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Abstract: Progressive cavity pumps are used in industry for the circulation of high viscosity fluids,
such as crude oil and petroleum products, sewage sludge, oils, salt water, and wastewater. Also
known as single screw pumps, these pumps are composed of a single rotor which has the shape of a
rounded screw, which moves inside a rubber stator. The stator has an double helical internal surface
which, together with the helical surface of the rotor, creates a cavity that moves along the rotor. The
movement effect of the cavity inside the stator is the movement of the fluid with a constant flow and
high pressure. In this paper, an algorithm for profiling the rollers for generating the helical surface of
the pump rotor with progressive cavities is proposed. These rollers are constituted as tools for the
plastic deformation of the blank (in case the pump rotor is obtained by volumetric deformation) or
for its superficial hardening.

Keywords: incremental pumps; profiling of generating tools; helical surfaces

1. Introduction

Pumps with progressive cavities allow the circulation of fluids with high viscosity at a
constant flow and high pressure [1–3]. Among the most used progressive cavity pumps are
single screw pumps, consisting of an external helical rotor that rotates eccentrically inside
a double internal helical stator [4,5]. The active surface of the rotor is a cylindrical helical
surface of constant pitch, and the stator, whose active surface is a double helical surface,
is also cylindrical and with constant pitch. The stator is usually made of rubber [6,7],
and the rotor is made of steel, often superficially hardened. The exploitation activity of
the pumps with progressive cavities has highlighted the fact that traditional pumps with
a rubber stator, which surrounds the rotor, do not allow the existence of an interstice
between them, which limits their activity until the stator wears out [8,9]. Alternatively,
a new class of pumps that do not use elastomers has been developed, in which the rotor
and the stator are made of metal, and are used in drilling activities in high temperature
wells [10–13]. This eliminates the wear and greatly increases the lifetime of the pump for
use with viscous, high density, and abrasive liquids, and with liquids containing material
in suspension. To ensure proper operation, there must be a space between the rotor and
the stator to ensure the leakage of the fluid. If this space is not well defined in the rotor
and stator design stage, the efficiency of the pump will be seriously affected. Consequently,
dimensional designs and optimizations of the rotor and stator, respectively, using analytical
and dynamic simulations of the fluid flow through these pumps, have previously been
explored [14–18].

The productive functioning of pumps with progressive cavities depends on proper
design of the rotor profiles, respecting the technical conditions of their form. The cross-
section form of helical pump rotors as ensembles of profiles associated with the rolling
centrodes are determined based on the fundamental theorems of the enveloping surfaces
(curves) and calculated based on Olivier’s first theorem, the Gohman general theorem, or
the Willis theorem (normals method) [19,20].
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The geometric characteristics of the rotor, namely, the helical surface with long length
and rounded profile, determine that it can be processed by volumetric deformation, using
tools in the form of profiled rollers with axes parallel to the axis of the processing blank.
The algorithm by which the tool profile can be determined contains the following steps:
defining the analytical equations in the own reference system of the piece of the generated
profile; defining the absolute movements of the piece and the blank during the generating
process; defining the relative movements between the piece and the tool; calculation
of the trajectories of the points on the piece profile that execute a relative movement
towards the tool; defining the condition which allows the determination of these points,
called the enveloping condition—these points belong to the trajectory’s family and to the
enveloping of that family; and association of the enveloping condition at the equations
of the trajectory’s family, a connection that allows the determination of the parametric
equations of the tool profile [21,22]. The tool’s profiling for generating surfaces of the rotors
and the stators of the pump can start either from a physical model or from 3D models
obtained by rapid prototyping. In practical activity, the determination of the rotor and
the stator form can be undertaken with the help of measuring machines in high precision
coordinates when the axial profiles of the generating tools in numerical form are known [23].
By comparison, these axial and graphical profiles can be determined using facilities of
programming and graphical representation environments, such as the CATIA software
application [24].

2. Materials and Methods
2.1. Generating Principle

The processing scheme involves the generating of a cylindrical helical surface of
constant pitch, using helical deforming tools, with axes parallel to the axis of the de-
formed screw.

Figure 1 shows the two rolling centrodes: C1—the centrode of the blank, having the
radius Rrp, and C2—the centrode of the tool of radius Rrs.
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Figure 1. Generating principle. Rolling centrodes: C1; C2. C1—the centrode of the blank, having the
radius Rrp, and C2—the centrode of the tool of radius Rrs.

