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Abstract: Sign language is designed as a natural communication method for the deaf community
to convey messages and connect with society. In American sign language, twenty-six special sign
gestures from the alphabet are used for the fingerspelling of proper words. The purpose of this
research is to classify the hand gestures in the alphabet and recognize a sequence of gestures in the
fingerspelling using an inertial hand motion capture system. In this work, time and time-frequency
domain features and angle-based features are extracted from the raw data for classification with
convolutional neural network-based classifiers. In fingerspelling recognition, we explore two kinds of
models: connectionist temporal classification and encoder-decoder structured sequence recognition
model. The study reveals that the classification model achieves an average accuracy of 74.8% for
dynamic ASL gestures considering user independence. Moreover, the proposed two sequence
recognition models achieve 55.1%, 93.4% accuracy in word-level evaluation, and 86.5%, 97.9% in the
letter-level evaluation of fingerspelling. The proposed method has the potential to recognize more
hand gestures of sign language with highly reliable inertial data from the device.

Keywords: American sign language alphabet; hand gesture classification; sequence recognition

1. Introduction

Sign language is widely used by hearing-impaired people to communicate with each
other. In daily life, we can see sign language interpreters in the live news or weather
forecast, but most people with normal hearing could hardly understand the meaning
of their expressions. Meanwhile, it is also difficult to start a conversation with real-life
sign language users. With sign language recognition (SLR), the communication barriers
could be alleviated. In American sign language (ASL), twenty-six special hand gestures
representing the letters in the alphabet (A–Z) are normally used to spell proper nouns like
names, technical terms, and abbreviations or unfamiliar words [1], which accounts for 12%
to 35% of ASL [2]. Figure 1 shows the alphabet of ASL constituting designated fingers and
hand-shape gestures [3].

Figure 1. Twenty-six letters in ASL alphabet with different patterns of fingers and hand shapes.
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The hand gesture recognition of this finite corpus with 26 possible classes has been
conducted in prior work by the following two main classification mechanisms: vision-
based and wearable sensors-based recognition. The vision-based approach utilizes RGB
or RGB-D camera to catch the static gestures or dynamic movements of the hand. Most
of the gestures can be regarded as static without involving any movement of the forearm
except for the letters “j” and “z”. Studies treating hand gestures as static always ignore
these two letters to become 24 classification [4–6]. Jalal et al. [7] built a capsule-based Deep
Neural Network (DNN) for the sign gestures recognition of the ASL Alphabet dataset [8]
and achieved a relatively high classification accuracy of 99%. Ranga et al. [9] and Nguyen &
Do [10] both did the classification on the Massey dataset [11]. Ranga et al. applied a hybrid
discrete wavelet transform-Gabor filter for feature extraction from images. Random Forest
(RF), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Convolutional
Neural Network (CNN) models were evaluated, which produced the highest accuracy of
97.01% on signer dependent and 76.25% on signer independent evaluation. Nguyen & Do
extracted Histogram of Oriented Gradients (HOG) and Local Binary Pattern (LBP) features
from images and applied SVM and CNN architecture models to achieve the result of 98.36%
without considering signer independence. With the fingerspelling A dataset [12], Rajan
& Leo [13] applied the skin color-based YCbCr segmentation method to extract the hand
shape. Besides, Shin et al. [14] estimated the coordinates of hand joints for classification
and achieved 99.39%, 87.60%, and 98.45% on the above-mentioned three datasets, respec-
tively. On dynamic gesture recognition, Thongtawee et al. [15] applied Webcam to collect
26 signs and achieved up to 95% recognition rate. Chong & Lee [16] used Leap Motion to
recognize 26 letters and 10 digits. Dawod & Chakpitak [17] built a dataset of dynamic signs
with Kinect and achieved high accuracy by Random Decision Forest (RDF) and Hidden
Conditional Random Fields (HCRF) classifiers.

