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Abstract: For footwear insoles, high rebound performance is required in some instances such as for
running, while softness for comfort is of higher importance during normal walking and standing to
minimize high stress. Hence, materials with rebound performance in some scenarios and softness
for other scenarios are desired. In this paper, we investigate rebound performance and hardness
of composites made of a shear-thickening material and elastic foam. First, a hydrogel type of
shear-thickening material (Slime) is characterized to investigate the influence of water content.
After that, two particular shear-thickening hydrogels with better rebound performance (but not
outstanding in the shear-thickening effect) are selected and integrated into the elastic foam to produce
a composite insole. It is found that, as compared with the commercial elastic insole and commercial
shear-thickening insole, softer and superior rebound performance can be achieved simultaneously
only if the right shear-thickening material is used in the composite.

Keywords: shear-thickening effect; hydrogel; rebound performance; sole; insole; ethylene-vinyl
acetate; energy recovery; energy recovery ratio

1. Introduction

Footwear serves as an essential garment designed to protect our feet from environmental
adversities such as ground textures and temperature variation. Considering the unique shape of feet
among individuals, podiatry seeks to adopt techniques to help increase comfort for users ranging
from casual to performance orientated. The insole and lining are components of footwear directly
in contact with the foot and they are crucial for providing the user comfort. Amongst various
footwear designs available on the market, insoles are one component that can be customized to the
individual’s foot requirements. Aside from tailoring the shape of insoles for comfort enhancement,
materials are influential for providing comfort for casual or performance use. Insoles that are material
optimized possess the potential to fulfill performance-based demands with high rebound requirements
or casual-based demands with softness needs.

Stimulus-responsive materials possess the inherent capability of changing their properties/shapes
in the presence of the proper stimulus [1]. Certain unique fluids, classified as non-Newtonian fluids,
can dramatically increase their viscosity with an increase in shear rate, with the phenomenon known
as the shear-thickening effect. Many engineering applications based on this phenomenon have been
identified and explored in previous studies [2–7].

Solid or quasi-solid shear-thickening materials/composites have been developed considering
Newtonian fluids, which tend to flow easily and could be problematic in certain engineering
applications [8,9]. D3O®, which was invented by Phil Green and Richard Palmer in 1999, has probably
been the most successful commercial shear-thickening product thus far [9]. This type of shear-thickening
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material has been studied to be suitable for implementation as footwear insoles such as EnertorTM

from the D3O Lab, as shown in Figure 1a, or as midsoles such as TAICHI 1.0 from the Peak Sport
Products Co. Limited, since it is soft during low strain rates (e.g., walking) but instantly becomes
much stiffer under impact loading (e.g., running) to provide high rebound force. While both of the
above-mentioned are gum-like materials to the touch, MemorySil™ from adaptive rubber LLC is a
rubber-like material.
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(measured from top) 55C (forefoot area) (a1) and 37C (heel area) (a2); (b) Commercial ethylene-vinyl 
acetate (EVA) insole (uniform foam, (bottom) original and (top) after heating and stepping atop to 
fit/program) (reproduced from [10]). Shore hardness (measured from top) 42C (forefoot area) (b1) 
and 35C (heel area) (b2) (slight difference between the forefoot and heel should be due to the bottom 
of the heel is not a flat surface as the forefoot). 

EnertorTM, as shown in Figure 1a, is essentially a closed-cell polyurethane foam composite, in 
which polyborodimethylsiloxane (PBDMS) is dispersed through the foam matrix to provide the 
shear-thickening function [9]. Since ethylene-vinyl acetate (EVA) is preferred to polyurethane by the 
footwear industry (Figure 1b), TAICHI 1.0 is developed to utilize an EVA-based foam with another 
shear-thickening material involving P4U (brand name, from Shenzhen Suer Intelligent New Material 
Technology Co., Ltd., Shenzhen, China) used as a PBDMS replacement in the foam composite [11]. 
As compared with a typical commercial EVA insole, shown in Figure 1b, EnertorTM, shown in Figure 
1a, has a higher shore hardness durometer of 55C against 42C for commercial EVA at the insole’s 
forefoot area (Figure 1a1,a2,b1,b2). 

