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Abstract: Nowadays, supplying demand load and maintaining sustainable energy are important
issues that have created many challenges in power systems. In these types of problems, short-term
load forecasting has been proposed as one of the management and energy supply modes in power
systems. In this paper, after reviewing various load forecasting techniques, a deep learning method
called bidirectional long short-term memory (Bi-LSTM) is presented for short-term load forecasting
in a microgrid. By collecting relevant features available in the input data at the training stage, it is
shown that the proposed procedure enjoys important properties, such as its great ability to process
time series data. A microgrid in rural Sub-Saharan Africa, including household and commercial
loads, was selected as the case study. The parameters affecting the formation of household and
commercial load profiles are considered as input variables, and the total household and commercial
load profiles of the microgrid are considered as the target. The Bi-LSTM network is trained by input
variables to forecast the microgrid load on an hourly basis by recognizing the consumption pattern.
Various performance evaluation indicators such as the correlation coefficient (R), mean squared error
(MSE), and root mean squared error (RMSE) are utilized to analyze the forecast results. In addition,
in a comparative approach, the performance of the proposed method is compared and evaluated
with other methods used in similar studies. The results presented for the training phase show an
accuracy of R = 99.81% for the Bi-LSTM network. The test and load forecasting stage are performed
by the Bi-STLM network, with an accuracy of R = 99.34% and forecasting errors of MSE = 0.1042 and
RMSE = 0.3243. The results confirm the high performance of the proposed Bi-LSTM technique, with
a high correlation coefficient when compared to other methods used for short-term load forecasting.

Keywords: energy management; microgrid; residential and commercial loads; short-term load
forecasting; deep learning; bidirectional long short-term memory (Bi-LSTM)

1. Introduction

Nowadays, the significant increase in power consumption has led to the development
of and fundamental changes in power grids. Power grids now consist of large-scale power
plants based on nuclear power and fossil fuels. These power plants are considered to be the
primary source of energy production [1,2]. In these forms of generation, unilateral energy
transmission is conducted from centralized power plants (microgrids) to energy consumers.
Due to several factors, including the possible lack of fossil fuels and the dangers of rising
greenhouse gases, renewable energies like solar energy and wind energy are becoming
much more popular as clean and novel energy sources [3,4]. To address this trend, many
efforts were made to create a novel type of power system by combining communication and
optimization theory to have optimal power management. A smart grid is a next-generation
power grid dependent on various sources of energy, such as renewable energy. A smart
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grid aims to employ energy generation and consumption data by smart meters to manage
energy efficiently [5,6].

Distributed generation (DG) was discussed as one of the specifications of renewable
energy generation, which is done by different types of small, grid-connected, or distribution
system-connected devices [7]. DGs are also commonly referred to as on-site generation,
district energy, and distributed energy. Unlike traditional power plants, the generation and
consumption of energy through renewable energy resources requires small-scale power
plants which, in this case, will make the power system infrastructure more complex in
general. In this situation, and to solve this problem, the microgrid is utilized as a building
block to ensure the reliability and efficiency of the power system infrastructure [8].

In fact, a microgrid is a small-scale grid and a suitable solution for integrating variable
and unpredictable renewable energy sources into distribution networks. Based on the
structure and scale, a microgrid is very cost-effective in terms of infrastructure transfer [9].
Basically, the definition of a microgrid can be considered in such a way that, in order
to form a self-sufficient energy system, it collects locally distributed generation sources,
along with controllable loads and energy storage equipment. Short-term load forecasting is
known as a principle function for the microgrid energy management system, particularly if
different renewable energy resources are integrated with the microgrid. In addition, short-
term forecasting can be considered an essential tool for microgrid operators to maintain
continuous network performance and increase economic gains [10,11].

