
����������
�������

Citation: Amosov, A.G.; Golikov,

V.A.; Kapitonov, M.V.; Vasilyev, F.V.;

Rozhdestvensky, O.K. Engineering

and Analytical Method for

Estimating the Parametric Reliability

of Products by a Low Number of

Tests. Inventions 2022, 7, 24.

http://doi.org/10.3390/

inventions7010024

Academic Editor: Emin Bayraktar

Received: 6 December 2021

Accepted: 31 January 2022

Published: 7 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

inventions

Article

Engineering and Analytical Method for Estimating the
Parametric Reliability of Products by a Low Number of Tests
Alexey G. Amosov 1 , Vladislav A. Golikov 1, Mikhail V. Kapitonov 1, Fedor V. Vasilyev 2,*
and Oleg K. Rozhdestvensky 3

1 Department of Engineering Graphics, Moscow Aviation Institute, National Research University,
125993 Moscow, Russia; amosovag@mai.ru (A.G.A.); vagolikov@inbox.ru (V.A.G.);
mikhailkapitonov@gmail.com (M.V.K.)

2 Department of Digital Technologies and Information Systems, Moscow Aviation Institute,
National Research University, 125993 Moscow, Russia

3 Faculty of Teacher Education, Daugavpils University, LV-5401 Daugavpils, Latvia; olegrozhd@gmail.com
* Correspondence: fedor@niit.ru

Abstract: The paper provides an overview of methods for determining reliability indicators and, on
the basis of the analysis, proposes a new method for assessing the parametric reliability of products
based on a small number of tests. The determination of the parameters and double logistic distribution
based on the test results is considered, a statistical experiment was carried out, which was based on
the method of statistical modeling of Monte Carlo. An example of evaluating parametric reliability
by a new method is also given, on the basis of which an engineering technique is proposed. In the
conclusion, remarks are made regarding the advantages of the novel method.
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1. Introduction

The constant increase in the number of equipment in operation and the increase in
the cost of repair and maintenance work for its maintenance are forcing manufacturers
to increase the reliability of the most complex and expensive elements. A low level of
reliability leads to an increase in operating costs and downtime of faulty equipment. At the
same time, economic losses are the result of a decrease not only in the physical properties of
individual parts, but also a decrease in the efficiency of the functioning of the entire system
as a whole. There is a need to develop such methods for evaluating the effectiveness of
functioning, which would allow us to evaluate indicators of parametric reliability.

A number of processes in the system can lead to failures that are not associated with the
failure of individual parts, but with a deterioration in the characteristics of the equipment
and their going beyond the permissible limits. In this case, one speaks of the parametric
reliability of products. Parametric reliability of products is the main object of consideration
of theory and practice, since it determines the state of individual mechanisms and the
machine as a whole.

This work is based on the methodology developed by the authors for assessing the
parametric reliability and general models of the formation of a failure and loss of machine
performance, methods for calculating and predicting the parametric reliability of complex
products, the theory of calculating interfaces and mechanisms, methods for studying the
technological reliability of equipment, and theoretical foundations for operating machines.

The aim of the work is to obtain an engineering-analytical technique for assessing
parametric reliability, taking into account possible limiting factors. The practical significance
of the work can be expressed in its further application in calculating the probability of
failure-free operation when designing new complex technical systems, each iteration of
which is a step in the space of controlled parameters. The main characteristics of the
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estimation method should be the methods for determining the direction in which a step
is made in space and the moment when the search for characteristics ends, along with
the features of mathematical models of the objects being optimized and the formulation
of problems.

In the theory and practice of reliability, an important task is to determine reliability
indicators based on test results. This challenge is compounded by the high cost and
short lead times for product development, which do not allow for high volume testing.
Statistical methods developed for products produced in large series are not suitable in this
case [1]. In a number of works [2,3], to solve this problem, it is proposed to use methods
based on functional models of reliability. The main one is the parametric method, which
makes it possible to take into account the physical nature of the phenomena occurring
in the products. According to this method, the object is characterized by certain output
parameters Xi, i = 1, n. The totality of the values of these parameters determines the
performance of the object. The condition of failure-free operation is as follows:

X1l < X1 < X1u
X2l < X2 < X2u
. . . . . . . . . . . . . . . . . .
Xnl < Xn < Xnu

,

where X1l and X1u are, respectively, the lower and upper tolerances for the i parameter.
When at least one parameter goes out of tolerance, the object will fail. Consider the
performance of an object in one parameter X of continuous type. The reliability indicator is
taken as the probability of the facility’s trouble-free operation.

