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Abstract: A quasi-least-squares (QLS) mixed finite element method (MFE) based on the L2-inner
product is utilized to solve an incompressible magnetohydrodynamic (MHD) model. These models
are associated with the three unknown terms, i.e., fluid velocity, fluid pressure, and magnetic field.
For the MHD-based models, common theories and algorithms for approximation of the solutions
are not always applicable because of the choice of the functional spaces during the utilization of
the weak formulation. It is well known that the spaces used for the approximation of the different
unknowns, e.g., the spaces for the unknowns, cannot be chosen independently for the variational
formulation, and may have to satisfy strict stability conditions such as the inf-sup, or Ladyzhenskaya–
Babuska–Brezzi (LBB) condition. The dependency of the selection of the spaces for the unknowns
are critical and always not applicable for some pair of unknowns. Because of this, the numerical
or theoretical solutions must have to face some stability issue. The proposed scheme (L2-inner
product) is introduced to circumvent this deficiency of the conditions (inf-sup or LBB) and obtained a
well-posed solution theoretically. The model equations are nonlinear and highly coupled with the
combination of Navier–Stokes and Maxwell relations. First, these nonlinear models are made linear
around a specific state wherein the modified system represents an algebraic equation in a first-order
symmetric form. Secondly, a direct iteration technique is applied to solve the nonlinearities and
obtain a theoretical convergent rate for a general initial guess. Theoretical results show that only a
single parameter with a single initial guess is sufficient to establish the well-posedness of the solution.

Keywords: FE Quasi method; MHD; inf-sup; L2-inner product; initial guess

1. Introduction

Magnetohydrodynamics (MHD) is a combined study of hydrodynamic flows and
electromagnetic fluid flow through coupling forces and their interactions. These equations
consist of highly coupling equations with well-known Maxwell equations and the hydro-
dynamic equations for fluid flows. Alfven first proposed the field of MHD for single- and
multi-fluid flows [1]. More recently, this field has become important because of its utiliza-
tion and practical applications in geophysics, astrophysics, and many other engineering
fields, like cooling metal, MHD propulsion [2], MHD pumps [3], process metallurgy [4],
controlled thermonuclear fusion and seawater propulsion [5], electromagnetic casting of
metals, MHD power generation, MHD ion propulsion [6,7] etc. Moreover, the hydrody-
namical behavior of conducting fluids, e.g., electrolytes, liquid metal cooling in nuclear
reactors [8], and plasmas are usually formulated via MHD models [9]. Furthermore,
the theoretical and numerical investigations can be further seen in the following articles
and are the given references [10–12].

Because these equations are not easily solvable for the analytical solution, the alterna-
tive way to solve the complex model equations are the numerical solutions where inf-sup or
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Ladyzhenskaya–Babuska–Brezzi (LBB) conditions need to satisfy for the well-posedness of
the models. The complications caused by the well-known inf-sup condition have prompted
the introduction of various stabilization techniques intended to circumvent these condi-
tions [13], a Galerkin method, Galerkin least square method, penalty method, L2-inner
products, different stabilization techniques and many modified methods are abundantly
used to find the numerical solutions [14–17], and the well-posedness of the stationary equa-
tions with the inf-sup conditions have been given in [18]. MHD-modeled equations are
highly non-linear coupling equations which must have to accept the complicated structure
of the solution. Therefore, it does require an attractive, efficient numerical scheme which
plays a key role to find the solution of such types of complicated structured models. In MFE
literature, the least square methods are utilized for such types of complex and non-linear
models to find the approximate solution of higher-order PDEs by defining some norms
of functional spaces as Hilbert-type to solve [19–23], singular solutions of flows related to
viscoelastic behaviours [24], heat transfer and flows [25], and fluids for which temperature-
dependecy or viscosity-dependency are critical [17]. Standard least square methods are
efficient, effective, and smart enough to give approximate solutions of the non-linear model
equations in the linear algebraic form, which would be symmetric and positive-definite.
During the last decade, many methods and theories of least square methods have been
discussed in the literature. For further details on such applications, we refer interested
readers to [26–28] among others.

Similarly, a quasi-least-square scheme (QLSFES) is developed [23] to solve the prob-
lems in the L2-inner product. Typically, stabilization relies on some form of modification of
the discrete continuity equation. For example, in [29] the continuity equation is modified to
penalize the stability issue with the addition of a single parameter to make the bilinear form
coercive for some specific finite elements. The central point of the scheme is to study the
problems in the L2-norm to the Oseen type (linearized) forms of given coupled nonlinear
problems. It has several benefits; first, only L2-inner product with norms is used in these
methods which are convenient for the computer programming sense. Second, by using the
linearizing way (Oseen type), someone can get iterative methods with symmetric positive-
definite coefficient metrics. However, this simplified iterative method is easily convergent
in a complex domain of initial guess [23,30,31]. For the MHD-based models, common
theories and algorithms for approximation of the solutions of such nonlinear problems are
not always applicable because of the functional spaces, i.e., Hilbert space for the velocity
and pressure. These are not convenient to utilize the Hilbert space, which will ultimately
create some stability issue in the analysis. The QLSFES can be easily applied to circumvent
this deficiency of the main conditions (inf-sup or LBB). Thus, the prime intention here is to
develop a scheme for a coupled branch of non-linear problems to analyze the existence and
convergence of model equations. The least-square MFE schemes are inadequate to address
the local convergent properties of coupled non-linear problems. However, this method can
be utilized as an effective and sufficient way for the well-posedness of the incompressible
MHD models without the inf-sup conditons.

In this contribution, the practicality principle can always be met by transforming the
given model equations into a transformed first-order system and forming least-squares
functionals that use only L2-norms. We focus attention on quasi-least-squares methods
for which the discretization step is invoked after the quasi-least-squares functional has
been defined. The key point to utilize this setting is that it allows one to point out the
variational interpretation of least-squares principles as projections in a Hilbert space with
respect to problem-dependent inner products. From this point of view, the principal task
in the formulation of the method becomes setting up a least-squares functional that is
norm-equivalent (L2-norms) in some Hilbert space. This in turn allows one to work in the
variational setting as continuity and coercivity (well-posedness) without the LBB or inf-sup
conditions. A quasi-least-squares (QLS) mixed finite element method (MFE) based on
the L2-inner product is easily convinced to solve a coupled and nonlinear incompressible
magnetohydrodynamic (MHD) model. Here, first, these nonlinear models are made linear



Inventions 2022, 7, 40 3 of 25

around a particular state wherein linearized first-order equations represent an algebraic
system of equations with symmetric matrices. Secondly, a direct iteration technique is
applied to couple up the nonlinearities and obtain a theoretical convergent rate for general
initial guess. As far as we know from the existing literature, this method has never been
considered to find the solution of the MHD model equations without the LBB/or inf-
sup conditions.

From a theoretical viewpoint, such a bona-fide (continuous) QLS finite element meth-
ods possess a number of significant and valuable properties, as follows.

1. The weak problems are, in general, coercive.
2. Conforming discretizations lead to stable and, ultimately, optimally accurate methods.
3. The resulting algebraic problems are symmetric and positive definite.
4. Essential boundary conditions may be imposed in a weak sense.
5. Finite element spaces of equal interpolation order, defined with respect to the same

triangulation, can be used for all unknowns.
6. Algebraic problems can be solved by using standard and robust iterative methods,

such as conjugate gradient methods.
7. Methods can be implemented without any matrix assemblies, even at the element level.
8. Only a single parameter with a single initial guess is sufficient to establish the well-

posedness of the solution. In the existing literature this is the first time we apply for
this model.

The rest of the work is arranged as follows. In Section 2, we demonstrate linear and
non-linear incompressible stationary MHD equations with the proposed scheme (QLSFES).
In Section 3, we investigate the well-posedness of the developed QLSFES system for
investigation of the initial guess. In Section 4, we discuss convergence of the proposed
scheme in the case of the nonsingular exact solution. In Section 5, the theoretical is proven
and in conclusion the contribution is illustrated to end this work.

2. Model Introduction

This work illustrates the numerical resolution of the stationary-coupled magnetohy-
drodynamics system of equations [32,33]. The unknowns for this problem are supposed
symbolically as velocity field ~v f , the magnetic field ~MB, and fluid pressure p under the
connected two-dimensional domain ω.

The non-dimensional stationary MHD equations are as follows:

~v f · ∇~v f −
1

Re η~v f +∇p + S(~MB ×∇× ~MB) = f in ω, (1)

∇ · v f = 0 in ω, (2)
1

Rm∇× (∇× ~MB)− S(∇× (~v f × ~MB)) = 0 in ω, (3)

∇ · ~MB = 0 in ω, (4)

where Re, signifies the Reynolds number for hydrodynamic, Rm the Reynolds number for
magnetism, and S = M2

ReRm , with M > 0, coupling number respectively. In the literature
of the industrial sense, we know that, the parameters are considered always Re ≈ 105,
Rm ≈ 10−1 and S ≈ 1. To acquire the values of the known velocity field ~v f = (v1, v2) and
pressure field p and magnetic field ~MB = (b1, b2) are given in a bounded domain ω. We
consider the load function f represents the external forces or inertial terms. Additionally,
for the 2D form, the operator can be defined as ∇× ~MB = ∂b2

∂x −
∂b1
∂y , while the product of

given vectors ~v f = (v1, v2) and ~MB = (b1, b2) is defined as ~v f × ~MB = v1b2 − v2b1.
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The system of nonlinear stationary MHD can be solved under the set of boundary
conditions within the connected domain ω ∈ R2 on boundary ∂ω is given from the
references [33–36]:

~v f = 0 on ∂ω, (5)

~MB ·~n = 0 on ∂ω, (6)

∇× ~MB ×~n = 0 on ∂ω, (7)

where ~n is a normal vector to the domain ω [17]. Here Equation (5) is representing the
viscous nature fluids and is well-known as a no-slip boundary condition, whereas the
Equations (6) and (7) are nominated for the perfect conduction wall.