Additionally, some solution-state thermoplastic polymers or their composites and insufficiently 
cross-linked solid-state thermoset polymers possess a similar shear-thickening feature, but the shear-
thickening effect is insignificant [12]. 

This paper intends to serve a two-fold purpose. First, an experimental investigation on the 
influence of water content in a particular shear-thickening hydrogel (Slime, refer to Section 2.1 for its 
details), in which the weight ratio between borax and polyvinyl alcohol (PVA) is fixed. Hydrogels 
with superior rebound performance are identified via experimentally determined energy recovery 

Figure 1. (a) EnertorTM D3O® insole (bottom side (the back is composite) and top side). Shore hardness
(measured from top) 55C (forefoot area) (a1) and 37C (heel area) (a2); (b) Commercial ethylene-vinyl
acetate (EVA) insole (uniform foam, (bottom) original and (top) after heating and stepping atop to
fit/program) (reproduced from [10]). Shore hardness (measured from top) 42C (forefoot area) (b1) and
35C (heel area) (b2) (slight difference between the forefoot and heel should be due to the bottom of the
heel is not a flat surface as the forefoot).

EnertorTM, as shown in Figure 1a, is essentially a closed-cell polyurethane foam composite,
in which polyborodimethylsiloxane (PBDMS) is dispersed through the foam matrix to provide the
shear-thickening function [9]. Since ethylene-vinyl acetate (EVA) is preferred to polyurethane by the
footwear industry (Figure 1b), TAICHI 1.0 is developed to utilize an EVA-based foam with another
shear-thickening material involving P4U (brand name, from Shenzhen Suer Intelligent New Material
Technology Co., Ltd., Shenzhen, China) used as a PBDMS replacement in the foam composite [11].
As compared with a typical commercial EVA insole, shown in Figure 1b, EnertorTM, shown in Figure 1a,
has a higher shore hardness durometer of 55C against 42C for commercial EVA at the insole’s forefoot
area (Figure 1a1,a2,b1,b2).

Additionally, some solution-state thermoplastic polymers or their composites and insufficiently
cross-linked solid-state thermoset polymers possess a similar shear-thickening feature, but the
shear-thickening effect is insignificant [12].

This paper intends to serve a two-fold purpose. First, an experimental investigation on the influence
of water content in a particular shear-thickening hydrogel (Slime, refer to Section 2.1 for its details),
in which the weight ratio between borax and polyvinyl alcohol (PVA) is fixed. Hydrogels with superior
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rebound performance are identified via experimentally determined energy recovery ratio. This study
adopts the use of Slime due to its easy accessibility and convenience to tailor its mechanical properties
such as hardness and viscosity via manipulating only the water content. While the Slime is sensitive to
water/moisture, and thus not ideal in many real applications without proper seal design, it shares most of
the shear-thickening characteristics present in other shear-thickening materials. Secondly, two types of
hydrogels with better rebound performance are identified and integrated into a commercially produced
EVA insole to produce a shear-thickening composite. Subsequently, the composite insole rebound
performance of the forefoot and heel is compared with the original EVA insole and a commercial
shear-thickening insole (EnertorTM). A few conclusions are obtained based on the experimental results.

2. Shear-Thickening Hydrogel (Slime): Fabrication and Characterization

2.1. Materials and Experimental

Slime (also called Flubber) refers to a particular borax hydrogel formed by crosslinking of PVA
with a boron compound in water [13,14]. Slimes containing higher water content with a consistency
similar to chum gum can flow under gravitational force and “self-heal”. Furthermore, it displays soft
and ductile behavior and is easy to deform under low-speed stretching, however, upon high-speed
stretching, it tends to display hard and brittle behavior and fracture at a small strain. The observed
shear-thickening effect is more apparent when the water content is relatively higher. With a decrease in
water content, Slime becomes increasingly difficult to flow under the gravitational force. Similar to
many hydrogels, dried Slime intrinsically has the heating and water/moisture responsive shape memory
effect (SME), i.e., it is able to recover its original shape only if a particular stimulus (e.g., heat and/or
water/moisture) is applied [15–17]. The SME in a piece of dried Slime is demonstrated in Figure 2,
in which (a) to (c) demonstrates the heating-responsive shape recovery in the first round of shape
memory cycle, and (c) to (e) reveals the water/moisture-induced shape recovery in the second round of
shape memory cycle.
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wetting by water droplet, and then drying in air. 