P = p(Xl < X < Xu) =
∫ Xu

Xl

f (x)dx = F(Xu)− F(Xl). (1)

To determine the value of the reliability indicator, based on the test results, it is required
to find the distribution law of the parameter X and its numerical characteristics. Application
without sufficient justification as a distribution law of normal, exponential and other typical
distributions often leads to large errors [2,3]. To improve the accuracy of assessing the
reliability indicator, it is advisable to apply laws that by following requirements should be:

1. “Flexible” and covered the area of existence of known typical distribution laws;
2. Possible to find effective, consistent and unbiased estimates of the parameters of the

law with a small number of tests;
3. Non-required for distribution function when using special functions or the compila-

tion of tables.

With this in mind, the task can be formulated as follows: develop a methodology for
assessing the product reliability indicator with a small number of tests, if the distribution
law of the determining parameter is unknown a priori.

To solve this problem, we need:

1. To choose the type of distribution law that meets the requirements;
2. To develop a method for calculating effective, unbiased and consistent estimates of

the parameters of the selected distribution law with a small number of tests.

When choosing a method, as a rule, two possibilities for obtaining the fastest infor-
mation compete—through accelerated tests or by supplementing conventional tests with
forecasting. When testing complex products for parametric reliability, in many cases, a
greater distortion of the results will be due to forcing the modes and operating conditions
of the machine than due to predicting the course of the process.

Thus, in the study of methods for improving the reliability of equipment, the tasks
associated with reliability testing and analysis of operational data are of particular impor-
tance, on the basis of which the choice of parametric methods is carried out, indicating
the best algorithms for processing the observed values, allowing to evaluate the unknown
parameters of the failure model or make a decision on compliance. These parameters by
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given technical conditions, and the random nature of the time of occurrence of failures, the
complexity of objects allows us to conclude that the mathematical apparatus of the theory
of reliability can be the theory of probability and mathematical statistics, as well as the
theory of queuing.

2. Procedure for Determining the Law of Distribution of the Definitive Parameter

To solve the formulated problem, we take the double logistic distribution described
in [4] as a distribution that satisfies the requirements. A double logistic distribution is a
distribution for which the integral function of a random value X has the next form:

F(x) =
{

1 + exp
[
− π√

3

(
j + (ln

(
x− a
b− x

))]}−1
, (2)

where a and b are the limits of variation of the random variable X;
η is a parameter characterizing the peakedness of the distribution, η > 0;
j is a parameter characterizing the asymmetry of the distribution, −∞ < j < ∞.

Parameters η and j depend on the limits of a and b, as well as on the mathematical
expectation and variance of the random value of X.

The double logistic distribution (DLD) has a number of advantages in comparison
with the known typical distributions:

1. Forms a family of distributions corresponding to the set of values of the parameters
η and j and covers the region of existence of a significant number of theoretical
distributions;

2. Contains only elementary functions and does not require the calculation of special
functions or the compilation of tables;

3. Allows you to find the inverse function, for example, to calculate quantiles;
4. Has finite limits of variation of a random variable, which better corresponds to the

values encountered in practice, which always have a limited range of possible values;
5. Do not require the calculation of moments higher than the second order; with a small

number of tests, high-order moments are determined with large errors [5];
6. In comparison with the “flexible” Pearson distributions (of different types and types),

DLD has a single form, which is convenient for practical use.

These advantages allow us to conclude that DLD is expedient to use to calculate the
reliability index of an object with a small number of tests, when the distribution law of the
determining parameter is a priori unknown.

2.1. Determination of the Parameters η and j of the Double Logistic Distribution from the
Test Results

Let N tests of the object be carried out. Let us denote xi as the value of the parameter
X in the i test. From the analysis of the results of tests or operation of similar objects
(prototypes), component parts, requirements for a given object and the results of its tests,
the boundaries of variation of the determining parameter a;b are identified. It is required to
determine the value of the parameters η and j according to the test data. This task can be
solved by the following methods.

1. Calculate the estimates of the mathematical expectation and variance of a random
variable X:

mx =
1
N

N

∑
i=1

xi, (3)

Dx =
1

N − 1

N

∑
N−1

(xi −mx)
2, (4)
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and then, using the known formulas for DLD [4], calculate the estimates of the
parameters:

η =

√
3

π

 1

sin
[

πDx
2(mx−a)(b−mx)

] + 1


1
2

, (5)

j =
√

3
π

{
(πη)2

3
+ 1

} 1
2

• ln
(

b−mx

mx − a

)
. (6)

The method based on the use of formulas (3) and (4) is usually called classical [1].
The estimates of the parameters η and j, calculated by this method, will be denoted
by η∗N and j∗N .