In wearable sensors-based recognition, commercial devices like the armband, smart-
watch, and data glove provide convenient experimental applications. Due to the restricted
arm movements of sign gestures in the alphabet, hand shapes are important distinguishing
factors for different letters. Paudyal et al. [18] utilized the MYO armband to build a dataset
from nine participants. The MYO armband returned Inertial Measurement Unit (IMU)
signals indicating the forearm direction and electromyographic (EMG) signals indicating
the hand shape. With the Dynamic Feature Selection and Voting (DyFAV) algorithm, the
system with an independent multiple-agent voting approach could identify letters with
high accuracy. Hou et al. [19] built a sign language translator based on the smartwatch.
Instead of the ASL alphabet, hand gestures of 103 ASL words were collected due to the
limited ability of the smartwatch in recognizing hand shapes. Saquib & Rahman [20]
developed a system to detect the ASL alphabet and Bengali Sign Language (BdSL) alphabet
with a data glove. The data glove returned highly reliable information on hand joints.
Thus, the system was capable of accurately detecting both static and dynamic signs in
the alphabet. A novel method for static hand gesture recognition is using the magnetic
positioning system [21]. Additionally, some customized devices show better performance
in gesture recognition. Lee et al. [22] customized a device with six IMU sensors to detect
the orientation of the hand and fingers. Zhu et al. [23] presented a novel epidermal-intronic
sensing (EIS) wearable device worn on finger joints for hand gesture recognition. Com-
pared with introduced on-market devices, this device was lighter and more comfortable
to wear.

In ASL fingerspelling, meaningful words are constructed by signing multiple letters in
a sequence. Fingerspelling recognition is a challenging task with untrimmed sign language
videos [24] because the boundaries of gestures in the sequence are relatively blurry. Shi
et al. [25] built the first large dataset for the problem of finger spelling recognition with
naturally occurring video data. With attention-based recurrent encoder-decoders and
Connectionist Temporal Classification (CTC)-based approaches, the best recognition result
was 42.8%. When using an end-to-end model with the iterative attention mechanism [26],
the recognition accuracy finally reached 61.2%.
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In general, both vision-based and wearable sensor-based approaches have their own
merits and limitations. In this study, a wearable inertial motion capture system is utilized
to collect a dynamic dataset of hand gestures in the ASL alphabet. Time and time-frequency
domain features and angle-based features are extracted from the raw signals to promote
classification accuracy. Cross-user classification results are evaluated to identify the general
applicability of the method. Then, fifty commonly used English words are generated by the
hand gesture data in the dataset. Two kinds of sequence recognition models are applied to
the recognition of fingerspelling.

The rest of this paper is organized as follows: Section 2 introduces the experimental
data collection device and signal preprocessing methods. The machine learning models
for hand gesture classification and sequence recognition are also presented. Section 3
provides the recognition results by using the designed models. Then, the differences in
easily confusing hand gestures are discussed. Finally, the conclusion is drawn for this
research.

2. Materials and Methods
2.1. Isolated Hand Gestures Recognition of Twenty-Six Letters in the Alphabet
2.1.1. Dataset Collection

In the previous works of sign language recognition, the signs in the alphabet are
regarded as static (24 signs without “j” and “z”) or dynamic (all 26 signs) processes. In this
study, all the signs are regarded as dynamic processes, because the next task conducted is
the fingerspelling recognition, containing a sequence of dynamic gestures in the data. As
shown in Figure 2, we set a rest state as the start and end of each sign. The sign starts from
a rest state and finally returns to the original rest state.

Figure 2. Dynamic process of sign “j”.