Remark 1. Alternately, some other boundary constraints are utilized in the literature [12,36–39] are
~MB ·~n = 0 in Equation (6) and∇× ~MB ×~n = 0 in Equation (7) for the unknown ~MB. We utilize
~MB ×~n = 0 and~n× (∇× ~MB) = 0, which is given for the nonlinear MHD for a single-fluid flow.

3. Quasi-Least-Square MFE

In this section, we discuss the QLES based on the L2-inner product with MFE for the
stationary MHD models.

3.1. Definitions and Notations

Here, the following Sobolev spaces are introduced first. Let us consider C∞(ω) to be
the set of infinitely differentiable continuous functions C∞

0 (ω) = {o, MB ∈ C∞(ω)}; the
vector-support functions o, MB are in domain ω. (In the coming sections, we suppose o, MB
Oseen type iterative values utilizing for the conversion of the non-linear to linearization of
the MHD model equations). Moreover, the Sobolev function spaces in standard form are
given as:

W : = [H1(ω)]n×n,

I : = H1
0(ω)n,

P : = {q ∈ H1(ω);
∫

ω
qdω = 0},

Y : = H1
0(ω),

N : = [H1(ω)]n.

Let V = (Vij)n×n = (~v f 1, ~v f 2 . . . , ~v f n) be known as a vector function of degree n× n with
column matrices ~v f k, 1 ≤ k ≤ n. For each n-dimensional matrix ~v f and vector U, introduce
∇~v f = (v1, v2 . . . , vn) and∇×U = (∇× ~v f 1,∇× ~v f 2 . . . ,∇× ~v f n),∇ ·U

T = (∇ · ~v f 1,∇ ·
~v f 2 . . . ,∇ · ~v f n)

T and similarly B = ∇× ~MB. For the conciseness and applicability of the
QLS method, the first-order system of equations can be now equivalently written as:

3.2. The Stationary First Order MHD Model and QLSFE Scheme Algorithms

An algorithm is proposed to solve the incompressible stationary MHD Model (1)–(4)
via the following first order system as following:

−ν∇ · UT + (~v f · ∇)~v f +∇p + S(~MB ×∇× ~MB) = f in ω, (8)

U−∇~v f = 0 in ω, (9)

∇ · ~v f = 0 in ω, (10)

νm∇× (B)− S(∇× (~v f × ~MB)) = 0 in ω, (11)

B−∇× ~MB = 0 in ω, (12)

∇ · ~MB = 0 in ω. (13)
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In the further formulation for any o, ~MB ∈ I is considered from the Oseen type formu-
lation [23,30] where o and ~MB are known functions usually chosen from the previous
iterative step of the Picard iterations which are always known values for the next iteration
and are also supposed regular for the unknown values. We represent the viscosity of the hy-
drodynamic ν = 1

Re , and the diffusivity of the magnetism νm = 1
Rm . Then the bilinear form

of the functions are now introduced for the (V, ~v f , p, B, ~MB) and (W, ρ, q, τ, c) respectively
(W× I× P× Y×N) as

L(o, ~MB; (U,~v f , p, B, ~MB), (W, ρ, q, τ, σ)) (14)

=
(
− ν∇ ·VT + (o · ∇)~v f +∇p + S(~MB ×∇× ~MB),

− ν∇ ·WT + (o · ∇)ρ +∇q + S(~MB ×∇× σ)
)

+ (V−∇~v f ,W−∇ρ) + γ2(∇ · ~v f ,∇ · ρ)
+ (νm∇× B−∇×) (~v f × ~MB), νm(∇× τ −∇× (ρ× ~MB))

+ (B−∇× ~MB, τ −∇× σ) + η2(∇ · ~MB,∇ · σ)

where the two positive constants γ and η are to be found in the upcoming sections. Suppose
that (~v f , p, ~MB) are the solutions of system Equations (1)–(4) which are in [H2(ω)]d ×
H1(ω)× H2(ω). Let us consider V = ∇~v f and B = ∇× ~MB, and now the solution of
unknown variables (V, ~v f , p, B, ~MB) satisfies the following QLS variational formulation:

L(~v f ,~MB; (V, ~v f , p, B, ~MB), (W, ρ, q, τ, σ)) (15)

= ( f ,−ν∇ ·WT + ~v f · ∇ρ +∇q + S(~MB ×∇× σ))

∀(W, ρ, q, τ, σ) ∈W× I× P× Y×N.

3.3. Variational Form of the MHD

For the mathematical solutions and findings, few symbols utilized in functional spaces
are introduced. Suppose that Wm,p(G) is noted particularly written as Hm(ω) with the
norm || · ||m and seminorm | · |m [40,41] for p = 2 and m = 0 then W0

2 (ω). We see that the
inner product is always given by (·, ·), || · ||=|| · ||0 for the space L2(ω) respectively,
and the general norm for this space can be written as Lp(ω) norm, which is equivalent
to || · ||Lp , with some notable cases of Hilbert space L2(ω) =|| · ||L2(ω) and the Banach
space L∞(ω) =|| · ||∞. Here G is ignored for G = ω without any confusion for the
notational simplicity.

However, with the above setting, the corresponding variational formulation, we
introduce FE spaces (Wh × Ih × Ph × Yh ×Nh) ⊂ (W× I× P× Y×N) on the triangular
elements Th where Th is a member of FE triangulations of the discretized domain ω and
script h represents the largest element in the meshed domain or the triangles. By considering
the QLS illustration, we can write:

QLSFES. Find (Vh, ~v f
h, ph, Bh, ~M

h
B) ∈ (Wh × Ih × Ph × Yh ×Nh) such that

L
(
~v f

h, ~M
h
B; (Vh, ~v f

h, ph, Bh, ~M
h
B), (W

h, ρh, qh, τh, σh)
)

=
(

f ,−ν∇ ·Wh + ~v f
h · ∇ρh +∇qh + S(~M

h
B ×∇× σh)

)
∀ (Wh, ρh, qh, τh, σh) ∈ (Wh × Ih × Ph × Yh ×Nh). (16)

Remark 2. QLSFES is a simple symmetric form. For practical calculation, we define two parame-
ters γ and η with the incompressibility conditions. These parameters are important to ensure the
coercivity and continuity of the scheme. Indeed, it is not possible to ensure the coerciveness of the
bilinear form of L(o, ~MB : ·, ·) for each o, ~MB ∈ I. But, by choosing suitable values for γ and η
they became well-defined and positive symmetric in some bounded domain which holds the solution
of (1)–(4). In the next sections, we will discuss the judicious guess of the parameters γ and η for the
linear form. The ideal feature of this technique is that a solution of a nonlinear model equation can
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be obtain without any initial guess for the iterative procedure for a large domain. We confirm this
feature in forthcoming formulations in our analysis part.

4. QLSFES Convergence and Existence of the Solutions

In this section, we obtain convergence and existence of the solution of proposed
scheme with the illustration of four steps.

• We demonstrate property of the L(o, ~MB : ·, ·) bilinear function. For any parameter γ

and η are introduced in such a way that there exists a bounded function set L(o, ~MB :
·, ·) that is well defined and continuous as o and ~MB holds in this bounded domain.

• In step two, we find out a large domain of bounded functions which holds all solutions
of the System (8)–(13). We intend to solve the nonlinear coupled equations by the
right choice of γ and η,and L(o, ~MB : ·, ·) is well-defined as o and ~MB are in this large
domain of functions.

• To show the well-posedness of the proposed scheme QLSFES, we establish the nonlin-
ear plan of the scheme in such a way that the solutions under some nominated domain
are fixed points. In step one and step two, we summarize that for a specific value of η
and γ, the system of the nonlinear model is distinctively executable in this specific
bounded set (see detail in Lemmas 3 and 4). Moreover, in Theorem 1, by using the
fixed point theory [23], we illustrate briefly the existence of solutions of the scheme.

• In the fourth step, Theorem 2 is given to illustrate the convergence and existence of
the proposed scheme QLSFES.
Before proceeding to the actual contribution, we intend to understand several existing
results which are utilized in the immanent sections. By the theory of embedding and
the Poincaré’s inequality, the positive constants e, a0, and a1 always depend on the
fact that the domain can be recalled as

a0 ‖ u ‖2
L4 ≤ ‖ ∇u ‖2

L2(ω), (17)

a1 ‖ u ‖2
1 ≤ ‖ ∇u ‖2

L2(ω), ∀ u ∈ I.

‖ ~v f ‖2
L4 ≤ e ‖ ~v f ‖2

1 ∀ ~v f ∈ I.

‖ ~MB ‖2
L2(ω) ≤ a2( ‖ ∇× ~MB ‖2

L2(ω) + ‖ ∇ · ~MB ‖2
L2(ω)), ∀ ~MB ∈ N (18)

‖ ~MB ‖2
L4 ≤ C ‖ ~MB ‖2

1

‖ ∇× ~MB ‖2
L2(ω) ≤ a3 ‖ ~MB ‖2

1 (19)

‖ ~MB ‖2
L2(ω) ≤ e ‖ ∇× ~MB ‖2

L2(ω) (20)

≤ e ‖ ~MB ‖2
L2(ω) (21)

According to Green’s formula and integration by parts [42], we can state

(∇ ~v f , u)− (~v f ,∇ u) = 0, ∀ ~v f , u ∈ I (22)

(o · ∇u, u) +
1
2
(div o, | u |2) = 0, ∀ u, o ∈ I

(~MB ×∇× ~MB, u)− (~v f × ~MB,∇× ~MB) = 0, ∀ u ∈ I, ∀ ~MB, ~MB ∈ N

‖ o× ~MB ‖2
L2(ω) ≤ e ‖ o ‖2

L∞‖ ~MB ‖2
L2(ω) ∀ o, ~MB ∈ (L2(ω)n×n).