2. The estimates of the parameters η and j are calculated by the maximum likelihood
method. According to this method [6], the likelihood function is compiled:

l =
N

∑
i=1

ln f (x1, x2, . . . , xN , η, j). (7)

Differentiating function (7) with respect to the unknown parameters η and j, we
obtain the system of equations:

η =
N

π√
3

{
∑N

i=1 ln
(

xi−a
b−xi

)
− 2 ∑N

i=1
ln
(

xi−a
b−xi

)
exp
[
− π√

3

(
j+η ln

(
xi−a
b−xi

))]
+1

} ,

j =
√

3
π

ln

 2
N

N

∑
i=1

1

exp
(

πη√
3
• ln

(
xi−a
b−xi

))
− exp

(
− π j√

3

)
.

(8)

Solving this system, we obtain estimates of the unknown parameters, let us denote
them as η∗M and j∗M. To compare the efficiency of methods for calculating the parameters of
η and j of the selected distribution, a statistical experiment was carried out.

2.2. Statistical Experiment

The experiment was based on the method of statistical modeling (Monte Carlo
method) [7]. The essence of the experiment was as follows:

1. Using a random number generator, a sample of a given object N was generated;
2. Targeted processing of the sample was carried out;
3. The processing efficiency was determined by calculating the values of the correspond-

ing estimates.

Multiple repetition of these actions allows you to obtain a set of values of estimates,
which is used in the future to compare methods for efficiency.

As a purposeful processing of the sample, we considered the calculation of estimates
of the parameters η and j, the construction of a distribution function corresponding to these
estimates, and the calculation of the confidence zone for the distribution function.

The processing efficiency was assessed by the value of the variance of the estimates of
the parameters η and j, as well as the value of the confidence distribution function.

For the study, a double logistic distribution was chosen with the parameters:

η = 0.6; 1.15; 1.8; 2.5;

j = 0.0; 0.5; 1.0; 1.5; 2.0.

The combination of these parameters makes it possible to obtain a family of distribu-
tions covering the domain of existence of known typical distributions.
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As the boundaries of variation of the random variable X were taken a = 0, b = 1. This
approach made it possible to significantly shorten the experiment, since only two parame-
ters vary η and j, in addition, from a random variable with a distribution f (x, a, b, η, j), it is
easy to pass to a quantity whose distribution has parameters a = 0, b = 1. The opposite is
also true—the result obtained for a random variable with distribution f (x, 0, 1, η, j), can be
extended to a random variable with distribution with other parameters a and b [8].

The studies were carried out for the sample size N = 4, 6, 9, 11, 13, 18
The experiment involves the sequential execution of the following actions:

1. The sample size N is set;
2. Parameters η and j of the random number generator are set;
3. A random number generator generates a sample of size N:

(x1, x2, . . . , xN); (9)

4. The sample (9) is used to calculate the estimates η∗N and j∗N by the classical method;
5. The maximum likelihood method for the sample (9) calculates the estimates η∗M

and j∗M;
6. The values of statistics are calculated to determine the confidence zones of the distri-

bution functions corresponding to the estimates η∗N , j∗N and η∗M, j∗M;
7. Actions according to paragraphs 3–6 are repeated a sufficiently large number of L

times;
8. The mathematical expectations and variances of estimates η∗N , j∗N , η∗M, j∗M and statistics,

and also builds the laws of their distribution in the form of histograms are also
calculated;

9. Actions according to clauses 2–3 are repeated for all selected values of η and j;
10. Actions according to p. 1–9 are repeated for N = 4, 6, 9, 11, 13, 18. The results

of performing these actions allow us to compare the methods for calculating the
estimates of the parameters η and j in terms of efficiency and to develop a method for
calculating the estimates of the DLD parameters for a small number of tests.

3. Results of a Statistical Experiment
3.1. Estimates of the Parameters η and j of the Double Logistic Distribution

Consider the experimental results for the η parameter. Some values of the mathemati-
cal expectation M estimates of the parameter η for the sample size N = 6 are shown below
(Table 1).

Table 1. Mean values.

j 0 1

η 0.6 1.15 1.8 2.50 0.6 1.15 1.8 2.50

M
[
η∗M
]

1.036 1.519 2.364 3.452 1.036 1.519 2.364 3.452

M
[
η∗N
]

0.864 1.269 1.977 2.889 1.047 1.396 2.059 2.983

KηM 1.381 1.381 1.381 1.381 1.381 1.381 1.381 1.381

KηN 1.152 1.154 1.155 1.156 1.396 1.269 1.203 1.193

Kaη 0.294 0.294 0.294 0.294 0.294 0.294 0.294 0.294

Kbη 6.290 6.290 6.290 6.290 6.290 6.290 6.290 6.290

Analysis of the results presented shows that the methods used give a biased estimate
of the parameter η. However, the bias of the estimate η∗M depends only on the sample size
N and does not depend on the parameters of the distribution law. Therefore, it can be easily
eliminated by introducing a bias correction. The unbiased estimate (ub) of the parameter η
is equal to:
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η∗ub = η∗M/KηM, (10)

where KηM is the bias coefficient of the estimate η∗M, depending on the sample size N.
The bias of the estimate j∗N depends both on the sample size N, and on the parameters

of the distribution law. This circumstance does not allow obtaining an unbiased estimate of
the parameter η by the classical method.