Note that although three tools are used in the generating process to ensure the balance
of large radial loads during processing, it is sufficient to consider a single tool for the tool
profiling. The active profile is identical for all three tools being processed simultaneously.
In the following, reference will be made to a single generating tool.

The rolling condition between the C1 and C2 centrodes has the form:

Rrp · ϕ1 = Rrs · ϕ2, (1)
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where, noting i = Rrp
Rrs

, is obtained:
ϕ2 = i · ϕ1. (2)

Because the plastic deformation process occurs in the cross-section of the blank, the
study of the enwrapping between the two helical surfaces can be performed as for a plane
enveloping process in a common plane, perpendicular to the two axes of the tool, with
respect to the blank.

To ensure the generation of the active surface of the pump screw, it is necessary that
the two helical surfaces, the tool and the blank, have opposite directions and have the same
inclination to their own axes on the rolling circles.

Noting the inclination angle of the helix to its own axis withω, the above condition
has the mathematical form given by Equation (3):

tgω =
pet

Rrt
=

pep

Rrp
, (3)

where pet represents the helical parameter of the tool and pep is the helical parameter of the
piece; also see Figure 2.
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Figure 2. The slope angle of the two helical surfaces.

2.2. The Equations of the Active Surface of the Rotor
2.2.1. Cross-Section of the Screw

The cross-section of the active surface of the rotor is a circle of radius R, eccentric to
the C1 centrode, with e size.

The reference systems used for the active surface determination are presented in
Figure 3.
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To solve the profiling problem of the generating tool, the following reference systems
are used: xyz is a fixed reference system, with its origin in the center of the blank centrode
and the z-axis superimposed on the rotational axis of the blank; x1y1z1 is a fixed reference
system, with its origin in the center of the tool centrode and the z1 axis superimposed on
the rotational axis of the tool; XYZ is a mobile reference system, joined with the blank—this
system performs a rotational movement with the blank around the Z ≡ z axis; ξηζ is
a mobile reference system, joined with the tool—the axis y ≡ z1 and the system has a
rotational movement around it.

The generating profile of the active helical surface of the screw, the surface Σ, is given
by the equations:

G :

∣∣∣∣∣∣
X(β) = R · cosβ + e;

Y(β) = R · sinβ;
Z(β) = 0.

(4)

2.2.2. Helical Surface

The helical movement of the G-profile, the Z-axis, and the pep helical parameter,
generates the Σ surface:

ω3(ϕ1) · X + C ,C =

 0
0

pep · ϕ1

. (5)

By development, the following is obtained:

Σ :

∣∣∣∣∣∣
x(β) = R · cosβ · cosϕ1 + R · sinβ · sinϕ1 + e · cosϕ1;

y(β) = −R · sinβ · sinϕ1 + R · sinβ · cosϕ1 − e · sinϕ1;
z(β) = pep · ϕ1.

(6)

2.3. Determination of the Virtual Pole Position

The determination of the virtual pole position is made from the condition that the
normal to the profile of the piece intersects the centrode associated with it.

The profile of the piece has the equations given by (4), so its direction will be:

→
n =

∣∣∣∣∣
→
i

→
j

.
Xβ

.
Yβ

∣∣∣∣∣ = .
Yβ ·

→
i −

.
Xβ ·

→
j , (7)

with
.

Xβ = −R · sinβ and
.

Yβ = R · cosβ, resulting in:

→
n = R · cosβ ·

→
i + R · sinβ ·

→
j . (8)

In the current point, the normal to the profile can be written as:

→
N =

(
Xi + λ ·

.
Yβ

)
·
→
i +

(
Yi + λ ·

.
Xβ

)
·
→
j , (9)

with variable scalar λ.
By development, the following is obtained:

→
N = (R · cosβ + e + λ · R · cosβ) ·

→
i + (R · sinβ + λ · R · sinβ) ·

→
j . (10)

The C1 centrode has the equations:

C1 :
∣∣∣∣ X = Rrp · cosϕ1;

Y = Rrp · sinϕ1.
(11)
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According to the virtual pole method [17,18], it is located at the intersection of the
normal at the G profile at the current point with the centrode associated with the piece.
The intersection condition becomes:{

R · cosβ + e + λ · R · cosβ = Rrp · cosϕ1;
R · sinβ + λ · R · sinβ = Rrp · sinϕ1.

