#
Design and Stability Analysis of an Offshore Floating Multi-Wind Turbine Platform^{ †}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Larsen Wake Loss Model

#### 2.2. CFD Model

## 3. Results and Discussion

#### 3.1. Wake Effect Analysis

_{r}distance downstream of the first row, and the 2 turbines in the second row (T3 and T4) are placed in between the first and third row in the windward direction, whereas in the crosswind direction they are placed to avoid the wake expansion with an added 20% of the rotor diameter distance between the tip of the wake and the wind turbine rotor. The hexagon configuration is similar to the pentagon except for the two turbines (T5 and T6) in the third row instead of one. The Larsen wake loss model implemented on the three configurations using MATLAB is shown in Figure 1, Figure 2 and Figure 3.

_{r}distance downstream in the wake for the square (T3) and pentagon platform (T5) configurations are depicted in Figure 6. The velocity profile for the hexagon platform is not considered because it will be similar to the square platform as the downstream wind turbines in both cases are in the direct wake. The normalized average velocity along the radial distance for the square platform wind turbine is slightly lower relative to the pentagon platform near the center, which can correspond to the fact that the downstream wind turbine (T3 and T4) for the square platform is in direct wake, whereas for the pentagon platform (T5) it is in the partial wake. However, the normalized velocities in both cases become equal between 1 and 1.5 times the diameter distance.

^{+}is less than 1, as necessary by turbulence models [43,47,48]. To obtain the grid-independent results, different levels of grid refinements were tested in ANSYS Fluent to reach y

^{+}< 1 for all the conditions of the rotor. Figure 7 presents the mesh sensitivity study results in terms of a normalized velocity profile for turbine 5 of the pentagon platform configuration. This sensitivity study showed that mesh 2 and mesh 3 have approximately similar results and were found to have a satisfactory computational speed and accuracy, valid for all the simulated operating conditions.

^{−4}. The velocity contours of the three platform configurations are shown in Figure 9, Figure 10 and Figure 11. It can be observed that there is a velocity deficit downstream of the wind turbines in all cases which corresponds to the wind turbine wake that is surrounded by the varying turbulence intensity, as shown in Figure 12.

_{r}distance downstream for the three platform configurations (T3 for square, T5 for the pentagon and hexagon) is depicted in Figure 13. The velocity profile is approximately similar for the most part in the square and hexagon platforms as the wind turbines are in the direct wake. It can also be observed that the velocity for the pentagon configuration is slightly higher than in the other two cases, which can correlate to the values from the Larsen wake loss model shown in Figure 6.

#### 3.2. Platform Configuration

#### 3.3. Hydrostatic Analysis

^{3}. The ballast requirement is fulfilled by using the seawater filled in the platform columns.

