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Abstract: The article defines digital methods for controlling the quality of chemical processes. An
architecture of a digital production line, which ensures the distribution of the computational load
between the system components, is proposed. We considered the process of developing a prototype
of a digital production site for servicing the etching operation during which controllable process
parameters are determined; both hardware and software structures of the digital site are proposed.
Studying the site operability, we determined the relationships between the process parameters, which
made it possible to determine the boundaries of the designed system.

Keywords: chemical manufacturing processes; printed circuit boards; process control; control meth-
ods; digital manufacturing; Industry 4.0

1. Introduction

Currently, most of the operations in the technological processes in the production of
printed circuit boards (PCB) are chemical, which increases their impact on the reliability
of the manufactured product [1]. The control of these operations is difficult due to many
parameters, the analysis of which can only be performed under laboratory conditions.
According to a previously drawn up schedule, maintenance of such processes mainly
adheres to a preventive approach, consisting of timely replacement of chemical solutions.
This approach has several disadvantages:

1. The probability of emergencies remains, requiring an urgent response of a large
number of people—from the chief technologist to a team of repairmen;

2. The equipment’s work history is not collected, and it is not analyzed;
3. Possible incomplete use of materials, which entails increased costs for materials and

their disposal.

Additionally, in some cases, it is simply impossible to carry out preventive mainte-
nance of technological processes, for example, in enterprises whose task is to design and
develop electronic devices. Preventive maintenance is not effective in this case because the
production capacity of such enterprises is aimed at making prototypes in small quantities,
and the production line does not work in streaming mode. In this case, preventive mainte-
nance of the system takes up working time, which may not pay off due to the absence of
the need for the production of printed circuit boards at this point.

The introduction of modern digital technologies can change the current situation
and provide control methods directly built into the technological process. Therefore, it
will allow more efficient management of the process and improve its quality, affecting
the manufactured product’s price and reliability. Among the most promising digital
technologies for the digitalization of chemical processes, machine learning, internet of
things (IoT), and big data should be noted [2].

The conversation about automation and digitalization of chemical processes in PCB
production is a conversation about the parameters of these processes [3]. If these parameters
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are monitored and controlled, the digitalization problem becomes solvable and comes
down to identifying the best methods for monitoring and controlling the parameters of the
process. The primary goal of this article is to try to combine the fundamental technologies
of chemical processes to manufacture PCB with digital production. To achieve this goal:

1. Considered modern digital methods of control of chemical processes;
2. Based on the considered methods, a digital section was designed and manufactured

to serve the chemical etching process of printed circuit boards;
3. An analysis of the site’s performance was carried out based on several experiments,

during which some dependencies between the parameters of the etching process
were revealed.

2. Methods

Digital technologies can simplify many tasks in various production processes [4,5].
For example, they make it possible to optimize and control the parameters of metallization
of PCB at the stage of designing a plating bath, preparing an electrolyte solution, and in the
process itself, for example, using computer modeling methods. The state of the solutions
and other metallization parameters, in turn, can be controlled by applying the prognosis
and health management (PHM) paradigm. The existing methods and their application in
the management and control of the electrochemical process are described below.

2.1. Copper Electrodeposition Modeling

Modeling and simulation are relatively cheap methods of research, optimization,
and control of the electrodeposition process [6]. The simulation shows the distribution of
current over the electrodes’ surface and the thickness and characteristics of the deposited
metal layer. In addition, it can estimate the influence of parameters on which metallization
quality depends and find optimal values before assembling the baths and preparing the
electrolyte. These parameters include the geometry of the bath, composition of the solution,
diffusion reactions on the electrodes, values of current and voltage, and temperature. With
information about these parameters, it is possible to optimize the operating conditions
of the electroplating baths, the placement and design of the masks, and ensure the high
quality of precipitation with the minimum consumption of materials and energy.

So, for example, the process of electroplating copper in microvias of PCB can be easily
simulated using modern computer-aided design tools in a problem using deformable model
geometry. With modelling it is possible to analyze the growth of the cathode boundary (the
boundary of the deposited metal). The process is inherently time-dependent as the cathode
boundary moves as the deposition process takes place. The model is determined by the
material balance of the active ions (copper, Cu2+, and sulfate, SO4

2−) and the condition
of electroneutrality.