Perception Neuron (Noitom Ltd., Beijing, China) is a wearable IMU sensors-based
motion capture system. Figure 3 shows the right-hand mode of the system with nine
inertial sensors (named “Neuron”) distributed on the right hand and arm. The red points
show the positions of Neurons fixed by fabric and straps. Each Neuron is composed of an
accelerometer, gyroscope, and magnetometer. Like all other IMU sensors, it can return the
yaw, pitch, and roll of the attached position to detect the bone posture. The sampling rate
is fixed at 120 Hz. Axis Neuron (Noitom Ltd., Beijing, China) is the official software of the
device. It can receive and process the motion data and export files in bvh format.

Figure 3. Perception Neuron motion capture system for right hand [27]: (a) distribution of sensors;
(b) main interface of Axis Neuron software.

A bvh file contains the rotation information of all twenty right-hand joints, as illustrated
in Figure 4. The coordinate values (Rotation_Y, Rotation_X, Rotation_Z) record the angles
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rotated by the coordinate system under the movement compared with the initial state.
Before the experiment, device calibration is conducted to determine the initial orientation
of the coordinate system. The user stands still with arms stretched and palms down, and
this state is regarded as the initial state with all coordinate values to be 0. Four participants
(height: 157.6–162.3 cm, weight: 43.5–57.8 kg) were involved in the experiment. Each of
the twenty-six gestures was repeated 20 times. Finally, 2080 samples were collected in the
dataset.

Figure 4. Twenty right-hand joints recorded by the device.

2.1.2. Data Preprocessing

Due to the limitation of the device, some channels of coordinates (the hollow points
in Figure 4) keep the same value during the whole process. We manually remove the
unchanged channels to select only useful information. The remaining coordinates are listed
in Table 1. Most coordinates are Rotation_Z describing the hand extension/flexion.

Table 1. Selected coordinates of right-hand joints.

Joint Name Coordinates Selection

P16: Right Hand R_Y, R_X, R_Z
P17: Right Thumb 1 R_Y, R_Z
P18: Right Thumb 2 R_Y, R_Z
P19: Right Thumb 3 R_Y

P21: Right Hand Index 1 R_Z
P25: Right Hand Middle 1 R_Z

P29: Right Hand Ring 1 R_Z
P33: Right Hand Pinky 1 R_Z

Each gesture lasts for around 2 s. According to the sampling rate of 120 Hz, all the
movement data are resampled to the same length of 256. A median filter is added to make
data smooth. The sliding window method is applied to segment the long data into frames
along the time axis direction. The window size is selected as 32 points (around 250 ms) and
the sliding size is 16 points (around 125 ms).

To promote classification accuracy, five time domain features (Root Mean Square
(RMS), Mean Average Value (MAV), Wave Length (WL), Zero Crossing (ZC), Slope Sign
Changes (SSC)) and two time-frequency domain features (Short-Time Fourier Transform
(STFT), Discrete Wavelet Transform (DWT)) are calculated from the raw data. Another
selected feature is the differences in coordinates Rotation_Z between non-adjacent joints. By
choosing different joints as references, the feature is divided into four groups as illustrated
in Table 2.

Table 2. Differences of R_Z between non-adjacent joints.

Group Name Reference Coordinates

Group 1 P16: Right Hand P33–P16, P29–P16, P25–P16, P21–P16, P19–P16, P18–P16
Group 2 P17: Right Thumb 1 P33–P17, P29–P17, P25–P17, P21–P17
Group 3 P18: Right Thumb 2 P33–P18, P29–P18, P25–P18, P21–P18
Group 4 Other non-adjacent joints P33–P29, P33–P25, P33–P21, P29–P25, P29–P21, P25–P21
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2.1.3. Classification Model Design

When using the raw data as input, the model mainly contains two layers: CNN and
the Fully Connected (FC) network (shown in Figure 5). CNN is used as a feature extractor,
and the fully connected network is used as a classifier [28]. A softmax function finally
calculates the probabilities of all classes and chooses the class with the largest probability
as the model output (top 1 accuracy).

Figure 5. Classification model for raw data as input.