#### 3.4. Hydrodynamic Analysis

#### 3.5. Cost Analysis

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Wind Vision. Energy.gov. Available online: https://www.energy.gov/eere/wind/wind-vision (accessed on 27 October 2019).
- Huijs, F.; de Bruijn, R.; Savenije, F. Concept Design Verification of a Semi-submersible Floating Wind Turbine Using Coupled Simulations. Energy Procedia
**2014**, 53, 2–12. [Google Scholar] [CrossRef][Green Version] - Karimirad, M.; Michailides, C. Dynamic Analysis of a Braceless Semisubmersible Offshore Wind Turbine in Operational Conditions. Energy Procedia
**2015**, 80, 21–29. [Google Scholar] [CrossRef][Green Version] - Karimirad, M.; Michailides, C. V-shaped semisubmersible offshore wind turbine: An alternative concept for offshore wind technology. Renew. Energy
**2015**, 83, 126–143. [Google Scholar] [CrossRef][Green Version] - Liu, Y.; Li, S.; Yi, Q.; Chen, D. Developments in semi-submersible floating foundations supporting wind turbines: A comprehensive review. Renew. Sustain. Energy Rev.
**2016**, 60, 433–449. [Google Scholar] [CrossRef] - Mayilvahanan, A.C.; Selvam, P.R. Time Domain Response Analysis of Barge Floater Supporting an Offshore Wind Turbine. Int. J. Ocean Clim. Syst.
**2011**, 2, 303–314. [Google Scholar] [CrossRef][Green Version] - Karimirad, M.; Moan, T. Extreme Dynamic Structural Response Analysis of Catenary Moored Spar Wind Turbine in Harsh Environmental Conditions. J. Offshore Mech. Arct. Eng.
**2011**, 133, 041103. [Google Scholar] [CrossRef] - Utsunomiya, T.; Matsukuma, H.; Minoura, S.; Ko, K.; Hamamura, H.; Kobayashi, O.; Sato, I.; Nomoto, Y.; Yasui, K. On Sea Experiment of a Hybrid Spar for Floating Offshore Wind Turbine Using 1/10-Scale Model. J. Offshore Mech. Arct. Eng.
**2013**, 135, 529–536. [Google Scholar] [CrossRef] - Dinh, V.N.; Basu, B. On the Modeling of Spar-Type Floating Offshore Wind Turbines. Key Eng. Mater.
**2013**, 569, 636–643. [Google Scholar] [CrossRef][Green Version] - Nihei, Y.; Matsuura, M.; Fujioka, H.; Suzuki, H. An Approach for the Optimum Design of TLP Type Offshore Wind Turbines. In Proceedings of the ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands, 19–24 June 2011; Volume 5, pp. 219–227. [Google Scholar] [CrossRef]
- Jagdale, S.; Ma, Q.W. Practical Simulation On Motions of a TLP-Type Support Structure For Offshore Wind Turbines. In Proceedings of the 20st International Offshore and Polar Engineering Conference, Beijing, China, 20–25 June 2010; Available online: https://www.onepetro.org/conference-paper/ISOPE-I-10-058 (accessed on 4 May 2020).
- Bae, Y.H.; Kim, M.H. Rotor-floater-mooring coupled dynamic analysis of mono-column-TLP-type FOWT (Floating Offshore Wind Turbine). Ocean Syst. Eng.
**2011**, 1, 95–111. [Google Scholar] [CrossRef][Green Version] - Bashetty, S.; Ozcelik, S. Review on Dynamics of Offshore Floating Wind Turbine Platforms. Energies
**2021**, 14, 6026. [Google Scholar] [CrossRef] - Lefranc, M.; Torud, A. Three Wind Turbines on One Floating Unit, Feasibility, Design And Cost. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 2–5 May 2011. [Google Scholar] [CrossRef]
- Hu, C.; Sueyoshi, M.; Liu, C.; Liu, Y. Hydrodynamic Analysis of a Semi-Submersible-Type Floating Wind Turbine. J. Ocean Wind Energy