The bilinear form (·, ·) is well known as an inner product in space L2(ω) or L2(ω)n. It
is always known to be a fact that q ∈ L2(ω) holds the boundary condition (q, 1) = 0 if
φ ∈ [H1

0(ω)]n such that

div · φ = q, (23)

‖ φ ‖1 ≤ Ce ‖ q ‖L2(ω) .
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Lemma 1. Let constants Ko > 0, 0 < η < 2a0min(ν, νm

2 ) and γ > max(Ko, 1). There exists
two constants β and β∗ such that for each o ∈ I, bM ∈ N satisfying ‖ ∇o ‖L2(ω)≤ Ko and
‖ ∇ · o ‖L2(ω)≤ η , ‖ ~MB ‖L∞≤ π and for each (Wh, uh, qh, τh, σh) ∈ (W, I, P, Y, N),

(i) β
[
‖ ∇~u ‖2

L2(ω) + ‖ ∇× σ ‖2
L2(ω)

]
≤ L

(
o, ~MB; (W, ~u f , q, τ, σ), (W, ~u f , q, τ, σ)

)
, (24)

(ii) ΛΛ∗
[
‖W ‖2

L2(ω) + ‖ τ ‖2
L2(ω) + ‖ q ‖2

L2(ω)

]
≤ L

(
o, ~MB; (W, ~u f , q, τ, σ), (W, ~u f , q, τ, σ)

)
,

where the constants Λ and Λ∗ are defined as follows

Λ = min(Λ1, Λ2, Λ3, Λ4, Λ5), where Λj, 1 ≤ j ≤ 5, (25)

and Λ∗ = min
( 1

2(1+Λ)
, 1

2(Ce)2Λ , 1
4ν2C2

e (1+Λ)
, a2

0a1

2C2
e (η+K)2a1

)
.

Proof. From Young’s inequality and the given conditions, we can demonstrate

‖ ∇~u f ‖2
L2(ω) = (∇~u f −W,∇~u f ) + ν−1[(−ν∇ ·WT + (o · ∇)~u f +∇q + S ~MB ×∇× σ, ~u f )

]
(26)

+
[ 1

2ν
(∇ · o~u f , ~u f )

]
+ ν−1(q,∇ · ~u f ) + ν−1[(S ~MB ×∇× σ, ~u f )]

≤ 1
2a2

1ε0ν2
‖ −ν∇ ·WT + (o · ∇)~u f +∇q + S ~MB ×∇× σ ‖2

L2(ω)

+
1

2ε0
‖ ∇~u f −W ‖2

L2(ω) +
γ2

4ε1
‖ ∇ · ~u f ‖2

L2(ω) +
ε1

γ2ν2 ‖ q ‖2
L2(ω)

+ (2ε0 +
η

2ν2a0
) ‖ ∇~u f ‖2

L2(ω) +
S2π2

4ν2a0ε0
‖ ∇× σ ‖2

L2(ω) (27)

and

‖W ‖2
L2(ω) ≤ 2

[
‖ ∇~u f ‖2

L2(ω) + ‖ ∇~u f −W ‖2
L2(ω)

]
. (28)

Let us consider φ holds (23), and we obtain the following estimation

‖ q ‖2
L2 = −(−ν∇ ·WT + (o · ∇)~u f +∇q + S ~MB ×∇× σ, φ) (29)

+ ν(W,∇φ) +
(
(o · ∇)~u f + S ~MB ×∇× σ, φ

)
≤
[
‖ (−ν∇ ·WT + (o · ∇)~u f +∇q + S ~MB ×∇× σ) ‖L2(ω)

+ ν ‖W ‖L2(ω) +
1
a0
(‖ ∇ · o ‖L2(ω) + ‖ ∇o ‖L2(ω)) ‖ ∇~u f ‖L2(ω) +Sπ ‖ ∇× σ ‖L2(ω)

]
‖ φ ‖H1 .

By utilizing Equation (23), we can state

‖ q ‖2
L2 ≤ 2C2

L2(ω)

[
‖ −ν∇ ·WT + (o · ∇)~u f +∇q + S ~MB ×∇× σ ‖2

L2(ω) (30)

+ ν2 ‖W ‖2
L2(ω) +

(η + K)2

a2
0

‖ ∇~u f ‖2
L2(ω) +S2π2 ‖ ∇× σ ‖2

L2(ω)

]
,

in a similar way,

‖ ∇× σ ‖2
L2(ω)=(∇× σ,∇× σ− τ) + ν−1

m (σ, νm∇× τ −∇× (~u f × ~MB)) (31)

+ ν−1
m (σ,∇× (~u f × ~MB))
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‖ ∇× σ ‖2
L2(ω) ≤ 4 ‖ ∇× σ− τ ‖2

L2(ω) +
4νma2

νm2a2 − η
‖ νm ∇× τ −∇× (~u f × ~MB) ‖2

L2(ω) (32)

+
2π2

ν2
m
‖ ∇~u f ‖2

L2(ω) +
1
4
‖ ∇ · σ ‖2

L2(ω) .

By substituting Equations (30) and (32) in Equation (26), we have

‖ ∇~u f ‖2
L2 ≤

1
2a2

1ε0ν2
‖ (−ν∇ ·WT + (o · ∇)~u f +∇q + S ~MB ×∇× σ) ‖2

L2 (33)

+
1

2ε0
‖ ∇~u f −W ‖2

L2(ω) +
γ2

4ε1
‖ ∇ · ~u f ‖2

L2(ω) +(ε0 +
η

2νa0
) ‖ ∇~u f ‖2

L2(ω)

+
a2S2

4ν2ε1
‖ νm∇× τ −∇× (~u f × ~MB) ‖2

L2(ω) +2ε1 ‖ ∇× σ ‖2
L2(ω)

+ ε1 ‖ ∇ · σ ‖2
L2(ω) +

S2ν2
m

4ν2ε1
‖ ∇× σ− τ ‖2

L2(ω)

+
2ε1C2

L2(ω)

γ2ν2

[
‖ −ν∇ ·WT + (o · ∇)~u f +∇q + S ~MB ×∇× σ ‖2

+ ν2 ‖W ‖2
L2(ω) +

(η + K)2

a2
0

‖ ∇~u f ‖2
L2(ω) +S2π2 ‖ ∇× σ ‖2

L2(ω)

]

≤
(

1
2a2

1ε0ν2
+

2ε1C2
L2(ω)

γ2ν2

)
‖ (−ν∇ ·WT + (o · ∇)~u f +∇q + S ~MB ×∇× σ) ‖2

L2

+

(
4ε1C2

0
γ2 +

1
2ε0

)
‖ ∇~u f −W ‖2

L2(ω) +
γ2

4ε1
‖ ∇ · ~u f ‖2

+

(
ε0 +

η

2νa0
+

2ε1C2
0(η + Ko)2

γ2ν2a2
0

+
4ε1C2

0
γ2

)
‖ ∇~u f ‖2

L2(ω)

+

(
2ε1C2

0S2π2

γ2ν2 + 2ε1

)
‖ ∇× σ ‖2

L2(ω)

+
a2S2

4ν2ε1
‖ νm∇× τ −∇× (~u f × ~MB) ‖2

L2(ω) +ε1 ‖ ∇ · σ ‖2
L2(ω) +

S2ν2
m

4ν2ε1
‖ ∇× σ− τ ‖2

L2(ω) .

Considering the constants

ε0 = 1
4 (1−

η
2νa0

), ε1 = a0νν2
m(2a0ν−η)

16(C2
0(η+K)2ν2

m+2C2
0 ν2ν2

ma2
0+2a2

0C2
0 S2π4+2a2

0ν2π2)
,

we can state

‖ ∇~u f ‖2
L2 ≤

(
1

4a2
1ε0ν2

+
C2

L2(ω)
ε1

ε0ν2

)
‖ (−ν∇ ·WT + (o · ∇)~u f +∇q + S ~MB ×∇× σ) ‖2

L2 (34)

+

(
2C2

0ε1

ε0
+

1
4ε2

0

)
‖ ∇~u f −W ‖2

L2(ω) +
γ2

8ε0ε1
‖ ∇ · ~u f ‖2

L2(ω)

+

(
ε1C2

0S2π2

4ε0ν2 +
3ε1

4ε0

)
‖ ∇ · σ ‖2

L2(ω)

+

(
a2S2

8ε0ε1ν2 +
4a2ε1C2

0S2π2

ε0ν2ν2
m

+
4a2ε1

ε0ν2
m

)
‖ νm∇× τ −∇× (~u f × ~MB) ‖2

L2(ω)

+

(
S2ν2

m
8ε0ε1ν2 +

4ε1C2
0S2π2

ε0ν2 +
4ε1

ε0

)
‖ ∇× σ− τ ‖2

L2(ω) .