Here, Elmer’s clear glue was utilized for PVA and 20 Mule Team Borax Detergent Booster for 
borax. The inclusion of additional chemicals in these commercial products were meant to fine-tune 
certain performance characteristics for the targeted functions of these commercial products and not 
necessarily intended for the borax hydrogel investigated. Local tap water in Singapore was used 
without any further treatment. Seven different types of samples were prepared. In this study, the 
weight ratio between borax and PVA glue was kept as 7:10, while the amount of tap water varied 
from 10% to 70% in weight percentage. Herein, unless otherwise stated, the water content in % is 
meant for tap water in wt%. Refer to Table 1 for the ingredients for 500 g of each type of sample. 
  

Figure 2. Shape memory effect (SME) in dried Slime. (a) Dried Slime; (b) After heating and twisting;
(c) After heating for shape recovery; (d) After a second round of heating and twisting; (e) After wetting
by water droplet, and then drying in air.

Here, Elmer’s clear glue was utilized for PVA and 20 Mule Team Borax Detergent Booster for borax.
The inclusion of additional chemicals in these commercial products were meant to fine-tune certain
performance characteristics for the targeted functions of these commercial products and not necessarily
intended for the borax hydrogel investigated. Local tap water in Singapore was used without any
further treatment. Seven different types of samples were prepared. In this study, the weight ratio
between borax and PVA glue was kept as 7:10, while the amount of tap water varied from 10% to 70%
in weight percentage. Herein, unless otherwise stated, the water content in % is meant for tap water in
wt%. Refer to Table 1 for the ingredients for 500 g of each type of sample.
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Table 1. Ingredients of seven types of samples (for 500 g).

Sample No. Water (wt%) Borax (g) PVA Glue (g) Tap Water (g)

1 10 185.3 264.7 50

2 20 164.7 235.3 100

3 30 144.4 205.9 150

4 40 123.5 176.5 200

5 50 102.9 147.1 250

6 60 82.4 117.6 300

7 70 61.8 88.2 350

For the preparation of hydrogel samples, first, the measured amount of borax was mixed with the
required amount of tap water, and then stirred for good dissolving. Then, the predetermined amount
of PVA glue was added to the mixture. The mixture was further stirred and rolled, if necessary, for one
hour to ensure good homogeneity. Then, the resulted hydrogel was aged at a room temperature of about
20 ◦C and an atmospheric pressure of 758.00 mmHg, for 24 h, in dark, enclosed and sealed conditions
to release the residual stress and to enhance homogeneity. Hydrogel samples of two geometrical
dimensions, i.e., cylindrical (diameter 68 mm and height 20 mm) and in blocks (104 × 104 mm, 36 mm
thick), were prepared and used for characterization.

For non-Newtonian fluids, their flow properties cannot be described by a single constant viscosity.
For this hydrogel, when shear stress is applied, it thickens and becomes more viscous. The time taken
for a 9.6 mm diameter steel ball (weight 4 g and density 7.8 g/cm3) to sink from the surface to the
base (20 mm) of the hydrogel was measured using a digital stopwatch. Viscosity (η) was calculated
according to [2] as:

η =
2gr2( ρ2 − ρ1)

(
1− r

R

)2.25

9υ
(1)

where g is 9.81 m/s2, ρ1 is the density of hydrogel, ρ2 is the density of the sphere (7.8 g/cm3), υ is the
falling time over the fixed distance of 20 mm, r is the radius of the steel ball (4.8 mm), and R is the
radius of the cylindrical hydrogel sample (34 mm).