Short-term load forecasting is a function that has been performed in various ways
so far. However, in the previous studies, one can mainly point out some conventional
procedures that have been presented to forecast the load, which are as follows: persistence,
statistical, physical, artificial neural network (ANN), machine learning, deep learning, and
hybrid techniques [12-14]. In a valuable study [15], a variety of data-driven techniques were
introduced and employed in a comparative approach to solve the necessary forecasting
problems in the power grid. In [16], applications of ANN models were used to forecast
the amount of wind and solar power in the microgrids. In a review paper [17], various
types of ANN algorithms and issues with their application in the microgrid were reviewed.
Short-term load forecasting in a microgrid was done in [14] by producing a novel hybrid
technique based on support vector regression (SVR) and long short-term memory (LSTM)
models. In [18], short-term load forecasting was performed using a hybrid technique
of machine learning applications called seasonality-adjusted support vector machines
(SSA-SVM). In [19], load forecasting in a microgrid was done using various deep learning
algorithms, multilayer perceptron (MLP), and a support vector machine (SVM). In some
other studies, combinations of machine learning models with optimization algorithms for
load forecasting have been proposed. In [20], the microgrid load was forecasted using
the hybridized model of an SVM and particle swarm optimization (PSO) in a short-term
horizon. In another valuable study [21], a combined approach of a wavelet transform (WT)
with a fruit fly optimization (FFO) algorithm for short-term load forecasting was proposed.
In most cases, this type of hybrid model, due to the high dimension of input data, has more
problems, such as overfitting, due to the time series characteristics of the relevant data not
being able to identify the appropriate pattern of data.

Each of the reviewed studies attempted to forecast the load in a short-term time
horizon using a variety of techniques. In some of them, the methods used were not
commensurate with the available data and caused a decrease in the forecast accuracy due
to factors such as overfitting and data missing in the training phase. In some others, the
selected procedure was such that it suffered from time series feature modeling of the data,
and this action reduced the accuracy of the forecasting. Most importantly, in some studies,
the chosen method was not able to forecast the amount of load during peak hours, which
caused problems in the network operator’s scheduling.

It is noteworthy that deep learning techniques have been used as a powerful tool
in recent studies. They have also performed well at preprocessing, processing, and ex-
tracting features from raw data and addressing the problems mentioned in short-term
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forecasting issues [22]. In previous studies, some deep learning techniques for processing
and predicting time series data, such as convolutional neural networks (CNNs), deep
autoencoders (DAEs), recurrent neural networks (RNNs), and deep belief neural networks
(DBNN:Ss), are presented. Each of these introduced techniques has some unique advantages
and disadvantages. The DAE and DBNN techniques suffer at understanding long depen-
dencies in time series samples related to anticipation time [23], while the CNN method
with the least number of cells and memory can extract the basic features of the time series
data. However, filter selection and the number of layers are issues that, if not properly
selected, can cause problems such as overfitting in the training phase. The RNN-based
techniques, such as L5TM and gated recurrent unit (GRU), usually perform well in time
series data processing and can model complex time-dependent nonlinear parameters. The
GRU networks mainly extract features that are not obtained by LSTM networks and are less
complex than the LSTM. However, some studies have shown that the LSTM algorithms,
due to forward training, have suffered from problems such as missing data and overfitting
when recognizing patterns of large-volume data [24].

In this paper, in order to forecast the short-term load in the microgrid and solve the
problems related to the reviewed methods, a deep learning techniques called bidirectional
LSTM (Bi-LSTM) is proposed. Bi-LSTM is a time series-based technique that considers all
data behavior in a time period. It should be noted that Bi-LSTM is proposed for the first
time in this paper to forecast the short-term load in microgrids. Data affecting the network
load have a long-term interconnected behavior and pattern. Accordingly, the bidirectional
movement of the proposed method and the interconnected and related structure of its
layers eliminates problems such as missing data and overfitting in the training phase. In
comparing the Bi-LSTM technique with other models reviewed in the literature, some of
the structural and inherent advantages of Bi-LSTM, such as learning the forward rule of
data information as well as the backward rule of data information, indicate the strong
performance of this technique.

