# Modelling of Boiling Flows for Nuclear Thermal Hydraulics Applications—A Brief Review

## Abstract

**:**

## 1. Introduction

## 2. The ‘Eulerian–Eulerian’ Two-Fluid Simulation Approach

#### 2.1. Our Current Understanding of Vertical Upward Subcooled Flow Boiling

#### 2.2. Overview of a Practical Simulation Method for Component-Scale Analysis of Boiling

## 3. An Assessment of the Basic Wall-Boiling Model

#### 3.1. Current Understanding of the Cycle of Processes Associated with Boiling at a Surface

#### 3.2. Basic Wall-Boiling Model for Eulerian–Eulerian Simulation

#### 3.3. Manual Assessment of the RPI Model

## 4. Development of Boiling Models and Their Implementation in CFD Simulation

#### 4.1. Importance of the Wall-Boiling Model

#### 4.2. Development of Wall-Boiling Models

_{DF}, lift force F

_{L}and liquid reaction to bubble expansion F

_{H}), surface tension, gravity and wall-adhesion forces.

## 5. Development of Physics-Based Microscopic Models of Boiling

#### 5.1. The Interface-Capturing Simulation Approach

- -
- With the volume of fluid (VOF) method [37], the volume fraction of the ‘primary’ fluid is used to distinguish the two phases;
- -
- The level set (LS) method [38] identifies the interface as the zero level of a function representing the shortest distance from the interface;
- -
- The front tracking (FT) [39] method describes the interface as a set of massless particles moved around by the fluid velocity field.

#### 5.2. Further Developments for Extension to Boiling Conditions

#### 5.2.1. Modelling Mass Transfer

#### 5.2.2. Modelling Bubble–Wall Interaction

#### 5.3. Application of Interface-Capturing Simulation

#### 5.3.1. Computation of Bubble Departure Diameters and Frequencies

#### 5.3.2. Surface Phenomena

#### 5.3.3. Towards CHF Prediction: Modelling the Collective Behaviour of a Small Population of Bubbles

## 6. Outlook—Future Issues

- (1)
- The two-fluid approach to modelling flow boiling presented in this review relies on a number of approximations and empirical parameters that limit the applicability of the approach, which should be considered obsolete, as more capable and physically consistent methods have now been developed.
- (2)
- Application of modern interface capturing methods to problems typical of boiling in laboratory conditions, typically in low-pressure, low-subcooling pool boiling mode, enabled gaining unprecedented insight on the process of bubble formation and release at a surface. However, none of the interface capturing methods discussed in this review are yet applicable to highly turbulent subcooled bubbly flows typical of reactor operations.
- (3)
- Extensions to modelling the behaviour of the solid–liquid–vapour contact line at the base of a steam bubble are in their early stages of development, and a general model that is applicable to any fluid or surface material does not yet exist.
- (4)
- Modelling of evaporation at the phase boundary (e.g., the curved surface of a bubble) has to date been possible only for the case of thermally driven evaporation in near-equilibrium conditions. Thus, efforts should be pursued to extend current modelling capabilities to non-equilibrium conditions and cases where both dynamic and thermal effects determine bubble behaviour.