The dependent variables were the concentration of copper ions, the concentration
of sulfate ions, and ionic potentials. Additional variables tracked the deformation of the
simulation mesh. The simulation results are shown in Figure 1, where we can observe the
change in the problem geometry and the change in the mesh and simulation results.
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Figure 1. Results of modeling copper electrodeposition process in microjunction of PCB. There is a
change in the model’s geometry and in the picture of the field strength. The picture of the current
density is shown in color. The variation of the simulation grid is shown below in the pictures of the
current distribution. Figure show the changing of modeling geometry during process, (a) beginning,
(b) 4.5 s after beginning, (c) 9 s after beginning.

An additional solution to increase the uniformity of the deposited copper is related
to the design of the electroplating bath. Current squeezing can be reduced by adding a
dielectric screen with holes inside the bath structure, located between the anode and the
metalized part. It is known that to reduce the effect of current compression, the dimensions
of the holes should be smaller than the dimensions of the metalized part. However, apart
from this rule, there are no recommendations for the location and optimal dimensions of
the aperture.

This problem can also be solved through simulation. Figure 2 shows the results of
modeling of the influence of the aperture of various configurations on the uniformity of
the distributed electric field in the galvanic bath. Thus, optimization problems in PCB
production can be solved even at the design stage, using computer simulation tools.

Figure 2. Distribution pattern of electric force fields in a galvanic bath with an aperture of various
configurations. The colors of the lines are showing the level of field strength. The shape of the lines is
illustrating the distribution of field in a galvanic bath.
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Moreover, some computer-aided design systems contain tools for conveniently creat-
ing independent applications to meet the needs of a particular production. Thus, complex
modeling aspects can be eliminated after the application’s design, and the end user will
only have to set specific parameters and start the simulation with one click. Figure 3
shows an example of an application that visualizes the predicted copper thickness of a
projected PCB.

Figure 3. Example of an application that implements the visualization of the predicted thickness of the copper coating of
the designed PCB.

Thus, we can say for sure that the use of computer simulation of copper electrode-
position processes is a serious design tool in the production of printed circuit boards.
Furthermore, optimization of the parameters of the designed parts can facilitate further
control of the metallization process and avoid design errors, as well as coating defects at
the very early stages.

2.2. Copper Electrodeposition Modeling

Finally, digitalization of PCB production is impossible without the control and man-
agement of chemical production processes. The stage of electroplating copper deposition
stands out among the rest in terms of the time spent in the stage and the complexity of
optimizing the process to obtain parts without defects.

Although the technology of electroplating copper coatings is now widely studied, the
primary research aims to obtain the optimal initial electrolyte composition and process
parameters that guarantee the best properties of the deposited copper. Nevertheless,
recently, attempts have been made to better understand the essence of the loss of properties
of an electrolyte solution. Models of solution aging are investigated because the quality
of the deposited coating depends on it [7]. To create a model of aging of a copper plating
electrolyte solution, it is necessary to constantly monitor the galvanic coating application
to detect deviations in its parameters, determine their causes, and predict a change in
the quality of a solution and make appropriate decisions. Model of solution aging can be
defined by implementing prognostic and health management (PHM) approaches. PHM
aims to develop tools, methods, and algorithms to provide system health monitoring, fault
detection, fault diagnosis, fault prediction, and decision support.

PHM methods can be divided into three main approaches: model-driven, data-driven,
and hybrid. The model-based approach requires a thorough physical understanding of
the system (or process) to obtain analytical models that accurately describe its dynamic
behavior. The data-driven approach uses monitoring data provided by sensors to extract
relevant functions and build health indicators, which are then used to track the system’s
health status and predict the expected life of the chemical solution. Finally, the hybrid
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approach combines the two previous approaches, combining their advantages. However,
the model-driven approach gives more accurate results than the data-driven approach.

Recently, PHM-based models have already found application in the study of chemical
processes in the production of printed circuit boards [8]. The method described in this
work for creating a model of the aging of a solution based on the correlation data of the
parameter that determines the aging of the solution (the concentration of copper in the
solution) and another parameter, for example, the potential between the anode and the
cathode. While the concentration of copper in the solution is measured with great difficulty,
the potential is easily measurable, and as it also depends on the concentration of copper in
the solution, a correlation can be found between these two parameters. Thus, it is possible
to calculate the concentration of copper in the solution and control its aging by an easily
traceable parameter. Figure 4 shows the influence of the investigated parameter (aging
factor or copper concentration in the solution, respectively) on the monitored parameter
(potential between the electrodes) [8].