Since two kinds of multi-features (time and time-frequency domain features; four
groups of differences of R_Z between non-adjacent joints) are also selected as inputs, early
fusion and late fusion models are both considered as classification models. As shown in
Figure 6, the early fusion model concatenates all input data together from the start. The
late fusion model concatenates features together after convolutional layers.

Figure 6. Classification models with multi-features as input. (a) Early fusion model. (b) Late
fusion model.

2.2. American Sign Language Fingerspelling Recognition
2.2.1. Dataset of Fifty Commonly Used English Words

The fingerspelling of ASL means signing a sequence of letters continuously to form a
word. These signs in the sequence do not have pre-marked boundaries between each other,
so it is a sequence recognition task instead of isolated hand gesture recognition. Since we
have already collected the hand gestures for twenty-six letters in the alphabet, we use the
collected samples to generate words. Fifty commonly used English words listed in Table 3
are selected to do the sequence recognition task.
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Table 3. Fifty commonly used English words.

time person year way day thing
man world life hand part child
eye woman place work case point

company number group problem fact be
have do say get make go
know take come think want give

use find ask try leave new
first last long great own other
old right

2.2.2. Sequence Recognition Model Design

The input of a word formed by letters is a long signal containing a sequence of hand
gestures. Using the sliding window method, the long input is segmented into frames
along the direction of time. As shown in Figure 7, the model of sequence recognition
mainly contains three layers. The first layer is CNN which extracts features from each
frame of input data. The second layer is long short-term memory (LSTM). LSTM is widely
used in modeling temporal dependence. As an extended model of Recurrent Neural
Network (RNN), LSTM can preserve long-term dependence by controlling the percentage
of previous information dropping, current information inputting, and current information
outputting [29]. The final layer is CTC, which eliminates the need to know the alignment
between input and output [30].

Figure 7. CTC-based sequence recognition model.

The input of the model is N frames of preprocessed signal, and the output from the
LSTM layer is N frames of features with time dependence. However, the label is a word
with n letters. CTC adds a special token “-”, accounting for not belonging to any class.
For example, the outputs from LSTM layer (t,-,i,i,-,-,m,m,-,e,-,-,-), (t,-,-,i,-,-,m,-,-,e,-,-,-), and
(t,t,i,i,i„m,m,e,e,-,-,-,-) all correspond to the word “time” after merging the same adjacent
letters and deleting the “-”. When using CTC as the loss to train the model, it calculates the
sum of probabilities of all possible alignments.

loss = −log ∑ p(alignment
∣∣input) (1)

In the decoding step, we only choose the label with the largest probability of each
frame (beam search, beam = 1) as the final result.

The lengths of input N and output n are different, so it is also critical to use an encoder-
decoder structured model, as shown in Figure 8. When using the LSTM as an encoder,
it transforms the input sequence into a hidden vector and passes it to the decoder. The
LSTM decoder gives the output letters step by step according to the information from the
hidden vector.
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Figure 8. Encoder-decoder structured sequence recognition model.

3. Results
3.1. Isolated Hand Gesture Recognition

In the classification of twenty-six hand gestures, we first evaluate the model using
the raw data as input. Eighty percent of data is randomly selected from the dataset as the
training set, and the remaining twenty percent of data is the testing set. The training and
testing process (Python: Python Software Foundation, Beaverton, OR, USA; PyTorch: Meta
AI, New York City, NY, USA) is shown in Figure 9. The model converged quickly, and
finally, the accuracy of the testing set reached nearly 100%.

Figure 9. The training and testing process of the model for raw data: (a) train and test loss; (b) train
and test accuracy.

In user-independent validation, the data of each of all four users are regarded as the
testing set, respectively, and the data of the remaining three users are used to train the
model. The model’s prediction results on testing sets are shown in Figure 10. The average
accuracy of four users drops to 70.3%, compared with nearly 100% without considering
cross-user validation. Participants 3 and 4 show higher accuracy than participants 1 and
2. The influencing factors for the drop in accuracy include the differences in body size,
range of motion, and different understanding of gestures among participants which leads
to different hand movements.