## Funding

## Conflicts of Interest

## References

- Yadigaroglu, G. CMFD and the critical-heat-flux grand challenge in nuclear thermal–hydraulics—A letter to the Editor of this special issue. Int. J. Multiph. Flow
**2014**, 67, 3–12. [Google Scholar] [CrossRef] - Ha, T.-W.; Jeong, J.J.; Yun, B.-J. Improvement of the MARS subcooled boiling model for a vertical upward flow. Nucl. Eng. Technol.
**2019**, 51, 977–986. [Google Scholar] [CrossRef] - Nandi, K.; Giustini, G. Numerical Modeling of Boiling. In Two-Phase Flow for Automotive and Power Generation Sectors; Saha, K., Kumar Agarwal, A., Ghosh, K., Som, S., Eds.; Springer: Singapore, 2019; pp. 381–398. [Google Scholar] [CrossRef]
- Colombo, M.; Fairweather, M. Accuracy of Eulerian–Eulerian, two-fluid CFD boiling models of subcooled boiling flows. Int. J. Heat Mass Transf.
**2016**, 103, 28–44. [Google Scholar] [CrossRef] - Ishii, M.; Hibiki, T. Thermo-Fluid Dynamics of Two-Phase Flow; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Ishii, M.; Zuber, N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows. Aiche J.
**1979**, 25, 843–855. [Google Scholar] [CrossRef] - Drew, D.A.; Lahey, R.T. Application of general constitutive principles to the derivation of multidimensional two-phase flow equations. Int. J. Multiph. Flow
**1979**, 5, 243–264. [Google Scholar] [CrossRef] - Anglart, H.; Nylund, O. CFD application to prediction of void distribution in two-phase bubbly flows in rod bundles. Nucl. Eng. Des.
**1996**, 163, 81–98. [Google Scholar] [CrossRef] - Alajbegovic, A.; Drew, D.A.; Lahey, R.T. An analysis of phase distribution and turbulence in dispersed particle/liquid flows. Chem. Eng. Commun.
**1999**, 174, 85–133. [Google Scholar] [CrossRef] - Končar, B.; Kljenak, I.; Mavko, B. Modelling of local two-phase flow parameters in upward subcooled flow boiling at low pressure. Int. J. Heat Mass Transf.
**2004**, 47, 1499–1513. [Google Scholar] [CrossRef] - Lo, S. Modelling multiphase flow with an Eulerian approach. In VKI Lecture Series-Industrial Two-Phase Flow CFD; von Karman Institute: Sint-Genesius-Rode, Belgium, 2005. [Google Scholar]
- Yeoh, G.H.; Tu, J.Y. A unified model considering force balances for departing vapour bubbles and population balance in subcooled boiling flow. Nucl. Eng. Des.
**2005**, 235, 1251–1265. [Google Scholar] [CrossRef] - Dhir, V.K. Boiling heat transfer. Annu. Rev. Fluid Mech.
**1998**, 30, 365–401. [Google Scholar] [CrossRef] - Jung, S.; Kim, H. Hydrodynamic formation of a microlayer underneath a boiling bubble. Int. J. Heat Mass Transf.
**2018**, 120, 1229–1240. [Google Scholar] [CrossRef] - Thakrar, R.; Murallidharan, J.S.; Walker, S.P. An evaluation of the RPI model for the prediction of the wall heat flux partitioning in subcooled boiling flows. In Proceedings of the 2014 22nd International Conference on Nuclear Engineering, Prague, Czech Republic, 7–11 July 2014. [Google Scholar]
- Vadlamudi, S.R.G.; Nayak, A.K. CFD simulation of Departure from Nucleate Boiling in vertical tubes under high pressure and high flow conditions. Nucl. Eng. Des.
**2019**, 352, 110150. [Google Scholar] [CrossRef] - Khoshnevis, A.; Sarchami, A.; Ashgriz, N. Effect of nucleation bubble departure diameter and frequency on modeling subcooled flow boiling in an annular flow. Appl. Therm. Eng.
**2018**, 135, 280–288. [Google Scholar] [CrossRef] - Kurul, N.; Podowski, M.Z. Multidimensional effects in forced convection subcooled boiling. In Proceedings of the International Heat Transfer Conference Digital Library, Jerusalem, Israel, 19–24 August 1990. [Google Scholar]
- Gilman, L.; Baglietto, E. A self-consistent, physics-based boiling heat transfer modeling framework for use in computational fluid dynamics. Int. J. Multiph. Flow