In general, the contribution and practical tips of this paper can be highlighted as follows:

e Implementing a learning-based approach that, with its high skill, passes the training
phase without problems such as missing data and overfitting;

e  FPorecasting microgrid load without considering meteorological data that are not
available in remote areas;

e  Modeling of microgrid load consumption for a short-term time horizon (one hour)
based on different household and commercial consumption loads;

e Evaluating the performance of the Bi-LSTM technique in the training phase and
the results of load forecasting with different performance evaluation indicators, as
well as presenting a comparative approach to express the effectiveness of the sug-
gested method.

In the next sections, the paper is organized as follows. The suggested method is
described in Section 2. The case study is introduced in Section 3. The results of the short-
term load forecasting are presented in Section 4. Finally, the conclusion of the paper is done
in Section 5.

2. Bidirectional Long Short-Term Memory (Bi-LSTM)

In recent years, the application of deep learning has been significantly considered
and used in various scientific and industrial fields. As such, deep learning techniques
are used today in various applications in power and energy systems, such as fault detec-
tion [25,26], cyberattack detection [27], renewable power plant potential measurement [28],
non-intrusive load monitoring [29,30], and load forecasting [14,31]. Deep learning has
different techniques, each of which is skilled in specific applications due to its unique
structure. In this paper, to solve short-term load forecasting in microgrids, one of the most
powerful deep learning techniques, called Bi-LSTM, is proposed.

Bi-LSTM is a deep learning application used for classification, regression, pattern
recognition, and feature extraction applications. One of the salient features of this technique
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is its excellent performance against time series data [32]. Bi-LSTM, as an extension of the
traditional LSTM [33], is trained on the input sequence, with two LSTMs set up in reverse
order (see Figure 1). The LSTM layer reduces the vanishing gradient problem and allows
the use of deeper networks compared with recurrent neural networks (RNNs) [34,35].
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Figure 1. The bidirectional long short-term memory (Bi-LSTM) structure.

In the structure of the traditional RNN and the LSTM model, the propagation of
information happens in a forward path, in which case the time ¢ depends only on the
information before the time t. In the Bi-LSTM network, unlike in traditional LSTM, flowing
the information from the backward layer to the forward layer and upside down is per-
formed by employing a hidden state [36]. Additionally, the advantage of Bi-LSTM over
convolutional neural networks (CNNs) is its dependency on the sequence of inputs by
taking the forward and backward paths into account. The Bi-LSTM model behaves the
same with all inputs. The mathematical formulations of Bi-LSTM are presented in detail
in [36].

3. Case Study

In this paper, a rural microgrid in Sub-Saharan Africa was selected as the case study.
The specifications and data related to this microgrid, which was a freely available dataset,
constituted the input variables and outputs of the dataset used in this paper [14]. The
access and use of electrical energy for South African citizens is a human rights matter that
is guaranteed by government policies. However, some problems, such as the lack of a
sustainable electricity supply, plague many remote rural areas. Accordingly, this paper
selected a microgrid in South Africa as the case study in order to provide solutions for
energy management and sustainable energy supplies. The studied microgrid included
household and commercial loads, which constituted the total load consumption of the
microgrid. In the existing dataset, the household load was modeled based on factors such
as the number of households (NoH) available and the percentage of high-income (HI),
middle-income (MI), and low-income (LI) households. Factors such as water pumping
(WP), grain milling (GM), and the amount of clinics, small shops (SS), schools, and street
lighting (SL) also modeled the commercial load. The modeling was done to calculate the
load on an hourly basis and in a one hour interval. As an example, Figure 2 shows three



Inventions 2021, 6, 15 50f 11

examples of 24 h load profiles under different conditions in this microgrid. Table 1 also
introduces the prevailing conditions for the formation of load profiles, shown in Figure 2.
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Figure 2. Samples of 24 h microgrid load profiles for (a) a low-population microgrid with the same income percentage
for the households, (b) a populous microgrid with high-income households, and (c) a populous microgrid with low-
income households.