Figure 4. Comparison of the monitored parameter and the investigated parameter [8], (a) change of
potential between the electrodes (monitored parameter) in time, (b) change of copper concentration
in the solution (aging factor) in time.

The resulting dependence is used to construct an exponential regression, and the
coefficients were calculated so that the model most closely matched the obtained data. Once
such a model was obtained, the characteristic of the remaining electrolyte life was calculated.
Finally, coefficients of the dependence were defined using the MATLAB matching function
(Figure 5). The correspondence of the model built using this method to sensor data is
shown in Figure 6 [8]. The figure illustrates how a mathematical model is formed from the
obtained raw data, which can be used to control the aging of a solution.

Figure 5. Estimation of the remaining mortar life using a controlled parameter.
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Figure 6. Comparison of experimental data with the model (R2 is the coefficient of determination): (a) raw data; (b) data
after processing; (c) primary exponential approximation; (d) double exponential approximation.

Nevertheless, not only the concentration of copper in the solution can be monitored in
this way. Other parameters of metallization: current, temperature, coating thickness can
also be predicted compared with another parameter that can be measured and controlled.
This method can be used in the digitalization of galvanic deposition of copper coatings
to control the automatic control of the process and to timely respond to the aging of the
electrolyte solution

Thus, applying the above methods and approaches in the chemical processes of PCB
production can significantly increase the quality of products and reduce the number of
defects at their stages. However, all the listed methods are currently not included in the
production process. The following is an attempt to use the described approaches to create
a digital production site.

3. Results

Based on the presented analysis, we chose the PHM approach to create the digital
production site. We made this choice because PHM makes it possible to analyze the state of
the process in real-time, obtain information about the process, and select the best operating
mode for the equipment.

To study the possibility of creating a digital production site, we will focus on the
etching operation in the future as fewer parameters affect the process. Unfortunately,
a direct relationship that uniquely relates the etching time to the technological process
parameters has not yet been determined. Therefore, an analysis of etching process described
in [9] we carried out, during which the parameters affecting the etching time were identified
(Figure 7).
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Figure 7. Process parameters that affect the etching time.

We defined three groups of parameters that determine the etching time defined:

1. Parameters of the etching solution, which are mostly determined by its composition
and volume;

2. Technological parameters [10], such as the workpiece orientation in the etching bath,
temperature of the solution, ambient temperature, method of transferring the solution
to the workpiece, mixing profile of the solution;

3. Workpiece parameters, such as layout complexity and the quantity of copper to be
etched, i.e., the thickness of the copper foil and the area of the copper to be etched.

As some parameters are difficult to control, for example, the composition of the
solution, some features can be used to determine the primary parameters. Therefore,
the following features were selected to control the etching process: quantity of copper
in solution, acidity, color, and lifetime of the solution, i.e., the elapsed time since the
preparation of the solution.

3.1. The Architecture of the Production Site as an Element of Digital Production

As a starting point for further development, the following architecture of the digital
site as an element of digital production was designed (Figure 8) based on a hierarchi-
cal principle.
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Figure 8. The architecture of the digital production site.

Interaction with the surrounding world is carried out by sensors and actuators man-
aged by a low-level controller. Its tasks are: processing data from sensors, transmitting
effects to actuators, forming and sending packets, and monitoring the state of sensors and
the actuator.

The low-level controllers transmit the generated packets to the middle-level controller.
Its purpose is to manage and control one technological stage. It has the following functions:
storing information about the technological stage, managing the stage, controlling and
supervision of its state, and forming data packets for the high-level controller.

The high-level controller performs complete process management, storage of process
data, exchange of information (for example, data for calculating the cost of production, the
number of products manufactured, and the number of materials consumed) with enterprise
management systems, such as the manufacturing execution system (MES).