**2017**, 95, 35–53. [Google Scholar] [CrossRef] - Goel, P.; Nayak, A.K.; Das, M.K.; Joshi, J.B. Bubble departure characteristics in a horizontal tube bundle under cross flow conditions. Int. J. Multiph. Flow
**2018**, 100, 143–154. [Google Scholar] [CrossRef] - Kocamustafaogullari, G.; Ishii, M. Interfacial area and nucleation site density in boiling systems. Int. J. Heat Mass Transf.
**1983**, 26, 1377–1387. [Google Scholar] [CrossRef] - Bartolomei, G.; Chanturiya, V. Experimental study of true void fraction when boiling subcooled water in vertical tubes. Therm. Eng.
**1967**, 14, 123–128. [Google Scholar] - Tolubinsky, V.; Kostanchuk, D. Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling. In Proceedings of the International Heat Transfer Conference 4, Paris-Versailles, France, 31 August–5 September 1970. [Google Scholar]
- Thakrar, R.; Murallidharan, J.; Walker, S.P. CFD investigation of nucleate boiling in non-circular geometries at high pressure. Nucl. Eng. Des.
**2017**, 312, 410–421. [Google Scholar] [CrossRef] - Klausner, J.F.; Mei, R.; Bernhard, D.M.; Zeng, L.Z. Vapor bubble departure in forced convection boiling. Int. J. Heat Mass Transf.
**1993**, 36, 651–662. [Google Scholar] [CrossRef] - Colombo, M.; Fairweather, M. Prediction of bubble departure in forced convection boiling: A mechanistic model. Int. J. Heat Mass Transf.
**2015**, 85, 135–146. [Google Scholar] [CrossRef] - Colombo, M.; Thakrar, R.; Fairweather, M.; Walker, S.P. Assessment of semi-mechanistic bubble departure diameter modelling for the CFD simulation of boiling flows. Nucl. Eng. Des.
**2019**, 344, 15–27. [Google Scholar] [CrossRef][Green Version] - Sugrue, R.; Buongiorno, J. A modified force-balance model for prediction of bubble departure diameter in subcooled flow boiling. Nucl. Eng. Des.
**2016**, 305, 717–722. [Google Scholar] [CrossRef] - Wang, X.; Wu, Z.; Wei, J.; Sundén, B. Correlations for prediction of the bubble departure radius on smooth flat surface during nucleate pool boiling. Int. J. Heat Mass Transf.
**2019**, 132, 699–714. [Google Scholar] [CrossRef] - Ardron, K.H.; Giustini, G.; Walker, S.P. Prediction of dynamic contact angles and bubble departure diameters in pool boiling using equilibrium thermodynamics. Int. J. Heat Mass Transf.
**2017**, 114, 1274–1294. [Google Scholar] [CrossRef] - Giustini, G.; Ardron, K.H.; Walker, S.P. A semi-analytical model of bubble growth and detachment during nucleate boiling. In Proceedings of the International Heat Transfer Conference 16, Beijing, China, 10–15 August 2018. [Google Scholar]
- Giustini, G.; Ardron, K.H.; Walker, S.P. Modelling of bubble departure in flow boiling using equilibrium thermodynamics. Int. J. Heat Mass Transf.
**2018**, 122, 1085–1092. [Google Scholar] [CrossRef] - Raj, S.; Pathak, M.; Kaleem Khan, M. An improved mechanistic model for predicting bubble characteristic size in subcooled flow boiling. Int. J. Heat Mass Transf.
**2020**, 149, 119188. [Google Scholar] [CrossRef] - Yun, B.-J.; Splawski, A.; Lo, S.; Song, C.-H. Prediction of a subcooled boiling flow with advanced two-phase flow models. Nucl. Eng. Des.
**2012**, 253, 351–359. [Google Scholar] [CrossRef] - Thakrar, R.; Walker, S.P. CFD prediction of subcooled boiling flow with semi-mechanistic bubble departure diameter modelling. In Proceedings of the 25th International Conference Nuclear Energy for New Europe (NENE-2016), Portoroz, Slovenia, 5–8 September 2016. [Google Scholar]
- Tryggvason, G.; Scardovelli, R.; Zaleski, S. Direct Numerical Simulations of Gas–Liquid Multiphase Flows; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar] [CrossRef]
- Hirt, C.W.; Nichols, B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys.