In addition, it turned out that the minimum and maximum values of the estimate η∗M
for a given sample size N are proportional to the mathematical expectation of this estimate
and can be calculated by the formulas:

aηM = M[η∗ub] • Kaη , (11)

bηM = M[η∗ub] • Kbη . (12)

where aηM and bηM are the minimum and maximum values of the estimate η∗ub;
Kaη and Kbη are coefficients depending on the sample size N.

The efficiency of the estimates of the parameter η will be characterized by the value of
the variance. Table 2 shows some values of the variance of estimates of the parameter η for
the sample N = 6.

Table 2. Variance values of parameter estimates η.

j 0 1

η 0.6 1.15 1.8 2.50 0.6 1.15 1.8 2.50

D
[
η∗ub
]

0.159 0.342 0.829 1.767 0.159 0.342 0.829 1.767

D
[
η∗N
]

0.245 0.491 1.157 2.445 0.460 0.647 1.283 2.573

KbηM 0.532 0.532 0.532 0.532 0.532 0.532 0.532 0.532

KbηN 0.660 0.637 0.628 0.625 0.904 0.731 0.662 0.642

It is seen from Table 2 that in all the above cases, the estimate η∗ub is more effective than
the estimate η∗N , since it has less variance. The calculation results showed that the ratio
of the standard deviation of the estimate η∗ub to the mathematical expectation for a fixed
sample size N is a constant value:√

D
[
η∗ub
]

M
[
η∗ub
] = const = KbηM, (13)

D[η∗ub] =
(
KbηM •M[η∗ub]

)2. (14)

The results are shown in Tables 1 and 2 indicate the effectiveness of the estimate
obtained by the maximum likelihood method. For a complete characteristic, we will find
the distribution law of the estimate η∗ub. Since the number of realizations in the experiment
is large enough, i.e., value L = 1000 more, then it is advisable to use the histogram method.
In Figure 1, as an example, a histogram is shown for assessing η∗ub with a sample size N = 6
and the value of the parameters of the law under study η = 1.712 and j = 0.

Analysis of the obtained histograms showed that the distribution of the estimate η∗ub
with a sufficient degree of accuracy can be described by DLD with the parameters ηη∗ ,
jj∗ , aη∗ and bη∗ . Parameters ηη∗ and jη∗ are calculated by formulas (5) and (6) taking into
account (9), and the parameters aη∗ and bη∗ by formulas (11) and (12).
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Figure 1. Histogram for evaluation η∗ub.

Taking into account that the DLD density function is reversible, for a given confidence
probability β we can calculate interval estimates of the parameter η:

η∗ =
aη∗ + bj∗

(
1+β
1−β

)− √
3

πηη∗ exp
(
− jη∗

ηη∗

)
1 +

(
1+β
1−β

)− √
3

πηη∗ exp
(
− jη∗

ηη∗

) , (15)

η∗ =
aη∗ + bη∗

(
1−β
1+β

)− √
3

πηη∗ exp
(
− jη∗

ηη∗

)
1 +

(
1−β
1+β

)− √
3

πηη∗ exp
(
− jη∗

ηη∗

) , (16)

where η∗ and η∗ are the lower and upper bounds of the confidence interval of the esti-
mate η∗ub.

To calculate the boundaries of the confidence interval of the estimate η∗ub, calculated
from a small number of tests, the value of this estimate is substituted into formulas (11),
(12) and (14) instead of the mathematical expectation.

The values of the coefficients KηM, Kση , Kaη and Kbη , obtained experimentally, for all
studied N are given in Table 3.

Table 3. Experimental values of the coefficients KηM, Kση , Kaη and Kbη .

N 4 6 9 11 13 18

KηM 2.020 1.381 1.237 1.135 1.078 1.063

Kση 1.118 0.532 0.403 0.310 0.228 0.197

Kaη 0.155 0.294 0.386 0.496 0.543 0.575

Kbη 15.695 6.290 3.908 3.074 1.970 1.870
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Studies have shown that to calculate the coefficients KηM, Kση , Kaη and Kbη , for any
sample size N you can use the following formulas:

KηM =
Nakη + bkη

Nakη + ckη
, (17)

Kση = aσηexp
(
bση Ncση

)
, (18)

Kaη =
Naaη + baη

Naaη + caη
, (19)

Kbη =
Nabη + bbη

Nbbη + cbη

. (20)

The values ai, bi and ci are constants.
Let us consider the experimental results for the parameter j. Table 4 shows some

values of the mathematical expectation of estimates of the parameter j for a sample size of
N = 6.