Only the cylindrical samples with 50% tap water content or more were tested. For the hydrogels
with less water content, i.e., 10% to 40% tap water, they were able to retain their shapes under
gravitational force for long periods, and it would take a very long time for the ball to sink by using
its weight. Thus, block-shaped samples of these hydrogels were tested for their stress versus strain
relationship under quasi-static uniaxial compression. They were loaded with a deadweight of 250 g
in the first loading step, and then the load was gradually increased with an increment of 100 g in
each following step. Unloading was applied after about 1950 g was reached. The height change was
recorded immediately after the required load was reached.

For the rebound test to evaluate the energy recovery, a 36 mm diameter spherical steel ball
(weight 23 g) was dropped from a height of 100 cm onto the surface of the block-shaped samples.
The rebound height (h) was measured from the highest point achieved by the sphere’s lower surface
from the first rebound. Thus, energy recovery ratio (in %) can be calculated according to Equation (2):

Energy recovery ratio =
Rebound height

Drop height
× 100% (2)

where the drop height is 100 cm.
While a higher rebound height value suggests better energy recovery, the shear-thickening effect

is meant for shear-induced significant strengthening, i.e., a striking increase in hardness. Except for the
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loading/unloading tests, all other experiments were repeated a few times. Herein, the stress and strain
are meant for the engineering stress and engineering strain.

2.2. Results and Analysis

In Figure 3, the relationship between the time to sink and water content of the hydrogels with 50%,
60%, and 70% tap water content are plotted. The results are consistent as the error bar is very small.
Within the tap water content range 50%–70%, the sink time decreases rapidly, from about 22 min to
less than one min. Subsequently, in Figure 4, the relationship between viscosity and tap water content
is presented, which essentially shares the same trend as that of the relationship between the time to
sink and water content in Figure 3. The drop in viscosity is about 50 times, from 16,115 to 334 Pa.s,
when the tap water content is increased from 50% to 70%.
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Figure 4. Influence of tap water content (wt%) on the viscosity of hydrogels.

Figure 5 (left) presents the stress versus strain relationship in loading/unloading in a step-by-step
manner (quasi-static) for the hydrogels with a tap water content from 10% to 40%. It is apparent that
these hydrogels are much softer than normal commercial EVA insoles [18], and with an increase in
water content, the hydrogel softens under uniaxial compression (Figure 5, right).
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(black lines are data fitting of the slopes) and comparison of the slopes in loading/unloading (right).

The hydrogels with 10% and 20% tap water content appear to be highly linear elastic after the
applied load is over a limit. Before this limit is reached, the strain is negligible. It is also noticed that
cracks tend to appear in these hydrogels, and these cracks cannot be easily self-healed.

For the hydrogel with 30% tap water, this limit is found at a lower compressive stress level.
Upon further loading, the stress versus strain curve appears to be linear until in the last loading step,
where apparent softening appears. In the following process of unloading from about 20% strain,
which is reached at the maximum load, the stress versus strain relationship is linear until the applied
load is fully removed in the last unloading step. A small amount of residual strain is observed, and a
small gap between the loading and unloading curves is also observed. The slopes in loading (c) and
unloading (c’) are about the same (refer to Figure 5, right). It appears that in the early unloading stage,
the strain largely remains the same. It suggests a kind of friction-like energy dissipation inside of
the material.

The hydrogel with 40% tap water starts to deform from the beginning of loading in a quasi-linear
manner, and hardening starts from about 35% strain. In the unloading process, there is no apparent
change in strain at the beginning, which is the same as that in the hydrogel with 30% tap water, but this
unloading range is much larger in this hydrogel. The later unloading curve is more or less linear, and a
significant amount of residual strain is observed. The comparison of the slopes in unloading shows
that the hydrogels with 30% tap water and 40% tap water are about the same.

It can be concluded that, with the increase in water content, the hydrogel changes from hard and
elastic to soft and viscous. The gap between loading and unloading curves, which indicates a kind of
energy dissipation, increases with an increase in water content. If the tap water content is 50% or more,
referring to the relationship between the sinking time and water content in Figure 3, “plastic” flow
becomes more and more dominant.