**1981**, 39, 201–225. [Google Scholar] [CrossRef] - Osher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys.
**1988**, 79, 12–49. [Google Scholar] [CrossRef][Green Version] - Unverdi, S.O.; Tryggvason, G. A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys.
**1992**, 100, 25–37. [Google Scholar] [CrossRef][Green Version] - Dhir, V.K.; Warrier, G.R.; Aktinol, E. Numerical Simulation of Pool Boiling: A Review. J. Heat Transf.
**2013**, 135. [Google Scholar] [CrossRef] - Nabil, M.; Rattner, A.S. interThermalPhaseChangeFoam—A framework for two-phase flow simulations with thermally driven phase change. SoftwareX
**2016**, 5, 216–226. [Google Scholar] [CrossRef][Green Version] - Irfan, M.; Muradoglu, M. A front tracking method for direct numerical simulation of evaporation process in a multiphase system. J. Comput. Phys.
**2017**, 337, 132–153. [Google Scholar] [CrossRef] - Tryggvason, G.; Thomas, S.; Lu, J. Direct Numerical Simulations of Nucleate Boiling. In Proceedings of the ASME 2008 International Mechanical Engineering Congress and Exposition, Boston, MA, USA, 31 October–6 November 2008; pp. 1825–1826. [Google Scholar]
- Rajkotwala, A.H.; Panda, A.; Peters, E.A.J.F.; Baltussen, M.W.; van der Geld, C.W.M.; Kuerten, J.G.M.; Kuipers, J.A.M. A critical comparison of smooth and sharp interface methods for phase transition. Int. J. Multiph. Flow
**2019**, 120, 103093. [Google Scholar] [CrossRef] - Ferrari, A.; Magnini, M.; Thome, J.R. Numerical analysis of slug flow boiling in square microchannels. Int. J. Heat Mass Transf.
**2018**, 123, 928–944. [Google Scholar] [CrossRef] - Georgoulas, A.; Andredaki, M.; Marengo, M. An Enhanced VOF Method Coupled with Heat Transfer and Phase Change to Characterise Bubble Detachment in Saturated Pool Boiling. Energies
**2017**, 10, 272. [Google Scholar] [CrossRef][Green Version] - Magnini, M.; Pulvirenti, B.; Thome, J.R. Numerical investigation of hydrodynamics and heat transfer of elongated bubbles during flow boiling in a microchannel. Int. J. Heat Mass Transf.
**2013**, 59, 451–471. [Google Scholar] [CrossRef] - Hardt, S.; Wondra, F. Evaporation model for interfacial flows based on a continuum-field representation of the source terms. J. Comput. Phys.
**2008**, 227, 5871–5895. [Google Scholar] [CrossRef] - Badillo, A. Quantitative phase-field modeling for boiling phenomena. Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
**2012**, 86, 041603. [Google Scholar] [CrossRef][Green Version] - Welch, S.W.J.; Wilson, J. A volume of fluid based method for fluid flows with phase change. J. Comput. Phys.
**2000**, 160, 662–682. [Google Scholar] [CrossRef] - Son, G.; Dhir, V.K.; Ramanujapu, N. Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface. J. Heat Transf.
**1999**, 121, 623–631. [Google Scholar] [CrossRef] - Gibou, F.; Chen, L.; Nguyen, D.; Banerjee, S. A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change. J. Comput. Phys.
**2007**, 222, 536–555. [Google Scholar] [CrossRef] - Esmaeeli, A.; Tryggvason, G. Computations of film boiling. Part I: Numerical method. Int. J. Heat Mass Transf.
**2004**, 47, 5451–5461. [Google Scholar] [CrossRef] - Juric, D.; Tryggvason, G. Computations of boiling flows. Int. J. Multiph. Flow
**1998**, 24, 387–410. [Google Scholar] [CrossRef] - Sato, Y.; Ničeno, B. A sharp-interface phase change model for a mass-conservative interface tracking method. J. Comput. Phys.
**2013**, 249, 127–161. [Google Scholar] [CrossRef] - Sato, Y.; Niceno, B. Nucleate pool boiling simulations using the interface tracking method: Boiling regime from discrete bubble to vapor mushroom region. Int. J. Heat Mass Transf.
**2017**, 105, 505–524. [Google Scholar] [CrossRef] - Szijártó, R.; Badillo, A.; Ničeno, B.; Prasser, H.M. Condensation models for the water–steam interface and the volume of fluid method. Int. J. Multiph. Flow
**2017**, 93, 63–70. [Google Scholar] [CrossRef] - Nichita, B.A. An Improved CFD Tool to Simulate Adiabatic and Diabatic Two-Phase Flows; EPFL: Lausanne, Switzerland, 2010; p. 181. [Google Scholar]
- Ganapathy, H.; Shooshtari, A.; Choo, K.; Dessiatoun, S.; Alshehhi, M.; Ohadi, M. Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels. Int. J. Heat Mass Transf.