Table 4. The effective values of the mathematical expectation of the parameter estimates j.

η 1.15 1.8

j 0 1.0 1.5 2.0 0 1.0 1.5 2.0

M
[
j∗M
]

−0.016 1.365 2.056 2.746 −0.016 1.365 2.056 2.746

M
[
j∗N
]

−0.016 1.287 2.151 2.914 −0.014 1.205 1.904 2.715

KjM 1.365 1.370 1.373 1.365 1.370 1.373

KjN 1.287 1.434 1.457 1.205 1.269 1.356

Analysis of the results obtained shows that both methods used give a biased estimate
of the parameter j. Moreover, as for the parameter η, the bias of the estimate j∗M depends
only on the sample size N and it can be taken into account by introducing a similar
correction. Unbiased estimate of the parameter j:

j∗ub = j∗M/KjM, (21)

where KjM is the estimate bias coefficient j∗M, depending on the sample size N.
The bias of the estimate j∗N depends on the parameters of the distribution law and it is

not possible to take it into account for this method.
The minimum aj∗ and maximum bj∗ estimates j∗ub can be calculated using the formulas:

aj∗ = aaj

[
(M[j∗ub])

2
]na

+ bajN + caj, (22)

aj∗ = aaj

[
(M[j∗ub])

2
]na

+ bajN + caj. (23)

The efficiency of estimates of the parameter j, as well as for the parameter η, will be
characterized by the value of the variance. Table 5 shows some values of the variance of
estimates of the parameter j for the sample size N = 6.

Table 5. Variance values of parameter estimates j.

η 1.10 1.712

j 0 1.0 1.5 2.0 0 1.0 1.5 2.0

D
[
j∗ub
]

0.209 0.543 0.928 1.460 0.209 0.543 0.928 1.460

D
[
j∗N
]

0.301 1.118 2.601 3.241 0.287 0.868 1.698 3.138
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Table 5 shows that in all the cases considered, the j∗ub estimate is more effective than
the j∗N estimate, since it has a lower variance.

The variance of the j∗ub estimate for any sample size is calculated by the formula:

D[j∗ub] = KDj((M[j∗ub]) + 0.671875), (24)

where KDj is a coefficient depending on the sample size N.
To fully characterize the estimate j∗ub we find the law of its distribution using the

histogram method. In Figure 2, as an example, a histogram is shown for evaluating j∗ub with
a sample size N = 6 and the values of the parameters of the law under study η = 1.712,
j = 0.

Figure 2. Histogram for evaluation j∗ub.

The analysis of the obtained histograms showed that the distribution of the j∗ub estimate
with a sufficient degree of accuracy can be described by DLD with the parameters nj∗ , jj∗ ,
aj∗ and bj∗ . Parameters nj∗ and jj∗ are calculated by formulas (5) and (6) taking into account
(21) and (24), and the parameters aj∗ and bj∗ by formulas (22) and (23). The numeric values
ai, bi and ci are constant.
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Using the obtained distribution law of the estimate j∗ub, for a given confidence proba-
bility β we can calculate the interval estimates:

j∗ =
aj∗ + bj∗ •

(
1+β
1−β

)− √
3

πηj∗ exp
(
− jj∗

nj∗

)
1 +

(
1+β
1−β

)− √
3

πηj∗ exp
(
− jj∗

nj∗

) , (25)

j∗ =
aj∗ + bj∗ •

(
1−β
1+β

)− √
3

πηj∗ exp
(
− jj∗

nj∗

)
1 +

(
1−β
1+β

)− √
3

πηj∗ exp
(
− jj∗

nj∗

) , (26)

where j∗ and j∗ are, respectively, the lower and upper bounds of the confidence interval of
the j∗ub estimate.

To calculate the boundaries of the confidence interval of the j∗ubestimate calculated
from a small number of tests, the value of this estimate is substituted into formulas (22)–(24)
instead of the mathematical expectation.

The values of the coefficients KjM and KDj, obtained experimentally, for all studied N,
are given in Table 6.

Table 6. Experimental values of the coefficients KjM and KDj.

N 4 6 9 11 13 18

KjM 1.933 1.365 1.216 1.125 1.071 1.062

KDj 0.801 0.320 0.184 0.120 0.072 0.057

Studies have shown that the following formulas can be used to calculate the coefficients
KjM and KDj for any sample size:

KjM =
NaKj + bKj

NaKj + cKj
, (27)

KDj = aDjexp
(
bDjN

cDj
)
. (28)

The numeric values ai, bi and ci are constant.
Thus, the analysis of the results of a statistical experiment for estimates η and j of the

selected distribution law allows us to draw the following conclusions:

• The maximum likelihood method allows you to calculate unbiased estimates of the
parameters η and j, with minimum variance; the effectiveness of estimates η∗ub and
j∗ub compared to estimates η∗N and j∗N , for example, with a sample size N = 6 and the
parameters of the law under study η = 1.712 and j = 0 are higher:

by parameter η by 1.157−0.829
0.829 = 40%;

by parameter j by 0.289−0.209
0.209 = 38%;

• It was established by statistical modeling that the estimates η∗ub and j∗ub follow a double
logistic distribution, therefore it is possible to calculate the exact confidence intervals
for these parameters;

• To calculate the point and interval estimates of the parameters η and j, it is not required
to draw up special tables.