**2014**, 1, 7. [Google Scholar] - Kim, H.C.; Kim, M.H.; Kim, K.H.; Hong, K.; Bae, Y.H. Global Performance of a Square-Type Semi-Submersible KRISO Multi-Unit Floating Wind Turbine; Numerical Simulation vs. Model Test. In Proceedings of the 26th International Ocean and Polar Engineering Conference, Rhodes, Greece, 26 June–1 July 2016; Available online: https://www.onepetro.org/conference-paper/ISOPE-I-16-638 (accessed on 2 May 2020).
- Kim, K.H.; Hong, J.P.; Park, S.; Lee, K.; Hong, K. An Experimental Study on Dynamic Performance of Large Floating Wave-Offshore Hybrid Power Generation Platform in Extreme Conditions. J. Korean Soc. Mar. Environ. Energy
**2016**, 19, 7–17. [Google Scholar] [CrossRef] - Kang, H.; Kim, M.-H.; Kim, K.-H.; Hong, K. Hydroelastic Analysis of Multi-Unit Floating Offshore Wind Turbine Platform (MUFOWT). In Proceedings of the 27th International Ocean and Polar Engineering Conference, San Francisco, CA, USA, 25–30 June 2017; Available online: https://www.onepetro.org/conference-paper/ISOPE-I-17-637 (accessed on 4 May 2020).
- Lee, H.; Poguluri, S.K.; Bae, Y.H. Performance Analysis of Multiple Wave Energy Converters Placed on a Floating Platform in the Frequency Domain. Energies
**2018**, 11, 406. [Google Scholar] [CrossRef][Green Version] - Jang, H.-K.; Park, S.; Kim, M.-H.; Kim, K.-H.; Hong, K. Effects of heave plates on the global performance of a multi-unit floating offshore wind turbine. Renew. Energy
**2019**, 134, 526–537. [Google Scholar] [CrossRef] - Li, S.; Lamei, A.; Hayatdavoodi, M.; Wong, C. Concept Design and Analysis of Wind-Tracing Floating Offshore Wind Turbines. In Proceedings of the ASME 2019 2nd International Offshore Wind Technical Conference, St. Julian’s, Malta, 3–6 November 2019. [Google Scholar] [CrossRef]
- Lamei, A.; Hayatdavoodi, M.; Wong, C.; Tang, B. On Motion and Hydroelastic Analysis of a Floating Offshore Wind Turbine. In Proceedings of the ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering, Scotland, UK, 9–14 June 2019. [Google Scholar] [CrossRef][Green Version]
- Lamei, A.; Hayatdavoodi, M. On motion analysis and elastic response of floating offshore wind turbines. J. Ocean Eng. Mar. Energy
**2020**, 6, 71–90. [Google Scholar] [CrossRef][Green Version] - Kim, H.C.; Jang, H.K.; Kim, M.H.; Bee, Y.H. Coupled Dynamic Analysis of a MUFOWT with Transient Broken-blade Incident. In Proceedings of the 25th International Ocean and Polar Engineering Conference, Kona, HI, USA, 21–26 June 2015; Available online: https://www.onepetro.org/conference-paper/ISOPE-I-15-617 (accessed on 23 June 2020).
- Bae, Y.H.; Kim, M.-H. The Dynamic Coupling Effects of a MUFOWT (Multiple Unit Floating Offshore Wind Turbine) with Partially Broken Blade. J. Ocean Wind Energy
**2015**, 2. [Google Scholar] [CrossRef][Green Version] - González-Longatt, F.; Wall, P.; Terzija, V. Wake effect in wind farm performance: Steady-state and dynamic behavior. Renew. Energy
**2012**, 39, 329–338. [Google Scholar] [CrossRef] - Adaramola, M.S.; Krogstad, P.-Å. Experimental investigation of wake effects on wind turbine performance. Renew. Energy
**2011**, 36, 2078–2086. [Google Scholar] [CrossRef] - Kim, K.; Kim, H.; Lee, J.; Kim, S.; Paek, I. Design and performance analysis of control algorithm for a floating wind turbine on a large semi-submersible platform. J. Phys. Conf. Ser.
**2016**, 753, 092017. [Google Scholar] [CrossRef][Green Version] - Bashetty, S.; Ozcelik, S. Design and Stability Analysis of an Offshore Floating Multi-Turbine Platform. In 2020 IEEE Green Technologies Conference (GreenTech); IEEE: New York, NY, USA, 2020; pp. 184–189. [Google Scholar] [CrossRef]
- Larsen, G.C. A Simple Wake Calculation Procedure; Risø National Laboratory: Roskilde, Denmark, 1988; Available online: https://orbit.dtu.dk/en/publications/a-simple-wake-calculation-procedure (accessed on 3 May 2020).