**2013**, 65, 62–72. [Google Scholar] [CrossRef] - Sun, D.-L.; Xu, J.-L.; Wang, L. Development of a vapor–liquid phase change model for volume-of-fluid method in FLUENT. Int. Commun. Heat Mass Transf.
**2012**, 39, 1101–1106. [Google Scholar] [CrossRef] - Malgarinos, I.; Nikolopoulos, N.; Marengo, M.; Antonini, C.; Gavaises, M. VOF simulations of the contact angle dynamics during the drop spreading: Standard models and a new wetting force model. Adv. Colloid Interface Sci.
**2014**, 212, 1–20. [Google Scholar] [CrossRef][Green Version] - Villa, F.; Marengo, M.; De Coninck, J. A new model to predict the influence of surface temperature on contact angle. Sci. Rep.
**2018**, 8, 6549. [Google Scholar] [CrossRef] [PubMed] - Afkhami, S.; Buongiorno, J.; Guion, A.; Popinet, S.; Saade, Y.; Scardovelli, R.; Zaleski, S. Transition in a numerical model of contact line dynamics and forced dewetting. J. Comput. Phys.
**2018**, 374, 1061–1093. [Google Scholar] [CrossRef][Green Version] - Guion, A.; Afkhami, S.; Zaleski, S.; Buongiorno, J. Simulations of microlayer formation in nucleate boiling. Int. J. Heat Mass Transf.
**2018**, 127, 1271–1284. [Google Scholar] [CrossRef][Green Version] - Stephan, P.C.; Busse, C.A. Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. Int. J. Heat Mass Transf.
**1992**, 35, 383–391. [Google Scholar] [CrossRef] - Giustini, G.; Jung, S.; Kim, H.; Ardron, K.H.; Walker, S.P. Microlayer evaporation during steam bubble growth. Int. J. Therm. Sci.
**2019**, 137, 45–54. [Google Scholar] [CrossRef] - Hänsch, S.; Walker, S. Microlayer formation and depletion beneath growing steam bubbles. Int. J. Multiph. Flow
**2019**, 111, 241–263. [Google Scholar] [CrossRef] - Sato, Y.; Niceno, B. A depletable micro-layer model for nucleate pool boiling. J. Comput. Phys.
**2015**, 300, 20–52. [Google Scholar] [CrossRef] - Giustini, G.; Kim, I.; Kim, H. Comparison between modelled and measured heat transfer rates during the departure of a steam bubble from a solid surface. Int. J. Heat Mass Transf.
**2020**, 148, 119092. [Google Scholar] [CrossRef] - Lal, S.; Sato, Y.; Niceno, B. Direct numerical simulation of bubble dynamics in subcooled and near-saturated convective nucleate boiling. Int. J. Heat Fluid Flow
**2015**, 51, 16–28. [Google Scholar] [CrossRef] - Murallidharan, J.; Giustini, G.; Sato, Y.; Ničeno, B.; Badalassi, V.; Walker, S.P. Computational Fluid Dynamic Simulation of Single Bubble Growth under High-Pressure Pool Boiling Conditions. Nucl. Eng. Technol.
**2016**, 48, 859–869. [Google Scholar] [CrossRef][Green Version] - Zhang, B.; Mao, Y.; Chen, C.-L.; Zhang, Y. Hybrid atomistic-continuum simulation of nucleate boiling with a domain re-decomposition method. Numer. Heat Transf. Part B Fundam.
**2017**, 71, 217–235. [Google Scholar] [CrossRef][Green Version] - Hänsch, S.; Walker, S. The hydrodynamics of microlayer formation beneath vapour bubbles. Int. J. Heat Mass Transf.
**2016**, 102, 1282–1292. [Google Scholar] [CrossRef] - Giustini, G.; Walker, S.P.; Sato, Y.; Niceno, B. Computational Fluid Dynamics Analysis of the Transient Cooling of the Boiling Surface at Bubble Departure. J. Heat Transf.
**2017**, 139. [Google Scholar] [CrossRef] - Sato, Y.; Niceno, B. Pool boiling simulation using an interface tracking method: From nucleate boiling to film boiling regime through critical heat flux. Int. J. Heat Mass Transf.
**2018**, 125, 876–890. [Google Scholar] [CrossRef]