The proposed architecture is similar to dividing responsibilities into edge, fog, and
cloud computing [11]. A critical event can be processed already on the low-level controllers
with minimal delays as there is no need to forward data to a higher level to make a
decision. Each lower-level element offloads the higher-level system, thereby reducing the
requirements for the latter. Moreover, this architecture perfectly fits the range of hardware
needed to build the system. Microcontrollers and programmable logic controllers are
supposed to be used as low-level controllers. Single-board and industrial computers are
supposed to be used as middle-level controllers, and server computers are supposed to be
used for high-level controllers.

3.2. Hardware Structure of the Digital Production Site

Based on the proposed architecture (Figure 8), the following hardware structure of the
digital production site was developed (Figure 9).
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Figure 9. Block diagram of the digital production site.

The digital site consisted of:

1. A single-board Raspberry Pi 4 computer (with 1 GB RAM) as a middle-level controller;
2. System-on-a-chip microcontrollers ESP32 as low-level controllers for processing infor-

mation from sensors and cameras;
3. DS18B20 temperature sensors that recorded the temperature inside and outside

the bath;
4. Acidity sensor;
5. TDS-sensor, which determined the number of solid particles in the solution and could

presumably be used to obtain information about the copper quantity in the solution;
6. Color sensor based on the circuit AMS TCS34725;
7. A power distribution system that contained two power supplies with an output

voltage of 5 V, a step-up converter from 5 V to 12 V, and a step-down converter from
5 V to 3.3 V;

8. Two OV2640 cameras with LED to provide visual control of the etching process;
9. Bath backlight to provide stable illumination of the solution regardless of external

conditions.

We also defined some limitations: the immersion method was used to transfer the
solution; there was no mixing of the solution. Thus, the steadiness of these parameters
eliminated their influence on the etching time during experiments. Otherwise, their control
would be difficult due to the large number of influencing factors, for example, the pressure
of the etching solution flow when using the jet method of transferring or the volume of air
passed through the solution during air mixing.

In accordance with the hardware structure (Figure 9), a device was developed that
includes two PCBs. On the first PCB, the ESP32 controller and parts of the power dis-
tribution system were mounted. On the second PCB, the connectors and modules for
processing information from sensors were placed. In addition, 3D models of the bath base,
controller housing, and camera holders were also developed and printed on a 3D printer
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with the fused deposition modeling (FDM) technology. The appearance of the system and
the location of the modules are shown in Figures 10 and 11, respectively.

Figure 10. Photo of the developed system.

Figure 11. Module location in the developed system.

3.3. Software Structure of the Digital Production Site

The software structure of the digital production site (Figure 12) was also developed
to ensure the correct functioning of the system. The main component of the system was a
middle-level controller, on which the Raspbian operating system was installed, in which
Docker containers with the necessary services were deployed:

1. Mosquitto—service for providing data exchange between a low-level controller and
the sensors by Message queuing telemetry transport (MQTT) protocol;

2. Node-Red—visual programming system implementing interaction with databases,
user interface (Node-Red UI), and the logical part of the middle-level controller;

3. InfluxDB—a time-series database management system designed to store data from sen-
sors;

4. Postgres—relational database management system used to store service information
about the site;

5. Grafana—web application for site information analysis, process status monitoring,
and identification of primary dependencies between process parameters.
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Figure 12. The software structure of the digital production site.

User interaction was mainly carried out through the web interface Node-Red UI
(Figure 13), which implemented the following functions:

1. Display current process data: values from sensors, camera images, and information
about the solution;

2. Control of the etching process, including bath maintenance;
3. Inspection after the etching stage;
4. Loading information about the printed circuit board being manufactured;
5. Control of additional parameters: the brightness of the bath and camera lights, the

time interval between automatic updates of information from the cameras.

Figure 13. Cont.
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Figure 13. The user interface of the digital production site in Node-Red UI. (a) Window for displaying data from the digital
site; (b) window with settings of the digital site.

The Grafana service was deployed to provide the ability to monitor the process status.
This service display of process data was configured (Figure 14).

Figure 14. Grafana etching process monitoring window.

The developed software structure is thus the necessary minimum to ensure the opera-
tion of the digital section and implements both interactions with sensors and interaction
with the user. It is also worth noting that the service architecture of the middle-level
controller and the use of Docker as a deployment automation tool significantly speeded up
the process of installing the system on another server.