- Pierik, J.T.G.; Dekker, J.W.M.; Braam, H.; Bulder, B.H.; Winkelaar, D.; Larsen, G.C.; Morfiadakis, E.; Chaviaropoulos, P.; Derrick, A.; Molly, J.P. European wind turbine standards II (EWTS-II). In Wind Energy for the Next Millennium. Proceedings; James and James Science Publishers: London, UK, 1999; pp. 568–571. Available online: https://orbit.dtu.dk/en/publications/european-wind-turbine-standards-ii-ewts-ii (accessed on 4 May 2020).
- Schepers, J.G. ENDOW. Validation and Improvement of ECN’s Wake Model (Technical Report)|ETDEWEB. Available online: https://www.osti.gov/etdeweb/biblio/20360050 (accessed on 24 June 2020).
- Larsen, G.C. A simple Stationary Semi-Analytical Wake Model; Risø National Laboratory for Sustainable Energy, Technical University of Denmark: Lyngby, Denmark, 2009; Available online: https://orbit.dtu.dk/en/publications/a-simple-stationary-semi-analytical-wake-model (accessed on 4 May 2020).
- Frandsen, S. Turbulence and Turbulence-Generated Structural Loading in Wind Turbine Clusters (Thesis/Dissertation)|ETDEWEB; Risø National Laboratory: Roskilde, Denmark, 2007; Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/12674798/ris_r_1188.pdf (accessed on 4 May 2020).
- Frohboese, P.; Hassan, G. Thrust coefficients used for estimation of wake effects for fatigue load calculation. In Proceedings of the European Wind Energy Conference & Exhibition 2010, Warsaw, Poland, 20–23 April 2010; p. 10. Available online: http://proceedings.ewea.org/ewec2010/allfiles2/207_EWEC2010presentation.pdf (accessed on 12 December 2020).
- Arany, L.; Bhattacharya, S.; Macdonald, J.; Hogan, S.J. Design of monopiles for offshore wind turbines in 10 steps. Soil Dyn. Earthq. Eng.
**2017**, 92, 126–152. [Google Scholar] [CrossRef][Green Version] - Wu, Y.-T.; Porté-Agel, F. Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study. Energies
**2012**, 5, 5340–5362. [Google Scholar] [CrossRef] - Barthelmie, R.; Hansen, O.F.; Enevoldsen, K.; Højstrup, J.; Frandsen, S.; Pryor, S.; Larsen, S.; Motta, M.; Sanderhoff, P. Ten Years of Meteorological Measurements for Offshore Wind Farms. J. Sol. Energy Eng.
**2005**, 127, 170–176. [Google Scholar] [CrossRef] - Argyle, P.; Watson, S.; Montavon, C.; Jones, I.; Smith, M. Modelling turbulence intensity within a large offshore wind farm. Wind Energy
**2018**, 21, 1329–1343. [Google Scholar] [CrossRef] - Archer, C.L.; Vasel-Be-Hagh, A.; Yan, C.; Wu, S.; Pan, Y.; Brodie, J.F.; Maguire, A.E. Review and evaluation of wake loss models for wind energy applications. Appl. Energy
**2018**, 226, 1187–1207. [Google Scholar] [CrossRef] - Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J.
**1994**, 32, 1598–1605. [Google Scholar] [CrossRef][Green Version] - Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed.; Pearson Education Ltd.: Harlow, UK; New York, NY, USA, 2007. [Google Scholar]
- Menter, F.R. Review of the shear-stress transport turbulence model experience from an industrial perspective. Int. J. Comput. Fluid Dyn.