**Figure 1.**Our current understanding of nucleate flow boiling in nuclear reactor conditions [2]. The bottom panel shows a diagram of the likely distribution of steam bubbles generated at a heated wall in vertical subcooled boiling. In the top panel, the likely distribution of cross-section averaged void fraction is shown. Flow regimes are identified depending on void fraction values: ‘single-phase convection’—zero void fraction; ‘highly subcooled’—bubbles are present only near the wall and condense as soon as released into the flow; ‘low subcooled’—permanence of steam bubbles in a body of partly subcooled liquid; ‘saturated boiling’—the fluid is entirely at or above the saturation temperature and bubbles fill up the pipe cross-section.

**Figure 2.**(

**a**) Current understanding of the cycle of processes associated with boiling; (

**b**) basic representation of the main mechanisms of wall heat transfer. From Thakrar et al. [15].

**Figure 4.**Comparison between measured wall temperatures, their values predicted using manual evaluation of the RPI model and boiling heat transfer correlations, for a typical boiling validation case. From [15].

**Figure 5.**Volume fraction distribution predicted with computational fluid dynamics (CFD) simulation using RPI modelling of wall-boiling. Note the mismatch between the size of the simulation domains, more than one metre in length, and the likely much smaller characteristic size of the steam bubbles generated at the heated wall, of perhaps only 10–100 micron in diameter. The computational mesh used to resolve the volume fraction distribution indicated in the figure consists of cells much larger than the single bubbles, which are replaced by a corresponding continuous distribution of the vapour phase. The image shows results for two different benchmark cases [22] (‘bar2’ and ‘bar4’ in the figure), using in in the CFD model the bubble departure diameter correlations of Tolubinskiy et al. [23] (panels (

**a**,

**c**) and Kocamustafaogullari et al. [21] (panels (

**b**,

**d**). For the same test case, different correlations for computing the bubble departure diameter return radically discrepant volume fraction distributions. From Colombo et al. [4].

**Figure 7.**An example of the accuracy of current bubble departure models used to generate input data for RPI-based CFD simulation of boiling flows. The blue squares indicate application [32] of the energy based model of Ardron et al. [30]. The black lines indicate results of application of the Klausner [25] and Yun [34] models, and of the empirical fit to the Klausner model by Sugrue et al. [28]. From [32].

**Figure 8.**Predicted bubble departure diameter (

**a**) and wall temperature (

**b**) in typical vertical subcooled flow boiling conditions, from Colombo et al. [27]. Lines correspond to different methods to compute bubble departure diameters: Tolubinskiy et al. correlation [23] (yellow lines), Kocamustafaogullari et al. correlation [21] (green lines), Klausner et al. model [25] (red lines), Sugrue et al. model [28] (black lines), Yun et al. model [34] (blue lines). In panel (

**b**), squares denote experimental wall temperature values [22].

**Figure 9.**Example of interface-capturing simulation of boiling at the scale of the single steam bubbles, from Tryggvason et al. [43]. Computational meshes used for this kind of simulation are required to resolve the details of the vapour–liquid interface (grey surface in the figure), typically resulting in cell sizes of a few micrometres in realistic boiling conditions.

**Figure 11.**Panels (

**a**,

**b**) indicate, respectively, the bubble shape and heat flux distribution at the solid surface reconstructed from measurement. Panel (

**c**) shows comparison of heat flux distributions at the solid surface beneath a bubble from interface-capturing simulation (solid lines) and from the experiment (squares). The dashed lines represent predictions of the heat flux from the solid surface to the liquid obtained with the physical model used for RPI simulation of boiling at the component scale. From Giustini et al. [69,74].

**Figure 12.**Simulation of the collective behaviour of steam bubbles in pool boiling [56] at a heat flux of 300 KW/m

^{2}, tracking the evolution of a few bubbles for two seconds until the bubbles merge and form a vapour blanket on the solid surface.

Authors | Interface Capturing Method | Mass Transfer Model | Application |
---|---|---|---|

Welch et al. [50] | VOF | Heat flux balance | Film boiling |

Son et al. [51] | Level Set | Conduction in interface cells | Film boiling, single bubble growth |

Gibou et al. [52] | Level Set | Heat flux balance | Film boiling |

Tryggvason et al. [43,53,54] | Front Tracking | Heat flux balance | Film boiling, nucleate boiling |

Sato et al. [55,56] | ‘Constrained Interpolation Profile’ VOF | Heat flux balance | Nucleate boiling |

Hardt et al. [45,46,47,48] | VOF | Kinetic model | Film boiling, single bubble growth, boiling in microchannels |

Badillo [49,57] | Phase Field, VOF | Asymptotic relaxation model | Single bubble growth |

Nichita [58] | VOF + Level Set | Conduction in interface cells | Single bubble growth |

Ganapathy et al. [59] | VOF | Conduction in interface cells | Boiling in microchannels |

Sun et al. [60] | VOF | Conduction in liquid cells | Film boiling |

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Giustini, G.
Modelling of Boiling Flows for Nuclear Thermal Hydraulics Applications—A Brief Review. *Inventions* **2020**, *5*, 47.
https://doi.org/10.3390/inventions5030047

**AMA Style**

Giustini G.
Modelling of Boiling Flows for Nuclear Thermal Hydraulics Applications—A Brief Review. *Inventions*. 2020; 5(3):47.
https://doi.org/10.3390/inventions5030047

**Chicago/Turabian Style**

Giustini, Giovanni.
2020. "Modelling of Boiling Flows for Nuclear Thermal Hydraulics Applications—A Brief Review" *Inventions* 5, no. 3: 47.
https://doi.org/10.3390/inventions5030047