It is further estimated that ‖ τ ‖2
L2(ω)

is:
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‖ τ ‖2
L2(ω) ≤ 2

[
‖ ∇× σ− τ ‖2

L2(ω) + ‖ ∇× σ ‖2
L2(ω)

]
(35)

≤ 2 ‖ ∇× σ− τ ‖2
L2(ω) +

4νmΛ0

νmΛ0 − η

[
‖ ∇× σ− τ ‖2

L2(ω) +
1

Λ1νm2 ‖ νm ∇× (~MB × ~u f ) ‖2
L2(ω)

]
.

From the Equations (32) and (34), we understand that the conclusion of the condition
(24)(i) holds for the Λ defined by (24) and (25), whereas by (24)(ii), (28), (30) and (35) also
satisfies.

Remark 3. Lemma 1 deals three positive constants Ko, η, and γ where Ko and η are nominated
constraints for the gradient and divergence of function o illustrated below. We would be able to
indicate that Ko is playing a key role to control the side terms in right-hand. By employing the
constant Ko, we may figure out the bounded function set which restrains all solutions of the given
MHD model equations. Otherwise, it could not be easy to handle the divergence-free conditions
in the theoretical formulation. Here, we manage the ‖ ∇ · o ‖L2(ω)≤ η (divergence-free) and
‖ ∇ · ~MB ‖L2(ω)≤ π. The Λ is a coefficient which is actually free from the constat Ko and γ but
it depends strongly on η and π. It is worth noting that Λ becomes smaller if η is larger. Hence,
Lemma 1 illustrates the way by which the parameter Λ can be formulated. This will be utilized to
execute γ in practical usage. The value of γ is a penalty factor which is used to control the boundary
condition for the velocity field divergence. It is important to note that the parameter Λ∗ has acting
no such type of usage in the mathematical formulation at all.

Remark 4. Because a magnetic field is a solenoidal field, it may not be considered as compressible
or incompressible [11]. To penalize the magnetic effect as divergence or ∇× of the field there is no
coefficient so far discussed in the literature. It means the well-psedness of the MHD is still open for
the researchers. This will be a challenging problem for our future work.

In active usage, the well-defined bilinear form L(o, ~MB; ·, ·) for all o ∈ I is not compul-
sory and a similar remedy is considered for the ~MB is applied. However, one can find the
approximate numerical values of the unknown functions in the particular domain, which
have all the exact solutions. We are suppose to seek this bounded function set. To this end,
some functions are supposed in W× I× P× Y×N as:

L̃(η, Ko, ρ) =

[
(W, ~u f , q, τ, σ); ‖ ∇ · ~u f ‖L2(ω)≤ η, (36)

[‖ ∇~u f ‖2
L2(ω) + ‖ ∇× σ ‖2

L2(ω)]
1/2 ≤ Ko,

[‖W ‖2
L2 + ‖ τ ‖2

L2(ω) + ‖ q ‖2
L2(ω)]

1/2 ≤ Ko√
ρ

]
,

L̃h(η, Ko, ρ) = L̃(η, K, ρ) ∩ [Wh × Ih × Ph × Yh ×Nh]. (37)

The given lemma illustrates that for some positive parameters η, Ko, ρ, Equations (8)–(13)
holds solutions in the bounded set L̃.

Lemma 2. Consider 0 < η < 2a0min(ν, νm
2 ). Suppose that Λ and Λ∗ holds ((24)i,ii) and

Ko satisfies

‖ f ‖L2(ω) ≤ min(
√

Λ, 1)Ko. (38)

All the possible solutions of (8)–(13) are in the function set L̃(η, Ko, Λ∗).
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Proof. Let (V, ~v f , p, B, ~MB) be the only one solution of the given system Equations (8)–(13).
For all γ ≥ 0, it can be seen that

L(~v f , ~MB; (V, ~v f , p, B, ~MB), (V, ~v f , p, B, ~MB)) (39)

= ( f ,−ν∇ ·VT + ~v f · ∇~v f +∇p + S ~MB ×∇× ~MB).

This states:

L(~v f , ~MB; (V, ~v f , p, B, ~MB), (V, ~v f , p, B, ~MB)) ≤ ‖ f ‖2
L2(ω) . (40)

We know the term for the incompressible conditon ∇ · ~v f = 0 and ∇ · ~MB = 0 in ω, so

‖ ∇~v f ‖2
L2 = ν−1(−ν∇ ·VT + (~v f · ∇)~v f +∇p + S ~MB ×∇× ~MB, ~v f ) (41)

+ (∇~v f −V,∇~v f )− ν−1(S~MB ×∇× ~MB, ~v f )

≤ ν−1(−ν∇ ·VT + (~v f · ∇)~v f +∇p + S ~MB ×∇× ~MB, ~v f )

+ (∇~v f −V,∇~v f ) +
S
ν
(νm∇× B−∇× (~v f × ~MB), ~MB) +

Sνm

ν
(∇× ~MB − B,∇× ~MB)

≤ 2
a2

1ν2
‖ −ν∇ ·VT + (~v f · ∇)~v f +∇p + S~MB ×∇× ~MB ‖2

L2

+ 2 ‖ ∇~v f −V ‖2
L2(ω) +

1
4
‖ ∇~v f ‖2

L2(ω)

+
2a2S2

ν2 ‖ νm∇× B−∇× (~v f × ~MB) ‖2
L2(ω) +

1
4
‖ ∇× ~MB ‖2

L2(ω) +
2S2ν2

m
ν2 ‖ ∇× ~MB − B ‖2

L2(ω),

including

‖ ∇× ~MB ‖2
L2(ω) ≤ 2 ‖ ∇× ~MB − B ‖2

L2(ω) +
2a2

νm2 ‖ νm ∇× B−∇× (~v f × ~MB) ‖2
L2(ω) (42)

+
2

a2
1S2ν2

m
‖ −ν∇ ·VT + (~v f · ∇)~v f +∇p + S ~MB ×∇× ~MB ‖2

L2

+
2ν2

S2ν2
m
‖ ∇~v f −V ‖2

L2(ω) +
1
4
‖ ∇~v f ‖2

L2(ω) +
1
4
‖ ∇× ~MB ‖2

L2(ω) .

Therefore,

Λ̃[‖ ∇~v f ‖2
L2(ω) + ‖ ∇× ~MB ‖2

L2(ω)] ≤ L(~v f , ~MB; (V, ~v f , p, B, ~MB), (V, ~v f , p, B, ~MB)) ≤ ‖ f ‖2
L2(ω), (43)

where Λ̃ = min( a2
1S2ν2ν2

m
4(S2ν2

m+ν2)
, S2ν2

m
4(S2ν2

m+ν2)
, ν2

4a2S2 , ν2

4S2ν2
m
). Accordingly, it can be easily seen that

Λ ≤ Λ̃. Because ‖ ∇~v f ‖2
L2(ω)

≤ Ko. By taking γ ≥ max(1, Ko) and by using Lemma 1, one

can see that (V, ~v f , p, B, ~MB) is in L̃(η, Ko, Λ∗).

We acquire the approximate solution of the System (8)–(13). Let us consider the
nonlinear map based upon the defined spaces Wh × Ih × Ph ×Yh ×Nh into Wh × Ih × Ph ×
Yh ×Nh as

L(Wh, ~u f
h, qh, τh, σh) = (Ŵh, ~̂u f

h
, q̂h, τ̂h, σ̂h)

such that for each (W
h, ~u f

h
, qh, τh, σh) ∈Wh × Ih × Ph × Yh ×Nh,

L(~u f
h, σh; (Ŵh, ~̂u f

h
, q̂h, τ̂h, σ̂h), (Wh, ~u f

h
, qh, τh, σh)) (44)

= ( f ,−ν∇ ·Wh
+ ~u f

h · ∇~u f
h
+∇qh + S~MB

h
× τh).
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Now, it is certain that the System (44) is linear with respect to (Ŵh, ~̂u f
h
, q̂h, τ̂h, σ̂h). Now

the non-linear MHD can be estimated through the following results given below.

Lemma 3. Suppose the Lemmas 1 and 2 satisfy. Then the bilinear form of the system L from
L̃h(η, Ko, Λ∗) to Wh × Ih × Ph × Yh ×Nh is distinctly defined.

The key point is that the Lemma 3 is the straightforward result of Lemma 1.

Lemma 4. Let us consider that the results of Lemmas 1 and 2 satisfies all the conditions for γ and
it satisfies

γ ≥ ‖ f ‖L2(ω) max(1, 1/η, 1/
√

Λ). (45)

Now the bilinear operator L shows L̃h(η, Ko, Λ∗) to itself.

Proof. Hence from Equation (44)

L(~u f
h, σh; (Ŵh, ~̂u f

h
, q̂h, τ̂h, σ̂h), (Ŵh, ~̂u f

h
, q̂h, τ̂h, σ̂h)) ≤‖ f ‖2

L2(ω),

because we have ‖ ∇~u f
h ‖L2(ω)≤ Ko and ‖ ∇ · ~u f

h ‖L2(ω)≤ η so Equation (24) tends to

• ‖ ∇ ~̂u f
h
‖2

L2 + ‖ ∇× σ̂h ‖2
L2(ω)

≤ 1
Λ ‖ f ‖2

L2(ω)
≤ K2

o ;

• ‖ Ŵh ‖2
L2 + ‖ τ̂h ‖2

L2(ω)
+ ‖ q̂h ‖2

L2(ω)
≤ 1

ΛΛ∗ ‖ f ‖2
L2(ω)

≤ K2
o

Λ∗ .

Furthermore,

‖ ∇ · ~̂u f
h
‖L2≤ γ−1 ‖ f ‖L2(ω)≤ η.