(12)

By removing the parameter λ from Equation (12), the following is obtained:

λ =
Rrp · cosϕ1 − R · cosβ− e

R · cosβ
=

Rrp · sinϕ1 − R · sinβ

R · sinβ
(13)

Or:

Rrp · cosϕ1 · sinβ− R · cosβ · sinβ− e · sinβ = Rrp · sinϕ1 · cosβ− R · sinβ · cosβ⇒
⇒ e · sinβ = Rrp · (cosϕ1 · sinβ− sinϕ1 · cosβ)⇒ e · sinβ = −Rrp · sin(ϕ1 − β)⇒

⇒ sin(ϕ1 − β) =
−e·sinβ

Rrp
⇒ ϕ1 = β + arcsin

(
−e·sinβ

Rrp

)
.

(14)

2.4. Contact Curve Determination

The determination of the contact curve equations is undertaken by applying the abso-
lute movement of the piece (the angle rotation ϕ1 around the origin O) to the current point.

When the current point passes through the entire G profile, the curve obtained repre-
sents the contact curve.

If the current point is denoted with T, its coordinates in the own system of the piece
will be:

T :

∣∣∣∣∣∣
XT = R · cosβ + e;

YT = R · sinβ;
ZT = Pep · β.

(15)

When β goes through the entire domain of values, from 0 to 2 · π, the current point
goes through the entire contact curve.

At some point, the coordinates of the current point in the fixed system xyz will be
given by:

x = ω3(ϕ1) · XT (16)

which can be developed as:

T

∣∣∣∣∣∣
xT = XT · cosϕ1 + YT · sinϕ1;

yT = −XT · sinϕ1 + YT · cosϕ1;
zT = Pep · ϕ1.

(17)

2.5. The Determination of the Cross-Section of the Active Surface

The determination of the cross-sectional profile of the active surface of the helical tool
is undertaken by applying a movement corresponding to the absolute movement of the
tool to each point determined on the contact curve.

The determination of the cross-section can be made if the problem is treated as a plane
enwrapping problem, in a plane perpendicular to the rotational axes of the two elements,
the X-axis of the blank, and the ζ axis of the tool.

The absolute movement of the tool is given by the transformation:

x1 = ωT
3 (ϕ2) · ξ ⇒ ξ = ω3(ϕ2) · x1. (18)

Between the movement of the tool and that of the blank, Equation (2) is respected by
the rolling condition.
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Knowing the coordinates of the points on the contact curve in the xyz system, in the
absolute movement of the ξηζ system, these are given by the following transformations:

x1 = x + B, (19)

where: B =

 −A12
0
0

; A12 = Rrp + Rrt.

ξ = ω3(ϕ2) · x1 = ω3(ϕ2) · [x + B] + C, (20)

where: C =

 0
0

pet · ϕ2

.

By development, the following is obtained:

S :

∣∣∣∣∣∣
ξT = (xT − A12) · cosϕ2 + yT · sinϕ2;

ηT = −(xT − A12) · sinϕ2 + yT · cosϕ2;
ζT = pet · ϕ2.

(21)

The cross-section of the tool is obtained by intersecting the active surface with a plane
perpendicular to the ζ axis, ζ = H :

S.T.
∣∣∣∣ ξT = (xT − A12) · cosϕ2 + yT · sinϕ2;

ηT = −(xT − A12) · sinϕ2 + yT · cosϕ2.
(22)

3. Results

A numeric application was developed for the following values: Rrp = 30 mm; Rrs = 60 mm;
R = 25 mm; e = −5 mm; pp = 2 · π · pep = 60, the piece’s pitch.

The numerical application was undertaken using the GNU Octave software program,
a computer application for performing numerical calculations that is generally compatible
with the MATLAB program.

The values table of the tool’s profile and the contact curve are presented in Table 1 and
graphically in Figure 4.

Table 1. The values table of the tool’s profile and the contact curve.

No.
Tool’s Profile

No.
Contact Curve

ξ [mm] µ [mm] ζ [mm] x [mm] y [mm] z [mm]

1. −70.000 0.000 0.000 1. 20.000 0.000 0.000
2. −69.517 7.385 1.943 2. 20.093 0.287 1.943
3. −68.093 14.581 3.878 3. 20.366 0.550 3.878
...

...
...

...
...

...
...