**2009**, 23, 305–316. [Google Scholar] [CrossRef] - Keck, R.-E. A numerical investigation of nacelle anemometry for a HAWT using actuator disc and line models in CFX. Renew. Energy
**2012**, 48, 72–84. [Google Scholar] [CrossRef] - Shakoor, R.; Hassan, M.Y.; Raheem, A.; Wu, Y.-K. Wake effect modeling: A review of wind farm layout optimization using Jensen׳s model. Renew. Sustain. Energy Rev.
**2016**, 58, 1048–1059. [Google Scholar] [CrossRef] - Bartl, J.; Pierella, F.; Sætrana, L. Wake Measurements Behind an Array of Two Model Wind Turbines. Energy Procedia
**2012**, 24, 305–312. [Google Scholar] [CrossRef][Green Version] - Langtry, R.; Gola, J.; Menter, F. Predicting 2D Airfoil and 3D Wind Turbine Rotor Performance using a Transition Model for General CFD Codes. In 44th AIAA Aerospace Sciences Meeting and Exhibit; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2006. [Google Scholar] [CrossRef]
- Lanzafame, R.; Mauro, S.; Messina, M. 2D CFD Modeling of H-Darrieus Wind Turbines Using a Transition Turbulence Model. Energy Procedia
**2014**, 45, 131–140. [Google Scholar] [CrossRef][Green Version] - Desmond, C.; Murphy, J.; Blonk, L.; Haans, W. Description of an 8 MW reference wind turbine. J. Phys. Conf. Ser.
**2016**, 753, 092013. [Google Scholar] [CrossRef][Green Version] - Butterfield, S. Engineering Challenges for Floating Offshore Wind Turbines. In Proceedings of the 2005 Copenhagen Offshore Wind Conference; Copenhagen, Denmark, 26–28 October 2005, p. 13. Available online: https://www.nrel.gov/docs/fy07osti/38776.pdf (accessed on 5 July 2022).
- Newman, J.N. Marine Hydrodynamics, 40th Anniversary Edition|The MIT Press. Available online: https://mitpress.mit.edu/books/marine-hydrodynamics-40th-anniversary-edition (accessed on 3 May 2020).
- Bayati, I.; Jonkman, J.; Robertson, A.; Platt, A. The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine. J. Phys. Conf. Ser.
**2014**, 524, 012094. [Google Scholar] [CrossRef][Green Version] - Veritas, D.N. DNV-OS-J101: Design of Offshore Wind Turbine Structures; DNV: Copenhagen, Denmark, 2014. [Google Scholar]
- DNV GL Launches Revised Design & Certification Standards for Floating Wind Turbines. Windpower Engineering & Development. Available online: https://www.windpowerengineering.com/dnv-gl-launches-revised-design-certification-standards-for-floating-wind-turbines/ (accessed on 26 October 2019).
- Jonkman, J.; Matha, D. Quantitative Comparison of the Responses of Three Floating Platforms; NREL/CP-500-46726; National Renewable Energy Lab.: Golden, CO, USA, 2010. Available online: https://www.osti.gov/biblio/974453 (accessed on 28 June 2020).
- Beiter, P.; Musial, W.; Kilcher, L.; Maness, M.; Smith, A. An Assessment of the Economic Potential of Offshore Wind in the United States from 2015 to 2030; NREL/TP--6A20-67675, 1349721; National Renewable Energy Lab.: Golden, CO, USA, 2017. Available online: http://www.osti.gov/servlets/purl/1349721/ (accessed on 20 May 2019).
- Kausche, M.; Adam, F.; Dahlhaus, F.; Großmann, J. Floating offshore wind—Economic and ecological challenges of a TLP solution. Renew. Energy
**2018**, 126, 270–280. [Google Scholar] [CrossRef] - Castro-Santos, L.; Filgueira-Vizoso, A.; Carral-Couce, L.; Formoso, J.Á.F. Economic feasibility of floating offshore wind farms. Energy
**2016**, 112, 868–882. [Google Scholar] [CrossRef] - Musial, W.D.; Beiter, P.C.; Nunemaker, J. Cost of Floating Offshore Wind Energy Using New England Aqua Ventus Concrete Semisubmersible Technology; NREL/TP-5000-75618; National Renewable Energy Lab.: Golden, CO, USA, 2020. [Google Scholar] [CrossRef]
- Zountouridou, E.I.; Kiokes, G.C.; Chakalis, S.; Georgilakis, P.S.; Hatziargyriou, N.D. Offshore floating wind parks in the deep waters of Mediterranean Sea. Renew. Sustain. Energy Rev.
**2015**, 51, 433–448. [Google Scholar] [CrossRef] - Myhr, A.; Bjerkseter, C.; Ågotnes, A.; Nygaard, T.A. Levelised cost of energy for offshore floating wind turbines in a life cycle perspective. Renew. Energy
**2014**, 66, 714–728. [Google Scholar] [CrossRef][Green Version]