Therefore, (Ŵh, ~̂u f
h
, q̂h, τ̂h, σ̂h) ∈ L̃h(η, Ko, Λ∗). This proves completed.

Theorem 1. Let 0 < η < 2a0min(ν, 1
νm ), K holds (38), γ holds (45), Λ and Λ∗ holds ((24)i,ii).

Therefore the scheme QLSFES satisfies and holds a minimum one solution in bilinear form
L̃h(η, Ko, Λ∗). However, all the illustrated unknown solutions of the nonlinear model Equation (16)
are in L̃h(η, K, Λ∗).

Proof. Lemma 4 states that, the operator L relates the bounded domain L̃h(η, K, Λ∗) into
itself under the specific conditions of Theorem 1. It satisfies the fixed point Browners theory
that the nonlinear System (16) has minimum one solution in L̃h(η, Ko, Λ∗). Indeed it is true
that all the solutions of the unknowns of model nonlinear Equation (16) are in L̃h(η, Ko, Λ∗).
Hence the proof of Theorem 1 is completed.

Moreover, the solutions of QLSFES convergence is demonstrated below as:

Theorem 2. Suppose that Theorem 1 holds and (Vh, ~v f
h, ph, Bh, ~M

h
B) is a unique sequence of the

solutions of the proposed scheme as h → 0. Then the sequence of solution (Vh, ~v f
h, ph, Bh, ~M

h
B)

can be further subdivided into many subsequences which will converge weakly to the different

solutions of the first-order MHD (8)–(13). Particularly, components of the MHD ~v f
h, ~M

h
B are

weakly convergent into the subsequences and are strongly convergent to the similar limit components
in [Hs(ω)d]× Hs(ω) for specific condition 1 > s ≥ 0.

Before proceeding to the prove of the Theorem 1 we entail some lemmas for the
understanding, which are given as
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Lemma 5. We suppose the inequality 0 < η < 2a0ν. For a specific Oseen-type function o ∈
[H1(ω)]d holds the relation ‖ ∇ · o ‖L2(ω)≤ η and a particular load function f ∈ [L2(ω)]d.
At present the problem with boundary values can be stated as

−νη~v f
∗ + o · ∇~v f

∗ +∇p = f, in ω; (46)

∇ · ~v f
∗ = 0, (47)

(p∗, 1) = 0,

~v f
∗ = 0, on ∂ω;

which holds a unique solution (~v f
∗, p∗) in H2(ω)× H1(ω).

The reader can see [23] appendix 1. Hence, the embedding theory between Sobolev
spaces and some results reported in [23,40] are directly utilized here as in the following
lemmas given below.

Lemma 6. Assume thatR is a Hilbert space in which F might be a bounded function set withinR,
i.e., there is a domain-dependent constant Ko > 0 in such a way that ‖ f ‖R≤ K for every f ∈ F.
If T is a function set which is weakly compact in the given Hilbert spaceR [23]:

lim
n→∞

〈 fn, g〉 = 〈 f , g〉, ∀g ∈ R. (48)

Here 〈·, ·〉 denotes the inner product of two functions in spaceR.

Lemma 7. Let T be a set of bounded functions in Hilbert space H1(ω), such that there exists Ko
such that ‖ v ‖H1(ω)≤ Ko for each v ∈ T. Then the T set is compact strongly in space Hs(ω)

for every interval 0 ≤ s < 1, i.e., the { fn}∞
n=1, which is strongly convergent in the Hilbert space

Hs(ω) as n→ ∞, which may be deduced from T.

Lemma 8. Suppose a positive constant C exists and holds for interval 0 ≤ s ≤ 1 and every
v ∈ Hs(ω)

e ‖ v ‖Hs(ω)≥‖ v ‖Lq(ω), ∀ 1 ≤ q ≤ 2n
n− 2s

.

Hence Theorem 2 might be resumed as:

Proof. It comes from Theorem 1 that the solutions of QLSFES (Vh, ~v f
h, ph, Bh, ~M

h
B) are

bounded [23]. Lemmas 6 and 7 concludes that the results are divided into many other
subsequences which are weakly convergent in the L2 × H1(ω)× L2 × H1(ω). Moreover,
the weak convergence of the subsequence of the proposed scheme, might still repre-

sent it by (Vh, ~v f
h, ph, Bh, ~M

h
B) and its weak limitation by (V, ~v f , p, B, ~MB) in [L2(ω) ×

H1(ω)× L2(ω)× H1(ω) ]. However, from Lemma 7, someone may know that compo-

nents (~v f
h, ~M

h
B) are strongly convergent to (~v f , ~MB) in [Hs(ω) × Hs(ω)] for condition

0 ≤ s < 1.
We are supposed to justify that (V, ~v f , p, B, ~MB) is the first-order linear system

Solution (8)–(13). As a result, (~v f , p, ~MB) is a unique solution of the MHD. To this end,
tentative functions (~v f

∗, p∗) are introduced as:

~v f · ∇~v f
∗ − η~v f

∗ +∇p∗ = f− S( ~MB ×∇× ~MB), in ω; (49a)

∇ · ~v f
∗ = 0, in ω; (49b)

~v f
∗ = 0, on ∂ω; (49c)
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and similarly for ~M
∗
B

1
µσ
∇× (∇× ~M

∗
B)−∇× (~v f × ~M

∗
B) = 0, in ω; (50a)

∇ · ~M∗B = 0, in ω; (50b)
~M
∗
B = 0, on ∂ω; (50c)

Right now, Systems (49a) and (50a) represent two different linear systems, which are
independent Lemma 5 concludes that for the (~v f

∗, p∗) ∈ [H2(ω)]d × [H1(ω)]d these two
free system of equations are distinctly executable. Let V∗ = ∇~v f

∗ and B∗ = ∇× ~M
∗
B. It

is true that (V, ~v f , p, B, ~MB) is a unique solution for the Equations (8)–(13) if the relation

holds as (V, ~v f , p, B, ~MB) = (V∗, ~v f
∗, p∗, B∗, ~M

∗
B). We intend to justify this in three steps.

In Step 1, we execute

‖ −ν∇ · (V−V∗)T + (~v f · ∇)(~v f − ~v f
∗) +∇(p− p∗) ‖L2(ω)= 0. (51)

In Step 2, the proof is

(V−V∗)−∇(~v f − ~v f
∗) = 0, in ω; (52a)

∇ · (~v f − ~v f
∗) = 0, in ω. (52b)

In Step 3, from (51), (52a) and (52b) it is satisfied that

−νη(~v f − ~v f
∗) + (~v f · ∇)(~v f − ~v f

∗) +∇(p− p∗) = 0, in ω; (53a)

∇ · (~v f − ~v f
∗) = 0, in ω. (53b)

~v f − ~v f
∗ = 0, on ∂ω. (53c)

Equation (53a) represents that (V, ~v f , p) = (V∗, ~v f
∗, p∗) because the Equation (53a) holds a

unique but trivial solution. Similarly, one can prove (B, ~MB) = (B∗.~M
∗
B).

The proof of (51) can be written and it is obvious that (51) is identical to

(−ν∇ · (V−V∗)T + (~v f · ∇)(~v f − ~v f
∗) +∇(p− p∗), ϕ) = 0, ∀ϕ ∈ [C∞

0 ]d. (54)

For every ϕ ∈ [C∞
0 (ω)]n, one might have a test functions for the variables velocity and

pressure as (v,q).
−νηv + (~v f · ∇)v +∇q = ϕ, in ω, (55a)

∇ · v = 0, in ω, (55b)

v = 0, on ∂ω. (55c)

From Lemma 5, we conclude that (v, q) ∈ [H2(ω)]d × H1(ω). By assuming V = ∇v, one
can have
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(−ν∇ · (V−V∗)T + (~v f · ∇)(~v f − ~v f
∗) +∇(p− p∗), ϕ)

=

[(
− ν∇ · (V−Vh)T + (~v f · ∇)(~v f − ~v f

h) +∇(p− ph) + S ~MB ×∇× ~MB − ~M
h
B, ϕ

)]
+ ((~v f − ~v f

h · ∇)~v f
h, ϕ) +

(
− ν∇ · (Vh −V∗)T + (~v f

h · ∇)~v f
h − (~v f · ∇)~v f

∗ +∇(ph − p∗)

+ S ~MB ×∇×(~MB − ~M
h
B), ((~v f − ~v f

h) · ∇)v
)
+

[
(−ν∇ · (Vh −V∗)T + (~v f

h · ∇)~v f
h

− (~v f · ∇)~v f
∗ +∇(ph − p∗) + S ~MB ×∇×(~MB − ~M

h
B), ν∇ ·VT + (~v f

h · ∇)v +∇q

+ (Vh −∇~v f
h, V−∇v) + γ2(∇ · (~v f

h − ~v f
∗),∇ · v))

]
. (56)

The weak convergence property of (Vh, ~v f
h, ph, τh, ~M

h
B) is the unique solution of the MHD

System (8)–(13) for the nominated positive parameter γ. This might be further seen
equivalently as

| (−ν∇·(V−Vh)T + (~v f · ∇)(~v f − ~v f
h) +∇(p− ph) + S ~MB ×∇×(~MB − ~M

h
B), ϕ) |

≤| (~v f · ∇)(~v f − ~v f
h) + S ~MB ×∇×(~MB − ~M

h
B), ϕ |

+ ν | ∇ · (V−Vh,∇ϕ) | + | (p− ph, div · ϕ) |→ 0, as h→ 0. (57)

Therefore Lemma 8 and the (~v f
h, ~M

h
B) concludes that

‖ ~v f − ~v f
h ‖L4 ≤ C ‖ ~v f − ~v f

h ‖Hd/4→ 0, as h→ 0,

together with

| (((~v f−~v f
h) · ∇)~v f

h, ϕ) | + | −ν∇ · (Vh −V∗)T + (~v f
h · ∇)~v f

h − (~v f · ∇)~v f
∗ (58)

+∇(ph − p∗) + ~MB ×∇× (~MB − ~M
h
B), ((~v f − ~v f

h) · ∇v) |

≤ C ‖ ~v f − ~v f
h ‖L4 [‖ ∇~v f

h ‖0‖ ϕ ‖L4 + ‖ f ‖0‖ ∇v ‖L4 ].