Figure 10. User-independent validation accuracy of the model for raw data.

To promote cross-user prediction accuracy, two kinds of selected features are applied
as inputs. Since we also have two kinds of models (early fusion model and late fusion
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model), the user-independent validation using features as input includes the following
four cases:

• Case 1: Input: time and time-frequency domain features; Model: early fusion model.
• Case 2: Input: time and time-frequency domain features; Model: late fusion model.
• Case 3: Input: four groups of differences in R_Z between non-adjacent joints; Model:

early fusion model.
• Case 4: Input: four groups of differences in R_Z between non-adjacent joints; Model:

late fusion model.

The results of these four cases in user-independent validation are shown in Figure 11.
The average accuracy of each participant is (69.0%, 54.0%, 86.8%, 80.6%), which is (11.4%,
−6.1%, 1.3%, 2.7%) higher than the raw data classification results of (57.6%, 60.1%, 85.5%,
77.9%). The accuracy for the first user increases dramatically but for the second drop a
little. The average accuracy of the whole dataset increases by 2.3%, so the selected features
show a better performance than the raw data. Among all the four cases, Case 4 shows the
highest accuracy at 74.8%, which is 4.5% higher than using the raw data, and 2.2% higher
than the average accuracy of all these four cases. In summary, by using the four groups of
differences in R_Z between non-adjacent joints as input to a late fusion classification model,
the user-independent accuracy finally reaches 74.8%. The precision, recall, and F-1 score of
the best-performed Case 4 are listed in Table 4.

Figure 11. Four cases of user-independent validation using different features and models.

Table 4. The precision, recall, and F-1 score of Case 4.

Precision Recall F-1 Score

Participant 1 0.800 0.788 0.761
Participant 2 0.553 0.525 0.476
Participant 3 0.886 0.881 0.870
Participant 4 0.859 0.819 0.814

The accumulated confusion matrices of four participants under four cases are shown
in Figure 12. Participant 3 gives the best performance, and participant 2 gives the worst
results. In reality, participant 2 has a relatively specific body shape among all users. Besides,
some easily confused gestures are “i” and “j”, “u” and “v”, “g” and “j”. These gestures
have similar hand shapes or movements.
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Figure 12. Accumulated confusion matrices of four participants. (a) Confusion matrix of all cases for
participant 1. (b) Confusion matrix of all cases for participant 2. (c) Confusion matrix of all cases for
participant 3. (d) Confusion matrix of all cases for participant 4.

When using only one feature as input, the user-independent validation results are
illustrated in Figure 13. The STFT feature gives the best result among all the features.
Besides STFT, Group 1 of differences in R_Z between non-adjacent joints also shows
higher accuracy than using the raw data as input. Other features show relatively lower
accuracy than the raw data. The result illustrates that it is encouraging to combine multiple
features as input.
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Figure 13. User-independent validation using each feature as input.

3.2. ASL Fingerspelling Results

According to the result of isolated hand gesture recognition, the four groups of dif-
ferences in R_Z between non-adjacent joints are selected as the most suitable features for
sequence recognition in this section. Both the CTC-based sequence recognition model and
the encoder-decoder recognition model are evaluated with ten-fold cross-validation. The
dataset is randomly divided into ten subsets. We leave each subset as a testing set and
use the remaining nine subsets to train the model. The completely correct word accuracy
of the two models in cross-validation is shown in Figure 14. Without considering cross-
user, the average accuracy of the CTC-based model is 86.4%, and the encoder-decoder
model is 96.4%.

Figure 14. Ten-fold cross-validation of sequence recognition models: (a) CTC-based model;
(b) encoder-decoder model.