Table 1. Input parameters for calculating each instance of the microgrid load profiles shown in

Figure 2.
Input Variable Figure 2a Figure 2b Figure 2c
NoH 50 100 100
HI households 33% 45% 20%
MI households 33% 30% 30%
LI households 33% 25% 50%
Number of WP 5 3 3
Number of GM 1 1 1
Number of SS 5 3 3
Number of Schools 1 3 2
Number of Clinics 1 3 3

Number of SL

=
(e}
—_
&)}
=
N
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4. Simulation Results

Short-term load forecasting in a microgrid using the Bi-LSTM method required a
dataset containing effective hourly data on the microgrid load and the related load profiles.
Hourly parameters related to the characteristics of households and equipment and commer-
cial places were considered as input variables, and the hourly load profile resulting from
these characteristics was selected as the output variable. The existing dataset contained
240 samples of 24 h load profiles which, by considering the data associated with each hour
as an input sample, would eventually form 5760 x 11 matrix for the Bi-LSTM input dataset.
The designed Bi-LSTM network was trained by 70% of the data. Then, in the test phase,
using the rest of the data, it forecasted the microgrid load over the one-hour intervals.

After the training and test stages, the results of each learning-based network should
be evaluated using performance appraisal indicators. This expresses the accuracy of each
network at each step and clearly indicates how close the forecasted or estimated values are
to the actual values. In this paper, the Bi-LSTM network performance was evaluated by
indicators such as the correlation coefficient (R), mean squared error (MSE), and root mean
squared error (RMSE). The R-index showed a kind of correlation between the forecasted
values and the real values, and the maximum values of R indicated the high accuracy
of the network. The MSE and RMSE indicators showed the prediction error that were
calculated for these indices for each sample and, finally, a mean value was calculated for the
network performance in the whole dataset. The proximity of the MSE and RMSE indicator
values to zero indicated the accuracy of the network performance [37]. The mathematical
formulation for calculating each of the indicators used in this paper is as follows [38]:

Yty (xi = %) (yi — 7)

R = 1)
\/Ziliﬂxi — 7)2 leil (vi — y)z
N )2
MSE = —Zi:l(x i) )
N )2
RMSE = w 3)

where x; and y; represent the actual values and forecasted values, respectively, and ¥ and
Y are the means of the actual values and forecasted values, respectively.

Figure 3 shows the performance of the Bi-LSTM network in the training phase using
the R-index and in regression form.

BiLSTM Training (R = 0.9981)
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Figure 3. Bi-LSTM performance in the training phase in the form of regression.
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Residuals

As shown in Figure 3, the Bi-LSTM network was able to pass the training stage with
good performance. Figure 4 shows the amount of network error in the training phase. It
can be seen that the training error rate was very small, and these results indicated good
network training. When trained with high accuracy, the network would be able to ideally
identify test data with an estimated model and forecast their values well.

BiLSTM Training (MSE = 0.0799 , RMSE = 0.2826)

e
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T
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2000 2500 3000 3500 4000
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Figure 4. Bi—LSTM training errors in the forms of the mean squared error (MSE) and root mean squared error (RMSE).
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After training, the test data, which was 30% of the input data set, was used for
prediction as input to the trained network. At this stage, the trained Bi-LSTM estimated
the load profile for each sample based on the data behavior pattern in the training stage.
Figure 5a shows the load forecasting results by Bi-LSTM in the test stage. In order to
clearly observe the performance of the proposed method in forecasting the microgrid load,
Figure 5b shows 100 samples related to the test data in zoom mode, which is presented in
Figure 5a.