From Equations (8)–(13), it can be further estimated as(
− ν∇·(Vh −V∗)T + (~v f

h · ∇)~v f
h − (~v f · ∇)~v f

∗ +∇(ph − p∗)

+ ~MB ×∇× (~MB − ~M
h
B),−ν∇ ·VT + (~v f

h · ∇)v +∇q
)

+ (Vh −∇~v f
h, V−∇v) + (∇ · (~v f

h − ~v f
∗),∇ · v)

= inf
(Vh ,vh ,qh)∈(Wh×Xh×Qh)

[(
− ν∇ · (Vh −V∗)T + (~v f

h · ∇)~v f
h − (~v f · ∇)~v f

∗ +∇(ph − p∗)

+ ~MB ×∇× (~MB − ~M
h
B),−ν∇ · (V−Vh)T + (~v f

h · ∇)(v− vh) +∇(q− qh)
)

+ (Vh −∇~v f
h, V−Vh −∇(v− vh)) + γ2(∇(~v f

h − ~v f
∗),∇ · (v− vh))

]
(59)

→ 0, h→ 0.

If we replace Equations (57)–(59) with (56), it yields (54). Now we may proceed the proof of
the second step (52a) and (52b). With the help of weak convergence solution sequence of the
FE space approximations, it can be further seen for each (W, ~u f ) ∈ [C∞

0 (ω)]d×d × [C∞
0 (ω)]d,

and we have
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(V−V∗ −∇(~v f − ~v f
∗),W−∇~u f ) + γ2(∇ · (~v f − ~v f

∗),∇ · ~u f ) (60)

=
(
− ν∇ · (V−Vh)T + (~v f · ∇)(~v f − ~v f

h) +∇(p− ph) + ~MB ×∇×(~MB − ~M
h
B),−ν∇ ·WT

+ (~v f · ∇)~u f
)
+ (V−Vh −∇(~v f − ~v f

h),W−∇~u f ) + γ2(∇ · (~v f − ~v f
h),∇ · ~u f )

+ (((~v f − ~v f
h) · ∇)~v f

h,−ν∇ ·WT + (~v f · ∇)~u f ) + (−ν∇ · (Vh −V∗)T + (~v f
h · ∇)~v f

h

− (~v f · ∇)~v f
∗ +∇(ph − p∗) + ~MB ×∇×(~MB − ~M

h
B), ((~v f − ~v f

h) · ∇)~u f )

+ inf
(Wh ,~u f

h)∈(Wh×Xh)

[
(−ν∇ · (Vh −V∗)T + (~v f

h · ∇)~v f
h − (~v f · ∇)~v f

∗ +∇(ph − p∗)

+ ~MB ×∇×(~MB − ~M
h
B),−ν∇ · (W−Wh)T + (~v f

h · ∇)(~u f − ~u f
h)) +

(
Vh −V∗ −∇(~v f

h − ~u f
∗),

W−Wh −∇(~u f − ~u f
h)
)
+ γ2(∇ · (~v f

h − ~v f
∗),∇ · (~u f − ~u f

h)
)]
→ 0, as h→ 0.

Now, this shows a complete proof of the Theorem 2 which is indeed a solution of QLSFES in
general cases. Moreover, close to the approximate solutions of a singular solution, someone
can only execute approximate solutions of weak convergence of the subsequence. However,
in the next section, the proof of the strong convergence of the MHD holding with the
uniform convergence rate in non-singular solutions are briefly illustrated.

5. Convergent Rate of Non-Singular Solution of QLSFES

In this section, the non-singular solutions and convergence of the system
Equations (8)–(13) are demonstrated. A solution of (8)–(13) is considered as the non-
singular solution in some special cases i.e., if this solution does not depend on any other
solution and the first-order differential approximation of the system is non-singular at this
solution [23]. We consider a linear system (F∗0 , F∗1 , f ∗) ∈ [H−1(ω)]d× [L2(ω)]n×n× [L2(ω)],
which states that if

−ν∇ ·WT + (~v f · ∇)~u f +∇q + S (~MB ×∇× σ) = F∗0 in ω, (61)

W−∇~u f = F∗1 in ω, (62)

∇ · ~u f = f ∗ in ω, (63)

~u f = 0 on ∂ω, (q, 1) = 0 (64)

νm ∇× τ − S (∇× (~v f × σ)) = 0 in ω, (65)

τ −∇× σ = 0 in ω, (66)

σ = 0 on ∂ω, (67)

∇ · σ = 0 in ω, (68)

it holds a unique solution (W, ~u f , q, τ, σ) ∈ [L2(ω)]n×n × [H1
0(ω)]n × [L2(ω)]× [H1

0(ω)].
For all of the above, the constant e holds the relation

‖WT ‖0 + ‖ ~u f ‖1 + ‖ q ‖0 + ‖ σ ‖0 + ‖ τ ‖0≤ C ‖ F∗0 ‖H−1‖ F∗1 ‖0‖ f ∗ ‖0 in ω. (69)

We may assume the Stokes equation for further analysis as

−νη ~u f +∇q = f in ω, (70)

~u f = 0 on ∂ω, (q, 1) = 0, (71)

∇ · ~u f = f ∗ in ω, (72)

and
−νηw = g in ω, (73)

w = 0 on ∂ω. (74)
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Here, H2+t is a regular solution for any t ∈ (0, 1] so the solution (~u f , q, w) ∈ [H2+t(ω)]n ×
[H1+t(ω)]× [H2+t(ω)],

‖ ~u f ‖H2+s + ‖ q ‖H1+t ≤ ‖ f ‖Ht , (75)

and

‖ w ‖H2+t≤ C ‖ g ‖Ht . (76)

Furthermore, we assume that the MFE spaces Wh × Ih × Ph × Yh ×Nh satisfies the approx-
imation properties such that there exists an approximation order r of the MFE space which
is defined as (r ≥ 1) and C such that

inf
(Wh∈Wh)

[‖W−Wh ‖0 +h ‖W−Wh ‖1] ≤ Chr+1 ‖W ‖r+1 ∀W ∈ [Hr+1]n×n; (77)

inf
(uh∈Ih)

[‖ u− uh ‖0 +h ‖ u− uh ‖1] ≤ Chr+1 ‖ u ‖r+1 ∀u ∈ [Hr+1]n×n, ∀u ∈ I
⋂

[Hr+1]n;

inf
(qh∈Ph)

[‖ q− qh ‖0 +h ‖ q− qh ‖1] ≤ Chr+1 ‖ q ‖r+1 ∀q ∈ [Hr+1]n×n, ∀q ∈ P
⋂

[Hr+1]n;

inf
(τh∈Nh)

[‖ τ − τh ‖0 +h ‖ τ − τ ‖1] ≤ Chr+1 ‖ τ ‖r+1 ∀τ ∈ [Hr+1]d×n, ∀τ ∈ N
⋂

[Hr+1]n.

inf
(σh∈Yh)

[‖ σ− σh ‖0 +h ‖ σ− σh ‖1] ≤ Chr+1 ‖ σ ‖r+1 ∀σ ∈ [Hr+1]n×n, ∀σ ∈ Y
⋂

[Hr+1]n;

here, r is the order of approximation for spaces defined.

Theorem 3. Let us suppose the conditions of Theorem 2 holds. Assume that (Vh, ~v f
h, ph, Bh, ~M

h
B)

is the unique approximate solution which weakly converges to (V, ~v f , p, B, ~MB) (8)–(13). Suppose
that (V, ~v f , p, B, ~MB) is a non-singular solution of the given model, and then the sequence of solution

(Vh, ~v f
h, ph, Bh, ~M

h
B) converges strongly in [L2(ω)]n × [L2(ω)] × [L2(ω)]n×n × [H1(ω)] as

h→ 0. Thus the estimation results priori satisfies the following relation:

‖ V−Vh ‖0 + ‖ ~v f − ~v f
h ‖1 + ‖ p− ph ‖0 + ‖ B− Bh ‖0 + ‖ ~MB − ~M

h
B ‖1 ≤ Chr (78)

Proof. Suppose (Vh, ~v f
h, ph, Bh, ~M

h
B) is a solution sequence for a discrete scheme, which is

weakly convergent to a unique continuous solution (non-singular) (V, ~v f , p, B, ~MB) of its
lowest order Model (8)–(13) and belongs to [L2(ω)]n × [L2(ω)]× [L2(ω)]n×n × [H1(ω)] as
h→ 0.

Furthermore, we can represent ∇× as:

∇× (~v f × ~MB) =
(
(∇ · ~MB)~v f + (~MB · ∇)~v f

)
−
(
(∇ · ~v f )~MB + (~v f · ∇)~MB

)
= (~MB · ∇)~v f − (~v f · ∇)~MB.