3.2. Distribution Function Prediction

The parameters η∗ub and j∗ub calculated by the maximum likelihood method allow
finding an estimate of the distribution function of a random variable x F∗M(x). For practical
calculations with a small sample size, in addition, it is necessary to calculate the confidence
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zone of the distribution function. For this purpose, various well-known statistics can be
used, for example, x2, ω2 (Mises), the maximum absolute divergence of the distribution
functions DN. The selection of statistics is based on the following requirements:

• It should be independent of the parameters of the adopted distribution law and be
determined only by the sample size N;

• the value of the statistics should not depend on any additional parameters, for example,
on the number of intervals for dividing the domain of existence of the estimate;

• Allowed calculating the confidence bounds of the distribution function [9].

During the experiment, the three previously indicated statistics were investigated: x2,
ω2 and DN. Analysis of the results of the experiment showed that the listed requirements
are satisfied only by statistics calculated by the formula: DNM =

∣∣F∗M(x)− F(x)
∣∣.

Table 7, for example, shows some values of the mathematical expectation and variance
of the statistics DNM with a sample size of N = 6, as well as its largest value.

Table 7. Values of mathematical expectation and variance of statistics DNM.

j 0 1

η 0.6 1.15 1.8 0.6 1.15 1.8

M[DNM] 0.191 0.191 0.190 0.191 0.190 0.190

D[DNM] 0.0112 0.0112 0.0111 0.0112 0.0111 0.0111

bDNM 0.561 0.561 0.561 0.561 0.561 0.561

The above data confirm that the statistics DNM meet the requirements [10].
To fully characterize the statistics DNM let us find its distribution law using the

histogram method. In Figure 3 shows a histogram for statistics DNM with a sample size of
N = 6.

Figure 3. Histogram for statistics DNM.

Studies have shown that the distribution of statistics DNM with a sufficient degree
of accuracy can be described by DLD with the parameters ηDN , jDN , aDN = 0, bDN [11,12].
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The parameters ηDN and jDN are calculated by formulas (5) and (6). To calculate them, you
need to know M[DNM] and D[DNM]. Table 8 shows the values of M[DNM] and D[DNM]
depending on the sample size.

Table 8. Values of M[DNM] and D[DNM] depending on the sample size.

η 4 6 9 11 13 18

M[DNM] 0.254 0.190 0.164 0.137 0.112 0.097

D[DNM] 0.0148 0.0111 0.0075 0.0041 0.0041 0.0031

bDN 0.85 0.56 0.45 0.37 0.31 0.28

Calculations have established that M[DNM], D[DNM] and bDN for any sample size
can be calculated by the formulas:

M[DNM] = aMexp(bM NcM ), (29)

[DNM] = aDexp(bD NcD ), (30)

bDN = abexp(bbNcb). (31)

The values ai, bi and ci are constants.
Using the obtained distribution law of statistics DNM, interval estimates of the distri-

bution function for a given confidence probability β, are calculated by the formulas:

F∗M(x) = 0, i f DNMβ > FM ∗ x; FM ∗ x− DNMβ, i f DNMβ < FM ∗ x; (32)

F∗M(x) = FM ∗ x + DNMβ, i f FM ∗ x < 1− DNMβ; 1, i f FM ∗ x + DNMβ > 1. (33)

where the value of the statistic DNM(β) defined as follows:

DNM(β) =
bDN

(
1−β

β

)− √
3

πηDN exp
(
− jDN

ηDN

)
1 +

(
1−β

β

)− √
3

πηDN exp
(
− jDN

ηDN

) . (34)

The effectiveness of the proposed method for predicting the distribution law of a
random variable x will be estimated by the width of the confidence zone for the distribu-
tion function. Table 9 shows the values of the statistics DNM(β) for different confidence
probabilities β and sample sizes.

The first lines of this table give the values DNM(β), calculated by (34), the second
lines—borrowed from [13] and corresponding to the classical method of estimating the
distribution law.

For comparison, let us calculate the required test volume Nk, which ensures the
accuracy DNk(0.8) = 0.283. The same accuracy was obtained by the proposed method for a
sample of N = 6. To do this, we compose the equation:

DN(β)
√

N = DNk(β)
√

Nk
, (35)

solving which, we get:

Nk = N

[
DNβ

DNk(β)

]2

= 5
[

0.447
0.283

]2
≈ 11. (36)
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Table 9. Statistics values DNM(β).