The decrease in the load limit to initiate remarkable deformation upon compression appears to be
associated with the water content. The hydrogen bonding between the borate ions and PVA chains
may be weakened with an increase in water content, so that internal sliding starts at a lower stress
level and the hydrogel appears to be softer. However, once over compressed, strain hardening occurs.
It suggests that with a decrease in water content, the hydrogel becomes similar to Bingham fluid [12].
The hardened hydrogel does not soften upon unloading, which results in remarkable residual strain in
the hydrogel with 40% tap water.
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The energy recovery ratio (in %) as a function of tap water content is plotted in Figure 6. For the
particular setup in the current rebound test, the maximum energy recovery, about 30%, seemingly
appears in the hydrogels with about 20% tap water content. As mentioned above, with an increase in
water content, the response of the hydrogel shifts from hard and elastic to soft and viscous. While the
shear-thickening effect is meant for significant hardening under impact loading, which appears to
be more apparent in these hydrogels with more water, in terms of energy recovery measured by
the rebound performance, relatively harder hydrogels (i.e., with less water), but still much softer
than the EVA sole, appear to be better. Hence, for the intended application of this study, we should
select the shear-thickening materials that have better rebound performance, instead of remarkable
shear-thickening effect.

Inventions 2020, 5, x FOR PEER REVIEW 7 of 12 

The energy recovery ratio (in %) as a function of tap water content is plotted in Figure 6. For the 
particular setup in the current rebound test, the maximum energy recovery, about 30%, seemingly 
appears in the hydrogels with about 20% tap water content. As mentioned above, with an increase in 
water content, the response of the hydrogel shifts from hard and elastic to soft and viscous. While the 
shear-thickening effect is meant for significant hardening under impact loading, which appears to be 
more apparent in these hydrogels with more water, in terms of energy recovery measured by the 
rebound performance, relatively harder hydrogels (i.e., with less water), but still much softer than 
the EVA sole, appear to be better. Hence, for the intended application of this study, we should select 
the shear-thickening materials that have better rebound performance, instead of remarkable shear-
thickening effect. 

 
Figure 6. Energy recovery ratio (in %) as a function of tap water content (in wt%). 

2.3. Shear-Thickening Composites 

Hydrogels with a 25% and 37% water content were employed in the investigation of integration 
with EVA insoles and were prepared in the same approach as mentioned in Section 2.1. These two 
samples were selected for further testing since harder hydrogels with 20% water content or less tend 
to crack upon compression, which has self-healing difficulties due to low water content while softer 
hydrogels with 40% water content or more possess unsatisfactory energy recovery even with a 
striking change in hardness against impacts. 

Figure 7a shows the shape and dimensions of the designed insole. The insole is designed to have 
a surrounding ring of EVA, which can be trimmed to tailor-fit various foot sizes and shapes or bent 
around the foot curvature to form a foam cage within the shoe lining and provide enhanced 
protection. There is 10 mm diameter through holes at the insole middle area to enable unconstrained 
stretching at high temperatures for exploiting the SME properties of EVA to achieve comfort fitting 
purposes [18,19]. Figure 7b shows an as-fabricated elastic EVA sole produced by Dong Guan Bid Ace 
Co. Ltd. with the density of the fabricated EVA sole at about 105 kg/m3. Since the density of EVA is 
between 926 and 950 kg/m3, the porosity ratio of the EVA sole is about 90%. The Shore hardness for 
the insole’s forefoot area is measured to be around 45C while the heel area is about 50C. 

Figure 6. Energy recovery ratio (in %) as a function of tap water content (in wt%).

2.3. Shear-Thickening Composites

Hydrogels with a 25% and 37% water content were employed in the investigation of integration
with EVA insoles and were prepared in the same approach as mentioned in Section 2.1. These two
samples were selected for further testing since harder hydrogels with 20% water content or less tend
to crack upon compression, which has self-healing difficulties due to low water content while softer
hydrogels with 40% water content or more possess unsatisfactory energy recovery even with a striking
change in hardness against impacts.