Then, we note here



Inventions 2022, 7, 40 17 of 25

(a) − ν∇ · (V−Vh)T + (~v f · ∇)(~v f − ~v f
h) + ((~v f − ~v f

h) · ∇)~v f +∇(p− ph)

+ S (~MB ×∇× (~MB − ~M
h
B))

= −ν∇ · (V−Vh)T + (~v f · ∇)~v f − (~v f
h · ∇)~v f

h +∇(p− ph)

+ S (~MB ×∇× (~MB − ~M
h
B) + ((~v f − ~v f

h) · ∇)(~v f − ~v f
h), in ω;

(b) νm∇× (B− Bh)−∇× ((~v f − ~v f
h)× (~MB − ~M

h
B))

= νm∇× (B− Bh) + {(~MB · ∇)(~v f − ~v f
h) + (~MB − ~M

h
B) · ∇)~v f }

+ {(~v f · ∇)(~MB − ~M
h
B) + (~v f − ~v f

h) · ∇)~MB}

= νm∇× (B− Bh) + {(~MB · ∇)~MB − (~M
h
B · ∇)~v f

h + (~MB − ~M
h
B) · ∇)(~v f − ~v f

h)}

+ {(~v f · ∇)~v f − (~v f
h · ∇)~Mh

B + (~v f − ~v f
h) · ∇)(~MB − ~M

h
B)}+ ((~v f − ~v f

h) · ∇)(~v f − ~v f
h)

((~MB − ~M
h
B) · ∇)(~MB − ~M

h
B)

Equation (69) gives the inequality as

‖ V−Vh ‖0 + ‖ ~v f − ~v f
h ‖1 + ‖ p− ph ‖0 + ‖ B− Bh ‖0 + ‖ ~MB − ~M

h
B ‖1 (79)

≤ C{‖ −ν∇ · (V−Vh)T + (~v f · ∇)~v f − (~v f
h · ∇)~v f

h +∇(p− ph)

+ S~MB ×∇× (~MB − ~M
h
B) ‖2

0}+ ‖ V−Vh −∇(~v f − ~v f
h) ‖2

0 +γ2 ‖ ∇ · (~v f − ~v f
h) ‖2

L2(ω)

+ ‖ νm∇× (B− Bh)− {(~MB · ∇)~MB − (~M
h
B · ∇)~v f

h − (~MB − ~M
h
B) · ∇)(~v f − ~v f

h)}

− {(~v f · ∇)~v f − (~v f
h · ∇)~Mh

B − (~v f − ~v f
h) · ∇)(~MB − ~M

h
B)} ‖2

1

+ ‖ B− Bh −∇× (~MB − ~M
h
B) ‖2

0 +η2 ‖ ∇ · (~MB − ~M
h
B) ‖2

0 + ‖ (~v f − ~v f
h) · ∇)(~v f − ~v f

h) ‖2
H−1

+ ‖ (~MB − ~M
h
B) · ∇)(~v f − ~v f

h) ‖H−1 + ‖ (~v f − ~v f
h) · ∇)(~MB − ~M

h
B) ‖H−1 .

For the error estimations, we may bound right-hand terms of Equation (79) as

‖ (~v f − ~v f
h) · ∇)(~v f − ~v f

h) ‖2
H−1 + ‖ (~MB − ~M

h
B) · ∇)(~v f − ~v f

h) ‖H−1 (80)

+ ‖ (~v f − ~v f
h) · ∇)(~MB − ~M

h
B) ‖H−1

≤ C ‖ (~v f − ~v f
h) ‖2

L4 [‖ ∇(~v f − ~v f
h) +∇(~MB − ~M

h
B) ‖2

L2(ω)]+ ‖ (~MB − ~M
h
B) · ∇)(~v f − ~v f

h) ‖H−1 .

It follows from (8)–(13) and (16) we can get
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‖ −ν∇ · (V−Vh)T + (~v f · ∇)~v f − (~v f
h · ∇)~v f

h +∇(p− ph)

+ S~MB ×∇× (~MB − ~M
h
B) ‖2

0}+ ‖ V−∇~v f − (Vh −∇~v f
h) ‖2

0 + ‖ ∇ · (~v f − ~v f
h) ‖2

L2(ω)

+ ‖ νm∇× (B− Bh)− {(~MB · ∇)~MB − (~M
h
B · ∇)~v f

h − (~MB − ~M
h
B) · ∇)(~v f − ~v f

h)}

− {(~v f · ∇)~v f − (~v f
h · ∇)~Mh

B − (~v f − ~v f
h) · ∇)(~MB − ~M

h
B)} ‖2

1

= inf
(Wh ,~u f

h ,qh ,τh ,σh)∈(Wh× Xh×Ph×Yh×Nh)

[(
− ν∇ · (V−Vh)T + (~v f · ∇)~v f − (~v f

h · ∇)~v f
h

+∇(p− ph) + S~MB ×∇× (~MB − ~M
h
B),−ν∇ · (V−Wh)T + (~v f

h · ∇(~v f − ~u f
h))

+∇(p− qh) + S~MB ×∇× (~MB − σh))

)
+ (V−∇~v f − (Vh − ~v f

h),V−Wh −∇(~v f − ~u f
h))

+ (∇ · (~v f − ~v f
h),∇ · (~v f − ~u f

h)) +

(
νm∇× (B− Bh)− {(~MB · ∇)~MB − (~M

h
B · ∇)~v f

h

− (~MB − ~M
h
B) · ∇)(~v f − ~v f

h)} − {(~v f · ∇)~v f − (~v f
h · ∇)~Mh

B − (~v f − ~v f
h) · ∇)(~MB − ~M

h
B)}),

νm∇× (B− τh)− {(~MB · ∇)~MB − (~M
h
B · ∇)~v f

h − (~MB − σh) · ∇)(~v f − ~v f
h)}

− {(~v f · ∇)~v f − (~v f
h · ∇)~Mh

B − (~v f − ~u f
h) · ∇)(~MB − σh)}) + (∇ · (~MB − ~M

h
B),∇ · (~MB − σh))

)]
− ν∇ · (V−Vh)T + (~v f · ∇)~v f − (~v f

h · ∇)~v f
h +∇(p− ph)

+ S~MB ×∇× (~MB − ~M
h
B), ((~v f − ~v f

h) · ∇)~v f ) + (νm∇× (B− Bh)

− {(~MB · ∇)~MB − (~M
h
B · ∇)~v f

h − (~MB − ~M
h
B) · ∇)(~v f − ~v f

h)} − {(~v f · ∇)~v f

− (~v f
h · ∇)~Mh

B − (~v f − ~v f
h) · ∇)(~MB − ~M

h
B)), ((~v f − ~v f

h) · ∇)(~v f − ~v f
h) (81)

+
(
(~MB − ~M

h
B) · ∇

)
(~MB − ~M

h
B).

To bind the right-hand side final terms of Equation (81), we can define the alternative
equation as

−νηv + (~v f · ∇)v +∇q + S~MB ×∇× (σ) = ((~v f − ~v f
h) · ∇)~v f (82)

∇ · v = 0, in ω; (q, 1) = 0; (83)

νm∇× ∇× (σ)− (~MB · ∇)σ− (~v f · ∇)v = ((~v f − ~v f
h) · ∇)~v f + ((~MB − ~M

h
B) · ∇)~MB (84)

Hence this System (82)–(84) possesses one unique solution (v, q, σ) in [H2(ω)]d × H1(ω)×
H2(ω). Let us consider V = ∇v and τ = ∇× σ. Then by auxiliary (V, v, q, τ, σ) we have
the following relation:
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(
−ν∇ · (V−Vh)T + (~v f · ∇)~v f − (~v f

h · ∇)~v f
h +∇(p− ph) + S(~MB − ~M

h
B)×∇× ~MB, ((~v f − ~v f

h) · ∇)~v f

)
+
(

νm∇× (B− Bh)− (~MB · ∇)~MB − (~M
h
B · ∇)~v f

h − (~v f · ∇)~v f − (~v f
h · ∇)~Mh

B,

((~v f − ~v f
h) · ∇)~v f + ((~MB − ~M

h
B) · ∇)~MB

)
= inf

(Vh ,vh ,qh ,τh ,σh)∈(Wh× Xh×Ph×Yh×Nh)

[(
− ν∇ · (V−Vh)T + (~v f · ∇)~v f − (~v f

h · ∇)~v f
h +∇(p− ph)

+ S(~MB − ~M
h
B)×∇× ~MB,−ν∇ · (V−Vh)T + (~v f

h · ∇(v− vh)) +∇(p− qh) + S(σ− σh)×∇× ~MB)

)
+ (V−Vh −∇(~v f − ~v f

h), V−Vh −∇(v− vh)) + γ2(∇ · (~v f − ~v f
h),∇ · (v− vh))

(B− Bh +∇× (~MB − ~M
h
B), τ − τh +∇× (σ− σh)) + νm∇× (B− Bh)− (~MB · ∇)~MB − (~M

h
B · ∇)~v f

h

− (~v f · ∇)~v f − (~v f
h · ∇)~Mh

B, νm∇× (τ − τh)− (~M
h
B · ∇)(σ− σh)− (~v f − ~v f

h · ∇)(v− vh)

]
−
(

ν∇ · (V−Vh)T + (~v f · ∇)~v f − (~v f
h · ∇)~v f

h +∇(p− ph)