N
β

Line Number
0.99 0.98 0.95 0.90 0.80

4
0.626 0.573 0.493 0.426 0.354 1

0.829 0.785 0.708 0.636 0.565 2

6
0.484 0.454 0.400 0.347 0.283 1

0.669 0.627 0.563 0.509 0.447 2

9
0.397 0.374 0.334 0.293 0.243 1

0.576 0.538 0.483 0.436 0.381 2

11
0.334 0.317 0.284 0.250 0.206 1

0.489 0.457 0.409 0.369 0.323 2

13
0.280 0.266 0.238 0.209 0.171 1

0.404 0.377 0.338 0.304 0.266 2

18
0.249 0.234 0.208 0.181 0.148 1

0.352 0.329 0.294 0.265 0.232 2

3.3. The Resulting Engineering and Analytical Methodology for Assessing the Parametric
Reliability of Products by a Small Number of Tests

In the process of developing a new product N tests were carried out. In each i test,
the value of the output parameter x, was measured, let us denote it by xi. It is required to
determine the likelihood of failure-free operation of the facility.

It is proposed to solve the problem in the following sequence.

1. Analyze products and requirements for them, test results and operation of analogs
(prototypes), component parts, physical and mechanical properties of structural
materials in order to establish the boundaries of variation of the parameter x(a; b);

2. Solve the system of Equation (6) and calculate the unbiased estimates η∗ub and j∗ub DLD
using formulas (10) and (21). Calculate interval estimates for the parameters η and j,
using formulas (15), (16), (25) and (26);

3. Calculate the distribution function F∗M(x) at n points of the interval (a; b) and build
its graph. It is recommended to take n = 10 + 30 depending on the required accuracy
of plotting for the analysis of the calculation results;

4. Determine the boundaries of the confidence interval of the distribution function
by formulas (32) and (33) at n points of the interval (a; b) and plot them on the
same graph;

5. Calculate a point estimate of the probability of no-failure operation of the facility (1)
based on the test results:

P =
1

1 + exp
[
− π√

3

(
j∗ub + η∗ub ln

(
xb−a
b−xb

))] − 1

1 + exp
[
− π√

3

(
j∗ub + η∗ub ln

(
xM−a
b−xM

))] ;

6. Find interval estimates of the probability of no-failure operation:

P = 0, i f P− DNM(β) ≤ 0; P− DNM(β), i f P− DNM(β) > 0;

P = 1, i f P + DNM(β) ≥ 1; P + DNM(β), i f P + DNM(β) < 1;

7. Analyze the results obtained and compare them with the required values. If necessary,
develop measures to improve reliability. Repeat the assessment of the reliability
indicator again.
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4. Discussion

Modern methods for calculating and evaluating parametric reliability do not always
give accurate values of the determined quantities. They describe only full and clear
links between parameters. Empirical coefficients and characteristics are widely used in
engineering calculations. Consider an example of modeling the aging process of power
equipment insulation [14]. The calculation in this article is based on fundamental physical
laws and empirical patterns obtained for a narrow range of reliability parameters. The
normal distribution hypothesis of the output parameter is often used to determine the
probability of the absence of a parametric failure. As can be seen from the study [14], in
order to more accurately determine the probability of the absence of a parametric failure
in this way, there is a need to increase the number of realizations. It can also be seen that
the technique applies only to the output parameter, which is scattered by 10% or more.
However, in this work, it is necessary to increase the accuracy of the output parameter
because the initial selection does not provide the required accuracy.

In [15], the results are presented in the form of models that refine the technical infor-
mation available in the reference and scientific literature in processing techniques. The
information contains specific reliability parameters that apply to the technological system.
The evaluation of parametric reliability is carried out in a narrow area of factor analysis
and depends on the conditions of a particular production. And for this very reason, the
adequacy of the models obtained after diagnostics is higher than the adequacy of the
models obtained in idealized laboratory conditions.

In [16], various destabilizing factors influence on elements of a twisted-pair cable
during operation. The simultaneous influence of complex actions leads to changes in
the semiconductor materials properties and their reliability parameters. The change in
parameters can occur both abruptly and gradually. In view of the foregoing, reliability in
operation is estimated by the probability of fail-free operation of all the systems [17]. There
are also sudden failures models based on the study of statistical and probabilistic patterns
of behavior of similar elements set. At the same time, the authors divide the possible states
of elements mainly into two types of states (serviceability and malfunction), described
by reliability indicators. However, the study revealed limited application of bootstrap
methods with and without restoration, as well as assessment method of restored systems
and experimental data processing method and so forth due to the lack of connection
between the determined indicators of reliability, the physical characteristics of the materials
of the equipment elements and the factors affecting them. In this regard, boundary, matrix,
and dynamic test methods are used to assess the reliability indicators of the “twisted
pair” cable.