4. Analysis

Several experiments were carried out to investigate the site’s operability and assess
the possibility of applying the PHM approach:
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1. An experiment to determine the mutual influence of physical quantities in the process;
2. An experiment to determine the aging of the solution;
3. An experiment to determine the copper mass concentration of the solution.

In all further experiments, a solution was used that included 1.5 L of distilled water,
150 mL of ammonium persulfate, and 35 mL of salt.

4.1. Investigation of the Mutual Influence of Physical Quantities in the Process

The objective of determining the mutual influence of physical quantities was to assess
the possibility of joint use of the selected set of sensors to control the process. During the
experiment, a pair of sensors from those intended for immersion (a temperature sensor
inside the bath, an acidity sensor, and a salt concentration sensor) was immersed for 30 min
in a freshly prepared solution, and then the results were analyzed. The results of this
experiment are in Figure 15.

Figure 15. Sensor readings in the monitoring system.

The particle concentration sensor had a clearly defined temperature dependence
(Figures 15 and 16a), which must be compensated for when taking measurements. We
increased the experiment duration to 24 h to obtain a more comprehensive data set (Figure
16b). Equation (1) obtained by the method of least squares made it possible to refine
the conversion function of the particulate matter concentration sensor on the lower-level
controller, considering the obtained dependence. The coefficient of determination of
Equation (1) dependence, R2, was 0.91.
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Figure 16. Temperature dependence of the readings of the solids content sensor. The blue dots
indicate the experimental data; the orange line is the linearized dependence. The duration of the
experiment in (a) was 30 min and in (b), it was 24 h.

In Equation (1):
M = −17.3T + 1255 (1)

M—solid particles content, ppm;
T—temperature of the solution, ◦C.

The solid particle concentration sensor affected the correctness of the reading from
the acidity sensor. For example, when both sensors were placed in the pickling bath, the
acidity sensor started to generate incorrect values (Figure 17), showing that at the time
of immersion of the TDS-sensor, the readings of the acidity sensor began to change. The
acidity value of the solution was then checked with a calibrated pH meter, and the values
of the sensor installed in the system coincided. Two more features should be noted: a
similar problem was not identified on the laboratory bench, and both sensors worked on
measuring the conductivity of a solution. Based on the above facts, it can be assumed that
one of the sensors did not work correctly due to prolonged exposure to the acidic solution,
or there was an additional connection between the sensors in the lower-level controller
circuit. Therefore, based on the experiment carried out, we decided to temporarily abandon
measurements with a TDS-meter and conducted a long-term experiment to determine the
effect of the etching solution on the sensors.
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Figure 17. Influence of the TDS-sensor in the bath on the pH values.

4.2. Investigation of the Aging Process of the Solution

This experiment analyzed the change in the parameters of the solution in the process
of its degradation. It was essential because the solution of ammonium persulfate is volatile,
so it rapidly decomposes. The experiment consisted in placing temperature and acidity
sensors in a freshly prepared solution and taking readings from them. The course of the
pH change during the experiment is shown in Figure 18.

Figure 18. pH change during the experiment to determine the aging of the solution. The red line is an exponential trend
line that can describe the process.

On the 3rd day, the color of the solution changed to saturated green, which indicated
a chemical reaction that took place because the solution of ammonium persulfate should
remain colorless. The cause of the reaction was the DS18B20 temperature sensor sleeve,
made of stainless steel, which dissolved during the experiment, but this did not affect the
sensor’s performance.

During the experiment, a successive decrease in the pH value could be observed, and,
possibly, by measuring the pH value of a solution, its state could be determined. Based on
the data obtained, Equation (2) was plotted, which determines the dependence between
the solution’s lifetime t in minutes and its acidity.

pH = 3.33 ∗ exp
{
−4.79 ∗ 10−5 ∗ t

}
(2)
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In the Equation (2):

pH—solution’s power of hydrogen;
t—solution lifetime, min.

4.3. Study of the Content of the Copper Solution

The objectives of determination of the copper content of the solution were to study
the change in the solution’s parameters during the etching process, to experimentally
determinate the copper content of the solution, and to check the operability of the digital
section in the solution.