+ S(~MB − ~M
h
B)×∇× ~MB, ((~v f − ~v f

h) · ∇)v
)
+

(
νm∇× (τ − τh)− (~MB · ∇)~MB − (~M

h
B · ∇)~v f

h

− (~v f · ∇)~v f − (~v f
h · ∇)~Mh

B, ((~v f − ~v f
h) · ∇)v + ((~MB − ~M

h
B) · ∇)σ

)
≤
[
‖ −ν∇ · (V−Vh)T + (~v f · ∇)~v f − (~v f

h · ∇)~v f
h +∇(p− ph) + S(~MB − ~M

h
B)×∇× ~MB ‖2

0

+ ‖ V−Vh −∇(~v f − ~v f
h) ‖2

0 +γ2 ‖ ∇ · (~v f − ~v f
h) ‖2

0 + ‖ B− Bh +∇× (~MB − ~M
h
B) ‖2

0

+ νm ‖ ∇× (τ − τh)− (~MB · ∇)~MB − (~M
h
B · ∇)~v f

h − (~v f · ∇)~v f − (~v f
h · ∇)~Mh

B ‖2
0

]
+ C

{
h2r[ ‖ ~v f ‖2

Hr+1 + ‖ ~v f ‖2
Hr+1 + ‖ p ‖2

Hr+1 + ‖ ~MB ‖2
Hr+1

]}
+

{
h2s[ ‖ v ‖2

Hs+2 + ‖ q ‖2
Hs+1

]
+ ‖ ~v f − ~v f

h ‖2
L4 (‖ v ‖2

H2 + ‖ τ ‖2
H2)

}
(85)

By Substituting (75), (76), and (85) into (81), we get

‖ −ν∇ · (V−Vh)T + (~v f · ∇)~v f − (~v f
h · ∇)~v f

h +∇(p− ph) + S(~MB − ~M
h
B)×∇× (~MB) ‖2

0

+ ‖ V−∇~v f − (Vh −∇~v f
h) ‖2

0 + ‖ ∇ · (~v f − ~v f
h) ‖2

L2(ω)

+ ‖ νm∇× (B− Bh)− {(~MB · ∇)~MB − (~M
h
B · ∇)~v f

h − (~MB − ~M
h
B) · ∇)(~v f − ~v f

h)}

− (~v f · ∇)~v f − (~v f
h · ∇)~Mh

B − (~v f − ~v f
h) · ∇(~MB − ~M

h
B)} ‖2

1

≤ C
{

h2r[ ‖ ~v f ‖2
Hr+2 + ‖ p ‖2

Hr+1 + ‖ ~MB ‖2
Hr+2

]
}

+ (h2t+ ‖ ~v f − ~v f
h ‖2

L4)
[
‖ (~v f − ~v f

h) · ∇~v f ‖2
Hs + ‖ (~v f − ~v f

h) · ∇~MB ‖2
Ht

]}
. (86)

Having the Equations (80) and (86) into (79), and the assignment of t = 0 leads to the
following relation:
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‖ V−Vh ‖0 + ‖ ~v f − ~v f
h ‖1 + ‖ p− ph ‖0 + ‖ B− Bh ‖0 + ‖ ~MB − ~M

h
B ‖1

≤ C
{

hr[ ‖ ~v f ‖2
Hr+2 + ‖ p ‖2

Hr+1 + ‖ ~MB ‖2
Hr+2

]
+ (1+ ‖ ~v f − ~v f

h ‖2
L4) ‖ ~v f − ~v f

h ‖2
L4)
[
‖ ~v f ‖H2 + ‖ ~MB ‖H2

]}
(87)

where 1 > t > 0

‖ V−Vh ‖0 + ‖ ~v f − ~v f
h ‖1 + ‖ p− ph ‖0 + ‖ B− Bh ‖0 + ‖ ~MB − ~M

h
B ‖1

≤ C
{

hr[ ‖ ~v f ‖2
Hr+2 + ‖ p ‖2

Hr+1 + ‖ ~MB ‖2
Hr+2

]
+ (hs+ ‖ ~v f − ~v f

h ‖2
L4) ‖ ~v f − ~v f

h ‖2
H1)
[
‖ ~v f ‖H3 + ‖ ~MB ‖H3

]}
. (88)

Consequently, if ‖ ~v f − ~v f
h ‖L4 is a relation which converges to 0 as h→ 0, Equation (86)

leads us to

‖ V−Vh ‖0 + ‖ ~v f − ~v f
h ‖1 + ‖ p− ph ‖0 + ‖ B− Bh ‖0 + ‖ ~MB − ~M

h
B ‖1→ 0, as h→ 0. (89)

For t = 0, Equation (88) leads to (78) for interval 1 > t > 0. This is a complete proof of the
theorem.

Limitation and Future Work

This scheme can be applied in many problems, such as

• an error analysis of uasi-least squares finite element method of velocity-pressure-
magnetic field formulation for MHD problem [22,43];

• quasi-least-square method to solve the MHD with four unknowns, i.e., velocity of the
fluid, velocity of the magnetic field, pressure of the fluid and pressure for the magnetic
field;

• quasi-least square method for the Maxwell equations [44]; and
• quasi-least square method for the second order MHD model equations [45].

6. Numerical Examples

In this section, some numerical tests by using the public domain software Freefem++ [46]
are performed to confirm the correctness of the theoretical prediction. The well-known
Taylor–Hood elements (P2 − P2 − P1) are utilized in computational code under UMFPACK
solver to approximate the velocity, magnetic field, and pressure respectively.

Consider the following two-dimensional problem by setting domain ω = [0, 1]× [0, 1]
with a homogeneous Dirichlet boundary conditions on all the boundaries. This domain
has been discretized or meshed with 2592 linear triangular elements, 1390 vertices, and 144
boundary edges. The components of velocity ~v f and magnetic field ~BM that correspond
to (v1, v2) and (B1, B2) are supposed. The computational code has been tested for five
iterations by assuming physical parameters as Re = 1, Rm = 200, S = 1, ν = 1, iterative
tolerance ε = 1.0× e−6. The initial guesses for all variables are set to be zero. The initial
condition, Dirichlet boundary condition, and the source term f are posed in such a way
that it follows the exact solution [47] of the model.

v1 = x2(x− 1)2y(y− 1)(2y− 1);

v2 = −x(x− 1)(2x− 1)y2(y− 1)2;

P = (2x− 1)(2y− 1);

B1 = sin(πx)cos(πy);

B2 = −sin(πy)cos(πx).
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6.1. Example 1

This example is demonstrated to illustrate the convergence rate concerning the L2-error
norm with respect to first and second order errors. In Table 1, the approximate errors and
convergence rate of the hydrodynamic variable and magnetic field variables are displayed

and observed that || ~v f − ~v f
h ||L2 , || p− ph ||L2 ,|| ~MB− ~MB

h ||L2 converges to zero with the
varying spacing h = 1/4, 1/8, 1/16, 1/32, and1/64, for the well-known MINI elements
P1b − P1 − P1.

Mathematically, L2-error estimation between the exact solution v f and approximate
solution ~v f

h is designated as

|| ~v f − ~v f
h ||L2=

( ∫
ω
| v f − ~v f

h |2 dxdy
) 1

2 . (90)

In Table 2, the well-known Taylor–Hood elements (P2− P2− P1) with the varying spac-
ing h = 1/4, 1/9, 1/16, 1/25, and 1/36, are utilized in computational code to approximate
the velocity, magnetic field, and pressure respectively. Moreover, the computational code
for the convergence rate or convergence orderR is delivered by the following formulations:

E1 = ChR1

E2 = ChR2

E1

E2
= C

(
h1

h2

)R

log
(
E1

E2

)
= R log

(
h1

h2

)

R =
log
(E1
E2

)
log
( h1

h2

) .

Table 1. The error estimate for MHD with standard FE P1b − P2 − P1 pair.

h ||~v f − ~v f
h||L2 ||p− ph||L2 || ~MB− ~MB

h||L2

1/4 0.22122 0.20562 0.12221

1/8 0.10267 0.06430 0.04332

1/16 0.04883 0.02187 0.01579

1/32 0.02390 0.00724 0.00621

1/64 0.01185 0.00247 0.00253

R 3 3 3

Table 2. The error estimate for MHD with standard FE P2 − P2 − P1 pair.

h ||~v f − ~v f
h||L2 ||p− ph||L2 || ~MB− ~MB

h||L2

1/4 0.0418564 0.0486137 0.00786763

1/9 0.00350027 0.00956652 0.000672493

1/16 0.000608429 0.00302595 0.000119331

1/25 0.000159806 0.00123937 3.12644 × 10−5

1/36 5.70465 × 10−5 0.00059769 1.04688 × 10−5

R 3.002 2.999 3.00
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6.2. Example 2

In this example, the software figures are directly pasted to display the geometry: In
Figure 1, the domain with its mesh generation is exemplified. In Figure 2, we see flow
lines known as a velocity contour. Figure 3, encapsulates the pressure lines similarly,
and magnetic field lines are instantiated in Figure 4. All these figure are decorated to verify
for the proposed scheme.

Figure 1. Mesh configuration.

Figure 2. Fluid path or velocity contours.
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Figure 3. The pressure field lines.

Figure 4. The magnetic field lines.

7. Conclusions

A QLS mixed finite element method (MFE) based on L2-inner product is discussed
to solve a coupled and nonlinear incompressible magnetohydrodynamic (MHD) model.
The model equations are highly coupled and nonlinear. Some functional spaces were
not convenient to transform model equations into the weak formulation due to which
the stability issue occurs. Therefore the L2-inner product is utilized as a stabilization
technique to circumvent this deficiency. First, we utilized the Oseen-type technique for the
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conversion of nonlinearity into linearity. Secondly, a direct iteration technique is applied
to overcome the nonlinearities and obtained a theoretical convergence rate for the general
initial guesswork. Theoretical results show that only a single parameter with a single initial
guess is sufficient to establish the well-posedness of the solution.
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