The forecasted load was, in fact, the sum of the household and commercial loads related
to the microgrid at each hour. The high correlation of the forecasted values with the actual
values of the load profile confirmed the good performance of the trained network. It can
be seen that the network accuracy coefficient was an acceptable value (R = 0.9934), and the
amount of microgrid consumption could be estimated at any time. Figures 6 and 7 also show
the network prediction error in the forms of the MSE, RMSE, and a histogram, respectively.
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Figure 5. Load forecasting results by Bi-LSTM in the test stage. (a) All test data. (b) Zoomed image of the forecasting of 100
test data samples.
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According to Figure 6, the amount of network prediction error in each sample can be
seen. The error values obtained in this figure (e.g., MSE = 0.1042 and RMSE = 0.3243) were
the averages of the prediction errors in all samples. Figure 7 also shows the minimum and
maximum network errors in forecasting the value of each sample. One can see that, in the
worst-case scenario, the largest error by the Bi-LSTM was in forecasting the microgrid load
between the numbers —0.6 and 0.6.

After presenting the results obtained with the proposed Bi-LSTM network and evalu-
ating its performance with other statistical indicators, the comparison with other similar
works to confirm its effectiveness proceeded. To this end, the results of similar works
presented in recent years were compared with the results obtained by Bi-LSTM via perfor-
mance evaluation indicators. Table 2 shows the results of this comparison.

Table 2. Evaluation of the performance of the proposed method in comparison with other solutions
presented in similar studies.

Table R MSE RMSE
Bi-LSTM (Proposed) 0.9934 0.1042 0.3243
SVR [14] 0.9770 0.5983 0.7735
LSTM [14] 0.9809 0.5133 0.7164
SVR-LSTM [14] 0.9901 0.1316 0.3627
SVM [19] - - 6.1910
MLP [19] - - 5.6540
CNN-GRU [39] - - 0.1617
CNN-LSTM [39] - - 0.2265

In the evaluation performed in Table 2, the performance of different machine learning
and deep learning methods were compared with each other. As can be seen, deep learning
methods offer better performance than more conventional machine learning methods. The
reason for this superiority is proper training and extracting the appropriate pattern from
the input data. Among the compared methods, the Bi-STM network proposed in this
paper was able to surpass other methods with better performance. In using data mining
techniques, choosing the right method with the available data is one of the most important
issues. The proposed Bi-LSTM procedure can be selected as a tool to perform other time
series-based data predictions in power and energy systems.

5. Conclusions

Short-term load forecasting in power and energy systems is a key technique to improve
the supplying of a demand load and other energy management planning. The purpose of
this paper was to forecast the short-term load in a rural microgrid in Sub-Saharan Africa
in order to supply the demand load and access to sustainable energy. To this end, one of
the deep learning algorithms, called bidirectional long short-term memory (Bi-LSTM), was
proposed. Unlike other deep learning techniques, the Bi-LSTM method, due to its unique
structure and bidirectional training routine, offers a strong ability to process large-volume
and time series data. In addition, avoiding the problems of missing data and overfitting
during the training phase can be mentioned as other benefits of Bi-LSTM. Data related
to household and commercial loads were collected in the studied system as a Bi-LSTM
input dataset. The Bi-LSTM network was trained with the input data and then forecasted
the microgrid load in one-hour intervals. The results of the forecast were analyzed by
various performance evaluation indicators such as the correlation coefficient (R), mean
squared error (MSE), and root mean squared error (RMSE). The trained LSTM network
was able to forecast the microgrid load in the short-term time horizon with an accuracy
of R = 80% and the lowest error values (in this case, MSE = 0.1042 and RMSE = 0.3243).
Then, in a comparative approach, the results of the Bi-LSTM network were evaluated with
other algorithms used in similar works. The results of the evaluations emphasized the
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effectiveness of the suggested procedure in the short-term load forecasting of microgrids
compared with other solutions.

One future work direction is the application, implementation, and evaluation of the
proposed methodology for the load forecasting of other microgrids in the presence of
renewable energy resources.
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