Workpieces made of double-sided foil fiberglass, laminated, 80 × 80 mm, with a base
thickness of 0.5 mm and a foil thickness of 35 µm, were immersed in a freshly prepared
cycle until the etching of the billets stopped.

Of the 15 workpieces, 2 were etched on the 1st day, 8 on the 3rd, 4 on the 4th, and
1 on the 5th day. Based on the data obtained, the dependence of the etching time of the
workpiece on its etching order was plotted (Figure 19).

Figure 19. Dependence of the etching time of the workpiece on its etching order.

From this experiment, the following conclusions could be drawn:

1. The increased etching time of the first two workpieces was associated with a low
temperature of the solution.

2. The etching process is accompanied by the release of heat. The sequential processing
of the workpieces on the 3rd day of the experiment (Figure 20, 2) heated the solution,
without additional technical means, by 10 ◦C relative to the ambient temperature.

3. In the etching process, a slight change in the pH value was observed (Figure 20,
2), but pH change of the process (Figure 20) had discrepancies with the previously
obtained dependence (2). This discrepancy can be explained in the following ways:
either in the experiment to determine the aging of the solution, the reaction with the
temperature sensor made significant changes, or the main change in acidity occurred
after the etching of the first two workpieces (Figure 20, 1). For additional information,
after the experiment in the bath, the solution was replaced with a similar one. It was
prepared together with the previous one; i.e., its lifetime at the time of its placement
in the bath was 5 days. Within 24 h, observations were made on it, and the data were
compared with the mathematical dependence (Figure 21). Since the average value
of the deviation did not exceed 10%, it could be concluded that the etching process
caused differences in the acidity index, and additional research is required in this area.

4. The amount of dissolved copper in the solution after etching, determined on the basis
of the data entered by the workers and calculated by the system, was 59.6 g. We also
determined the copper content for this solution based on its reference information [9]:
59 g. The resulting discrepancy was due to an inaccurate estimate of the amount of
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copper remaining on the last workpiece (Figure 22). The deviation did not exceed 1%,
so we decided that the system correctly determines the copper content in the solution
under the conditions of correctly specified billet parameters. It is necessary to add
to the system an image processing service that can accurately recognize the amount
of etched copper by analyzing the photo stream from cameras to compensate for the
resulting error.

Figure 20. The experiment to determine content of copper; numbers 1–4 indicate the moments when etching began.

Figure 21. Comparison of the experimental data obtained from the acidity sensor (blue curve) with
the mathematical dependence (2) (orange curve).
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Figure 22. Result of etching of the last workpiece, (a) top side of the workpiece, (b) bottom side of
the workpiece.

Based on these experiments, we can concluded the following:

1. The working capacity of the developed digital site was confirmed;
2. Dependences were obtained between acidity and solution lifetime (2), and concentra-

tion of solid particles and temperature (1), and they will help to improve the quality
of the etching process and optimize the operation of the site;

3. Prospects for improving the digital site were identified, and they include introducing a
service for processing images from cameras and studying the possibility of combining
an acidity sensor and a TDS-sensor.

5. Discussion

Of course, the developed site has many limitations, such as using the submersible
etching method without stirring the solution, which provides the worst conditions for
the process and a low etching factor. However, the main task of this work was to build a
foundation for future studies of the parameters of chemical processes, not limiting us only
to studying the etching process.

The proposed hardware and software structures make it possible to use a wide range
of possibilities for studying chemical processes; the Docker containers in development
make rapid deployment of information systems possible.

The developed digital production site is a starting point for research and development
of new methods of management and control of chemical processes and the digitalization
of enterprises in this industry. Based on the previously obtained results, developing an
algorithm for creating a digital production using a digital section as a base unit is possible.

6. Conclusions

The general analysis of approaches to the organization of digital processes of electro-
chemical deposition of metals on dielectric surfaces makes it possible to assert the possibility
and necessity of their technical implementation, including at existing production facilities.

The possibilities of digital production control are shown and confirmed by the example
of complex, in terms of constructing, deterministic models of chemical processes for the
production of printed circuit boards.

General structures for the organization of digital production sites have been developed.
Their effectiveness was confirmed using the example of an etching section for printed circuit
boards, and primary relationships between the process parameters were obtained, which
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made it possible to obtain an assessment of the quality of the solution and the process as a
whole in real time.
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