifying the friction governing equation. This
makes the approximate physically motivated model presented in the current study the
best possible choice. Complicated denoising and optimization techniques could help to
solve this issue, but they are out of scope in the current study. In addition, the lack of
rigidity in the real mechanical system would always result in increasing the dimension
of the model. Data-based model identification techniques could also help in deriving a
more accurate model, but we tried to avoid this because the model could become too
complicated and even over-fitted. Another additional source of error is the inaccuracy of
measurements, but our numerical investigation showed that sub-millimeter instrumental
error in all coefficients would not result in a more precise shape of the attractor.

Moreover, one of the important factors which was ignored but plays a notable role in
a physical experiment, is the effect of carriage movement on the vibration motor frequency.
The set of parameters D and f used to obtain the experimental attractor presented in
Figure 12 does not lead to chaos according to the 2D bifurcation diagram in Figure 8.
However, this does not mean that the numerical analysis of this chaotic system is of no
importance. It reveals that chaos in the designed system is rather robust, which is verified
by the size of chaotic regions. Nevertheless, the disruption between the experimental setup
and the model is yet another confirmation that real-world systems often behave in a more
complicated way than the mathematical models they are supposed to correspond to, which
is consistent with numerous observations in chaotic electronic circuits [35–37].

4.2. Possible Applications and Improvements

The results of this study may find applications in vibration systems where it is nec-
essary to convert the narrow-band mechanical vibrations of the driving motor into a
wide-band vibration inherent to chaotic oscillators, ensuring the reliability of the design
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and its simplicity: the absence of gears, electric magnets and complicated control electronics.
Examples of such systems include shakers, vibrating screens and vibrating robots.

As for the possible improvement of our design, we may use a linear resonant actuator
instead of a vibration motor. It also seems interesting to investigate the magnetic springs
in a system with not translational, but rotational motion. We assume it would allow a
significant decrease in the mass and size of the chaotic vibrator since the torsional friction
may be almost fully eliminated by rotary bearings.

5. Conclusions

In this paper, a novel implementation of the chaotic Duffing oscillator is proposed as a
simple mechanical system with a translational movement. The key feature of our design is
the use of magnetic springs, by which a smooth nonlinear force is introduced. A standard
micro-vibration motor is used as a drive for the developed oscillator. A mathematical
model taking into account the nonlinear dry friction between the carriage and guides
and the nonlinear magnetic interaction was developed. Chaotic regimes of the proposed
system were investigated using phase plane analysis and multidimensional bifurcation
analysis. An experimental prototype was created, and the similarity of attractors between
the mathematical model and the mechanical prototype was observed. We may conclude
that the concept of the experimental stand was explicitly proven.

The directions of further work would include, but are not limited to, the synchroniza-
tion of coupled mechanical chaotic oscillators, developing a control system for governing
oscillation mode in mechanical chaotic oscillators, and investigating the possibility of con-
structing physical pseudo-random number generators based on mechanical chaos. Practical
applications, especially in the field of micro-robotics, are also of high interest.
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