In user-independent validation, the evaluation standards include word-level accuracy
and letter-level accuracy. The word-level accuracy describes the proportion of completely
correct words. The letter-level accuracy describes the proportion of correct letters in the
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words of the testing set. The average accuracy of each model under each evaluation
standard is listed in Table 5.

Table 5. User-independent validation of sequence recognition models.

Word-Level Accuracy Letter-Level Accuracy

CTC-based model 55.1% 86.5%
Encoder-decoder model 93.4% 97.9%

The encoder-decoder model shows higher accuracy in both word-level and letter-level
evaluation. The fifty words containing 2 to 7 letters are not long sequences for the model
to learn the connection between letters in the training epochs. So the model could give
a completely correct answer without recognizing all the features from input data when
applying it to the testing set. For the CTC-based model, although many suitable alignments
could lead the model output to the label, if the result of one frame is not the correct letters
in the word or “-”, the answer is wrong at the word level. As a result, the word-level
accuracy of the CTC-based model is relatively lower, although the letter accuracy still keeps
a high level.

4. Discussion
4.1. Binary Classification of Easily Confused Gestures

In isolated hand gesture recognition, some gesture groups are easily confused. They
are “g” and “j”, “i” and “j”, and “u” and “v”. To distinguish these gestures clearly, specific
features are selected for each group to do the binary classification.

Intuitively, the letter “g” and letter “j” both include the hand movements of pointing
to the left, but the hand shapes are different. As illustrated in Figure 15, we use the raw
data of P33 (Pinky Joint 1), P21 (Index Joint 1), and P17, P18, P19 (Right Thumb Joint 1, 2, 3)
to describe the hand shape information. The binary classification accuracy finally reaches
97.9%. The letter “i” and letter “j” have the same hand shape of sticking up the pinky finger,
but “j” has the movement of writing a “j” with the pinky finger. By using the time domain
features of these two gestures, the binary classification accuracy is nearly 100%. The letter
“u” and letter “v” have different angles between the index finger and middle finger. Using
differences in angle changes between P25 (Middle Joint 1) and P21 (Index Joint 1) as input,
the binary classification accuracy for “u” and “v” is nearly 100%.

Figure 15. Binary classification of easily confused gesture groups: (a) “g” and “j”; (b) “i” and “j”;
(c) “u” and “v”.
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4.2. Application of the Proposed Method on Public Dataset

Non-Invasive Adaptive Prosthetics (Ninapro) is a publicly available resource that
aims to support research on advanced myoelectric hand prosthetics. The Ninapro DB5
dataset [31] including 6 repetitions of 52 different hand movements of 10 intact subjects
is collected by CyberGloveII (CyberGlove Systems LLC, San Jose, CA, USA) [32]. The
CyberGlove instrumented with joint-angle measurements utilizes proprietary resistive
bend-sensing technology to accurately transform hand and finger motions into real-time
digital joint-angle data.

The sampling rate of the data glove is 90 Hz. During the process of dataset collection,
each movement lasted for around 3–7 s. So, all the movement data are resampled to
the same length of 256. A median filter is added to make data smooth, and the sliding
window method is applied to segment the data into frames. Time and time-frequency
domain features are calculated as illustrated in Section 2. According to the distribution of
joint-angle measurements, the joint-angle data can be divided into three groups:

• Group 1: Angle differences in the direction of hand extension/flexion with P17 (Wrist
joint) as the reference. {P2(Proximal end of thumb)–P17, P3(Distal end of thumb)–P17,
P5(Proximal end of index finger)–P17, P6(Middle of index finger)–P17, P7(Proximal
end of middle finger)–P17, P8(Middle of middle finger)–P17, P10(Proximal end of ring
finger)–P17, P11(Middle of ring finger)–P17, P13(Proximal end of pinky finger)–P17,
P14(Middle of pinky finger)–P17}

• Group 2: Sensors between the fingers. {P4(Sensor between thumb and index finger),
P9(Sensor between index finger and middle finger), P12(Sensor between middle finger
and ring finger), P15(Sensor between ring finger and pinky finger)}

• Group 3: Other sensors. {P1(Arch sensor in wrist), P16(Arch sensor in palm), P18(Wrist
abduction sensor)}

According to the result of Section 2, the late fusion model is chosen as the classifier.
The raw data, time and time-frequency domain features, and three groups of joint-angle
data are used as input, respectively. The classification results are listed in Table 6. The
accuracy of using raw data as input keeps a high level of 90.2%. By selecting features, the
accuracy is promoted by 1.6%.