Figure 7a shows the shape and dimensions of the designed insole. The insole is designed to have
a surrounding ring of EVA, which can be trimmed to tailor-fit various foot sizes and shapes or bent
around the foot curvature to form a foam cage within the shoe lining and provide enhanced protection.
There is 10 mm diameter through holes at the insole middle area to enable unconstrained stretching at
high temperatures for exploiting the SME properties of EVA to achieve comfort fitting purposes [18,19].
Figure 7b shows an as-fabricated elastic EVA sole produced by Dong Guan Bid Ace Co. Ltd. with the
density of the fabricated EVA sole at about 105 kg/m3. Since the density of EVA is between 926 and
950 kg/m3, the porosity ratio of the EVA sole is about 90%. The Shore hardness for the insole’s forefoot
area is measured to be around 45C while the heel area is about 50C.
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Figure 7. The EVA insole. (a) Details of insole design; (b) As-fabricated sole. Shore hardness is 45C for
the forefoot area and 50C for the heel area; (c) After modification with additional 10 mm diameter holes
(for filling of shear-thickening hydrogel).

Without the surrounding ring, as shown in Figure 8, the middle portion of the insole with an array
of holes can be easily stretched at around 55 ◦C, which is the glass transition temperature of the EVA
material. After cooling the insole back to room temperature, the length of the middle area increases
from 60 to 75 mm. The length extension of the insole can be mostly remedied upon heating to above
55 ◦C, again using a hair dryer [18]. Additional 10 mm diameter through holes at the insole forefoot
and heel areas were produced by drilling to fill the hydrogel material, as shown in Figure 7c for the
location of the holes.
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The drilled holes within the insole were filled with Slime hydrogel and a two-dimensional (2D)
highly stretchable elastic cloth was used to cover the top and bottom surfaces of the insole to securely
house the hydrogel inside. Two insole samples were manufactured for further testing, which involved
the utilization of 25% and 37% water content Slime hydrogel. Figure 9 shows the stress versus strain
relationships of the 2D elastic cloth in uniaxial stretching along two directions on the cloth surface.
One side of the elastic cloth was coated with a very thin layer of commercial thermoplastic polyurethane
TPU 265 which worked as melting glue to firmly bond the elastic cloth and EVA insole together,
while preventing the hydrogel from leaking through the elastic cloth and water in the hydrogel from
evaporation [20].
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Figure 9. Typical stress versus strain relationships of 1 mm thick commercial two-dimensional (2D)
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Figure 10 presents the top view of the two modified EVA insoles, where the surrounding rings
were partially cut out such that the residual flaps can easily fold up to bond with the shoe upper in the
next development stage of shape memory shoes. Since the standalone hydrogel is much softer than the
EVA insole (refer to [18] for the mechanical behavior of typical EVA insole), the modified EVA hybrid
insole integrated with hydrogel is expected to be softer than the original EVA sole.
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2.4. Rebound Performance and Comparison

The setup of the rebound performance test is illustrated in Figure 11. The tested insole was firmly
stuck to the ground using a strong double-sided tape with a piece of ruler vertically placed near the
tested insole. A video camera was used to record the whole process including the release of cylinder
mass onto the test insole and the subsequent rebounds. A stainless-steel cylinder mass weighing
222.4 g of 30 mm diameter and 40 mm length was released from a distance H of approximately 300 mm
above the top surface of the insole to hit the forefoot or heel area. Since the 30 mm diameter of the
cylinder mass is far larger than the 10 mm diameter of the drilled holes, the contact area for a normal
direction impact consists of one or more hydrogel filled holes and the enclosing EVA material when the
bottom surface of the cylinder mass impacts the top surface of the modified EVA insole. The maximum
rebound height H’ was obtained from the video recording via frame-by-frame analysis of the cylinder
mass trajectory. Since a variation of falling trajectories is expected, only the results of tests in which
the bottom side of the steel cylinder vertically hit the top surface of the sole are valid and included in
the analysis.
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The energy recovery ratio (in %) is calculated by,

Energy recovery ratio =
H′

H
× 100%. (3)

In addition to the original EVA insole and two modified insoles containing 25% and 37% water
content hydrogels, respectively, a commercial shear-thickening insole EnertorTM from D3O Lab,
as shown in Figure 1, was also tested for comparison.