...
37. 70.000 0.000 60.000 37. 20.000 0.000 60.000
38. 69.517 −7.385 61.943 38. 20.093 0.287 61.943
39. 68.093 −14.581 63.878 39. 20.366 0.550 63.878

...
...

...
...

...
...

...
...

71. −68.093 −14.581 116.120 71. 20.366 −0.550 116.120
72. −69.517 −7.385 118.060 72. 20.093 −0.287 118.060
73. −70.000 −0.000 120.000 73. 20.000 0.000 120.000



Inventions 2021, 6, 34 7 of 8

Inventions 2021, 6, x FOR PEER REVIEW 7 of 9 
 

3. Results 
A numeric application was developed for the following values: Rrp = 30 mm; Rrs = 60 

mm; R = 25 mm; e = −5 mm; = ⋅ ⋅ = ,p epp 2 π p 60  the piece’s pitch. 
The numerical application was undertaken using the GNU Octave software pro-

gram, a computer application for performing numerical calculations that is generally 
compatible with the MATLAB program. 

The values table of the tool’s profile and the contact curve are presented in Table 1 
and graphically in Figure 4. 

Table 1. The values table of the tool’s profile and the contact curve. 

No. 
Tool’s Profile 

No. 
Contact Curve 

ξ [mm] μ [mm] ζ [mm] x [mm] y [mm] z [mm] 
1. −70.000 0.000 0.000 1. 20.000 0.000 0.000 
2. −69.517 7.385 1.943 2. 20.093 0.287 1.943 
3. −68.093 14.581 3.878 3. 20.366 0.550 3.878 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
37. 70.000 0.000 60.000 37. 20.000 0.000 60.000 
38. 69.517 −7.385 61.943 38. 20.093 0.287 61.943 
39. 68.093 −14.581 63.878 39. 20.366 0.550 63.878 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
71. −68.093 −14.581 116.120 71. 20.366 −0.550 116.120 
72. −69.517 −7.385 118.060 72. 20.093 −0.287 118.060 
73. −70.000 −0.000 120.000 73. 20.000 0.000 120.000 

 
Figure 4. The tool’s profile, the contact curve, and the profile of the piece. 

Figure 4 shows an axial view of the piece profile, tool profile, and the contact curve 
(treated as a plane problem). In reality, the enwrapping surfaces are helical 
(three-dimensional) surfaces and Table 1 shows the 3D coordinates of the points be-
longing to the contact curve in the two reference systems: the tool system (ξηζ) and the 
piece system (XYZ). 

  

Figure 4. The tool’s profile, the contact curve, and the profile of the piece.

Figure 4 shows an axial view of the piece profile, tool profile, and the contact curve
(treated as a plane problem). In reality, the enwrapping surfaces are helical (three-dimensional)
surfaces and Table 1 shows the 3D coordinates of the points belonging to the contact curve
in the two reference systems: the tool system (ξηζ) and the piece system (XYZ).

4. Conclusions

This paper presented an algorithm for profiling the rollers for processing the helical
surfaces of a pump rotor with progressive cavities.

The algorithm is based on the virtual pole method, which is a variant of the nor-
mal theorem.

The new form of this theorem allows the determination of the enwrapping equations
of a family of profiles generated in the rolling movement of two centrodes, eliminating the
need to write the equations of relative movements between the generating profile and the
profile to be generated. This eliminates an important source of possible errors and greatly
simplifies the process of calculating the profile of the generating tool.

In future work, the aim is to apply the “virtual pole” method for the study of surfaces
obtained by computer-aided inspection, using a three-dimensional measurement technique,
namely, the reverse engineering concept. In other words, the surfaces will be scanned,
using equipment based on a 3D optical scanner, without physical contact, existing within
the Dunarea de Jos University of Galati, Faculty of Engineering. This device is an Atos Core,
produced by GOM GmbH (Schmitzstraße 2, 38122, Braunschweig, Germany), which uses a
modern and innovative technology for the fully automated inspection and measurement of
the pieces. The scanning accuracy with the GOM 3D scanner is very high, almost entirely
covering the surface of the pieces and providing all the details of the measured piece
with great precision. The GOM 3D scanning system also ensures the identification of the
manufacturing problems, based on the possibility of comparing the theoretical and real
geometries of the obtained pieces. Therefore, using this scanning system, the geometric
generation errors of surfaces can be estimated based on the “virtual pole” theorem.
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