${\mathit{\sigma}}_{\mathit{k}}$ | ${\mathit{\sigma}}_{\mathit{\omega},1}$ | ${\mathit{\sigma}}_{\mathit{\omega},2}$ | ${\mathit{\gamma}}_{2}$ | ${\mathit{\beta}}_{2}$ | ${\mathit{\beta}}^{*}$ |
---|---|---|---|---|---|

1 | 2 | 1.17 | 0.44 | 0.083 | 0.09 |

Type | Grid Features | Mesh 1 | Mesh 2 | Mesh 3 |
---|---|---|---|---|

Square | Elements | 1,021,500 | 2,122,370 | 3,982,860 |

Global growth rate | 1.2 | 1.1 | 1.05 | |

y^{+} maximum | 0.27 | 0.21 | 0.2 | |

Skewness maximum | 0.8 | 0.73 | 0.72 | |

Pentagon | Elements | 1,050,600 | 2,150,730 | 4,050,340 |

Global growth rate | 1.2 | 1.1 | 1.05 | |

y^{+} maximum | 0.27 | 0.21 | 0.2 | |

Skewness maximum | 0.8 | 0.73 | 0.72 | |

Hexagon | Elements | 1,065,000 | 2,163,740 | 4,122,610 |

Global growth rate | 1.2 | 1.1 | 1.05 | |

y^{+} maximum | 0.27 | 0.21 | 0.2 | |

Skewness maximum | 0.8 | 0.73 | 0.72 |

Larsen Wake Loss Model | CFD | ||
---|---|---|---|

Square | Maximum | 1 | 0.99 |

Minimum | 0.54 | 0.51 | |

Mean | 0.77 | 0.74 | |

Pentagon | Maximum | 1 | 0.99 |

Minimum | 0.56 | 0.58 | |

Mean | 0.79 | 0.77 | |

Hexagon | Maximum | 1 | 0.97 |

Minimum | 0.54 | 0.53 | |

Mean | 0.77 | 0.72 |

Parameter | Value |
---|---|

Power | 8 MW |

Rotor diameter | 164 m |

Hub height | 110 m |

Nominal rotor speed | 10.5 rpm |

Cut-in, rated, and cut-out wind speed | 4, 12.5, and 25 m/s |

Total wind turbine mass | 1,038,000 kg |

Parameter | Value |
---|---|

Water depth | 250 m |

Platform draft | 15 m |

Freeboard | 15 m |

Platform mass | 16,081,370 kg |

Platform roll inertia | 5.027 × 10^{11} kg.m^{2} |

Platform pitch inertia | 3.277 × 10^{11} kg.m^{2} |

Platform yaw inertia | 8.284 × 10^{11} kg.m^{2} |

Number of mooring lines | 4 |

Mooring line length | 600 m |

Parameter | X | Y | Z |
---|---|---|---|

Center of gravity above the keel | 0 m | 0 m | 15 m |

Center of buoyancy above the keel | 0 m | 0 m | 7 m |

Center of flotation above the keel | −5 m | 0 m | 15 m |

Other Properties | |||

Longitudinal metacentric height | 23.5 m | ||

Transverse metacentric height | 23.5 m | ||

Volumetric displacement | 34,620.45 m^{3} | ||

Cut waterplane area | 534 m^{2} | ||

Principal second-moment area | X: 10,433,353 m^{4} | Y: 1,955,0784 m^{4} |

Variable | Value |
---|---|

Heave (Z) | 5.36 × 10^{3} kN/m |

Roll (RX) | 3.38 × 10^{6} kN.m/° |

Pitch (RY) | 1.78 × 10^{6} kN.m/° |

Variable | Value |
---|---|

Surge | 3.2 × 10^{7} kg |

Sway | 2.3 × 10^{7} kg |

Heave | 3.6 × 10^{7} kg |

Roll | 2.2 × 10^{10} kg.m^{2} |

Pitch | 1.1 × 10^{10} kg.m^{2} |

Yaw | 2.6 × 10^{10} kg.m^{2} |

Mode | Type | Angular Frequency (rad/s) |
---|---|---|

I | Heave | 0.28 |

II | Pitch | 0.34 |

III | Roll | 0.35 |

Variable | Value |
---|---|

${P}_{R}$ | 8 MW |

${C}_{MW}$ | USD1,300,000/MW |

${M}_{P}$ | 16,081 tons |

${C}_{S}$ | USD600/ton |

${N}_{M}$ | 4 |

${L}_{M}$ | 600 m |

${m}_{l}$ | 120 kg/m |

${c}_{m}$ | USD3/kg |

${C}_{Install}$ | USD290,000/MW |

${C}_{transport}$ | USD140,000/MW |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bashetty, S.; Ozcelik, S.
Design and Stability Analysis of an Offshore Floating Multi-Wind Turbine Platform. *Inventions* **2022**, *7*, 58.
https://doi.org/10.3390/inventions7030058

**AMA Style**

Bashetty S, Ozcelik S.
Design and Stability Analysis of an Offshore Floating Multi-Wind Turbine Platform. *Inventions*. 2022; 7(3):58.
https://doi.org/10.3390/inventions7030058

**Chicago/Turabian Style**

Bashetty, Srikanth, and Selahattin Ozcelik.
2022. "Design and Stability Analysis of an Offshore Floating Multi-Wind Turbine Platform" *Inventions* 7, no. 3: 58.
https://doi.org/10.3390/inventions7030058