In Figure 12, the energy recovery ratios (in %) of the original EVA insole, EVA modified insoles
with two types of hydrogels containing 25% and 37% water content, and D3O insole are compared
for both the forefoot and heel areas. For the testing conditions applied in the current investigation,
the rebound performance of EVA modified insole with hydrogel (25%) is outstanding among all the
tested materials. The average energy recovery ratio for both its forefoot and heel area is over 40%,
well above that of the original EVA sole, EVA sole modified with hydrogel (37%), and D3O insole.
Regarding Figure 6, the rebound performance of the EVA modified insole with hydrogel (25%) is
superior to the pure hydrogel, whose rebound performance was at best 30%. Comparing between the
original EVA insole and the D3O insole, it can be observed that the rebound performance of the original
EVA insole forefoot area outperforms that of the D3O insole, but its heel area rebound performance
is inferior to the D3O insole. After applying modification with a hydrogel of 37% water content,
the rebound performance of the forefoot area slightly declines but still outperforms the D3O insole,
while the rebound performance of the heel area has significant improvements, and therefore is superior
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to the D3O insole. It suggests the importance of shear-thickening material selection with optimized
compositions tailored to achieve the best performance for the composite.Inventions 2020, 5, x FOR PEER REVIEW 11 of 12 
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With the current approach of modification via filling of holes with shear-thickening hydrogel,
the modified EVA insole with shear-thickening composite is softer than the original EVA sole and is
mostly able to keep the original elasticity under slow speed loading. However, the partial replacement
of EVA foam with hydrogel is at the expense of increased weight. Furthermore, it is problematic
to preserve the water content in hydrogel, and hence there could be longevity concerns for the
insole application despite potential performance advantages. Commercial shear-thickening insoles,
such as TAICHI 1.0 and EnertorTM, are foam composites with high porosity ratios, and the embedded
shear-thickening materials are not sensitive to water/moisture. Despite these challenges that could be
explored in future studies, the experimental investigation reported here demonstrates that the energy
recovery ratio is the key parameter in the selection of the shear-thickening material to achieve enhanced
rebound performance of the composite that outperforms the elastic foam and shear-thickening material,
while being softer than the elastic foam.

3. Conclusions

The influence of water content is investigated in a shear-thickening hydrogel, namely Slime. It was
found that hydrogels with higher water content have a striking shear-thickening effect, while hydrogels
with relatively lower water content have better energy recovery, which is very important in this
application, and still have the capability of self-healing. With a decrease in water content, the hydrogel
becomes a kind of Bingham fluid. Although it is revealed experimentally via the rebound experiment
under defined testing conditions, the trend should be generic. This study provides guidelines for the
selection of non-hydrogel shear-thickening material to replace Slime in the next step.

Two types of shear-thickening hydrogels with 25 wt% and 37 wt% water content experimentally
determined to possess superior energy recovery were selected to modify a commercially produced
elastic EVA insole to become shear-thickening composites. We found under the particular testing
conditions applied in the rebound experiment, that the EVA insole modified with a hydrogel containing
25% water content was outstanding in terms of rebound performance and was superior to the original
EVA insole, EVA insole modified with a hydrogel containing 37% water content, commercial D3O
insole, and even the hydrogel itself. While the shear-thickening effect of hydrogel containing 25%
water content does not appear striking, its capability in energy recovery is excellent, while being
still softer than the EVA insole. It appears that higher energy recovery ratio, but not the striking
shear-thickening effect, is the important parameter to ensure the best rebound performance of the
composites. The particular structure of the shear-thickening composite might be an additional reason
for its better performance than that of the commercial D3O insole. Further investigation is required
for verification.
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This study successfully demonstrates that softer and better rebound performance can be achieved
simultaneously in shear-thickening composites, only if the right shear-thickening material is selected.
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