Table 6. Classification results of Ninapro DB5 with different inputs.

Raw Data Time and Time-Frequency Domain Features Groups of Joint-Angle Data

90.2% 91.0% 91.8%

Ten participants were involved in the experiment. In cross-user validation, the data of
each user is regarded as the testing set, and the remaining data is used as the training set.
The cross-user accuracy is shown in Figure 16. The average cross-user accuracy is 74.9%
which still falls into an acceptable level of hand gesture classification tasks.

Figure 16. Cross-user validation results of Ninapro DB5.
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4.3. Comparison of Results with Related Works

A comprehensive comparison among the previous works on wearable sensors-based
sign language recognition is presented in Table 7. Most of the selected works are about
letter recognition, and some works attempt word recognition. From the results of different
works, it is clear that wearable sensors-based recognition normally shows higher accuracy
of more than 90% in the within-user validation. However, only a few works report cross-
user accuracy. The user-difference problem has always been an important issue in wearable
sensors-based recognition. The proposed method of this research shows reliable accuracy
to be applied to other users.

Table 7. Comparison of sign language recognition with previous works.

Reference Signs Sensors Signers Repetitions Within-User
Accuracy

Cross-User
Accuracy

Saquib & Rahman [20] 26 letters Data glove 5 10 96%
Rinalduzzi et al. [21] 24 letters Magnetic sensors 3 40 97%

Lee et al. [22] 27 words IMU 12 120 99.81%

Zhu et al. [23] 26 letters and 9 digits Epidermal
iontronic sensors 8 10 99.6% 76.1%

Ahmed et al. [33] 24 letters Data glove 5 20 96%
Saggio et al. [34] 10 words Data glove 7 100 98%

Alrubayi et al. [35] 21 letters Data glove 4 25 99%
Wu et al. [36] 80 words IMU & EMG 4 75 96.16% 40%

Proposed method 26 letters IMU 4 20 Nearly 100% 74.8%
Proposed method on

Ninapro DB5 52 hand movements Data glove 10 6 91.8% 74.9%

4.4. Limitations

The proposed method has certain limitations and spaces for improvement. In this
research, the current system can recognize 26 ASL letters and the fingerspelling words
formed by these letters. However, it is still far away from the sign language dictionary
containing more than 500 signs for words. Since a limited number of participants are
involved in the experiment, more users are expected to generalize the proposed method.
Sign language is not exactly expressed with hands. It is also critical to catching facial expres-
sions. For wearable sensors, facial EMG data are widely used in emotional classification.
However, only a limited number of facial expressions could be recognized according to
previous works. Specific facial expression recognition methods should also be applied to
sign language translation.

5. Conclusions

This paper presented an ASL alphabet recognition system using the Perception Neuron
motion capture system. Time and time-frequency domain features and the differences in
coordinates between the hand joints were estimated. Isolated hand gesture recognition was
performed by the CNN classifiers with multiple features as input. In fingerspelling, CTC-
based and encoder-decoder structured models were evaluated on sequence recognition.
The results indicated that the differences in coordinates between the hand joints were
significant features of this sign language recognition system. Generally, the encoder-
decoder model outperformed the CTC-based model for both word-level and letter-level
accuracy. Moreover, the accuracy rate obtained in this study was relatively high without
considering individual differences and dropped a bit in user-independent validations. The
cross-user results were still within the acceptable range.
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