According to operational data of twisted pair cable obtained in [18] the probability
begins to decrease sharply with decreasing shape factor. Thus, the Weibull distribution
describes in detail the behavior of the probability of failure-free operation function depend-
ing on time and data rate fall. This fact indicates that when calculating the reliability of
elements and sudden failures, it is also necessary to consider the parametric reliability.

All these works have one drawback. They do not have a procedure for conducting an
engineering analysis of the parametric reliability assessment, which is given in our study.

Of course, the developed method may have some limitations, but to confirm its
efficiency, we propose to consider an example:

Some product has been tested N = 5 times. No modifications were made between
tests. The tests were carried out under the same conditions. Known initial data are shown
in the Table 10.
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Table 10. Values of M[DNM] and D[DNM] depending on the sample size.

P = 0.985; P3 = 0.630; P3 = 0.999;

x1 = 0.2997; x2 = 0.5176; x3 = 0.5195;

x4 = 0.5002; x5 = 0.7715;

xH = 0.0; x6 = 0.8.

β = 0.8.

We get the results of the calculation.

1. From the analysis of the structure of the object and tests of the prototype, the bound-
aries of the parameter x change, we establish: a = 0; b = 1.0.

2. By solving the system of Equation (13), we obtain biased estimates of the parameters
of the distribution law:

η∗M = 1.702; j∗M = 1.118.

The unbiased estimates will be:

η∗ub = 1.702/1.381 = 1.232,

j∗ub = 1.118/1.360 = 0.822,

η∗ = 0.645, η∗ = 2.257,

j∗ = −0.047, j∗ = 2.150.

3. The values of the distribution function calculated at n=10 points are summarized in
Table 11.

Table 11. Distribution function values.

1 2 3 4 5 6 7 8 9 10

βi 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P∗M(βi) 0.032 0.167 0.401 0.642 0.816 0.917 0.967 0.990 0.998 1.000

P∗M(βi) 0.315 0.450 0.684 0.925 1.000 1.000 1.000 1.000 1.000 1.000

P∗M(βi) 0.000 0.000 0.118 0.359 0.533 0.634 0.684 0.707 0.715 0.717

4. Point estimate of the probability of no-failure operation:

P = 0.990− 0.0 = 0.990.

5. We calculate interval estimates of the probability of no-failure operation at β = 0.8 :

P = 0.990− 0.283 = 0.707,

P = 0.990 + 0.283 = 1.

These values are valid due to fulfilling the conditions described in Section 3.3:

P = 0, i f P− DNM(β) ≤ 0; P− DNM(β), i f P− DNM(β) > 0;

P = 1, i f P + DNM(β) ≥ 1; P + DNM(β), i f P + DNM(β) < 1.

Let us determine the number of samples by reverse recalculation for the classical
scheme according to Equation (36):
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Nk = N

[
DNβ

DNk(β)

]2

= 10
[

0.447
0.283

]2
≈ 25.

By the classical method, the sample size N should be more than doubled to achieve
accuracy.

The fulfillment of the conditions confirms that the achieved level of reliability meets
the requirements. Therefore, further refinement of the product is not required. That proves
the efficiency of the engineering and analytical methodology.

5. Conclusions

Statistical information on failures would be useful for a reasonable choice of the
theoretical distribution of time between failures. Furthermore, the selected theoretical
distribution of operating time between failures must correspond to a specific model of
product approach to failure.

Analysis of the statistical experiment results allows us to conclude that the distribution
laws of the parameters estimate η and j are calculated by the maximum likelihood method.
Therefore, they can only be determined by the sample size and when they are independent
of each other.

From the data given in Section 3.2, it can be seen that the prediction of the distribution
function by the proposed method allows one to obtain a more accurate result than the
classical method of mathematical statistics.

The analysis of the statistical experiment results proves the new method’s effectiveness
for predicting the distribution law of the determining parameter. An engineering technique
was created based on this method.

The obtained methodical approach can be used for testing products on parametric
reliability and for studying the distribution law of the output parameter under known
operation laws. Due to the impossibility of accurately predicting a failure as a random
event in time and place of occurrence, it follows that it is impossible to prevent failures
completely. However, steps can be taken to reduce their frequency.

The application of the methodological approach also confirms the previous studies,
calculation of reliability indicators according to the model can be carried out by the method
of statistical modeling, but it is necessary to consider the uniform distribution law of factors
over randomly chosen confidential intervals [19].

The authors’ experience in the operation of complex technical systems shows that the
operational reliability is almost always lower than the level obtained from the calculation
results. The inaccuracy is explained by the production technology’s imperfection and the
low reliability of reference information.
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