# Thermal Aspects of Casson Nanoliquid with Gyrotactic Microorganisms, Temperature-Dependent Viscosity, and Variable Thermal Conductivity: Bio-Technology and Thermal Applications

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

_{2}O

_{3}/water nanoparticles. Mahanthesh et al. [9] numerically executed the Hall effects and shape factor of nanoparticles configured by a rotating frame. Hayat et al. [10] scrutinized the Darcy flow of Jeffrey nanofluid with nonlinear radiation prospective. Maleki et al. [11] showed the MAR and artificial neural network applications while examining the thermal consequences of ZnO nano-materials. The Joule heating aspects in dissipative flow of nanofluid with chemical reaction effects was worked out by Shahzad et al. [12]. Ibrahim [13] presented the slip flow of tangent hyperbolic nanoparticles by utilizing convective condition approach. Wang et al. [14] used difference approximation to study the MgO nanoparticles thermal performance. The oscillatory surface flow of micropolar nanofluid with station point phenomenon has been focused by Nadeem et al. [15]. Khan and Shehzad [16] analyzedflow of third grade nanofluid with appliances of analytical approach. Ibrahim and co-researchers [17] employed the modified heat and mass flux relations for tangent hyperbolic nanofluid flow over a moving configuration. Eid and Mabdood [18] investigated the entropy generation analysis for thermally developed flow of micropolar dusty carbon nano-materials under the influence of heat generation features. In another investigation, Eid et al. [19] focused on chemically reactive flow of Carreau nanofluid induced by nonlinear stretched configuration. Al-Hossainy et al. [20] examined the rheological features of Casson nanofluid immersed in porous medium where numerical solution was computed by using famous spectral quasi-linearization numerical scheme with excellent accuracy. The utilization of gold nanoparticles in blood flow of Sisko fluid under the influence of nonlinear thermal radiation and suction/injection aspects was directed by Eid et al. [21]. Boumaiza and co-investigators [22] examined the Falkner-Skan flow of nanoparticles (copper, alumina, and magnetite) in presence of external magnetic force. Eid et al. [23] analyzed the shape factors of nanoparticles in blood flow with additional impact of nonlinear thermal radiation and heat source/sink. An interesting numerical approach namely finite element scheme was followed to simulate the solution. Rehman et al. [24] discussed the heat transfer phenomenon in rotatory flow of magnetized nanoparticles induced by rigid disk. Ragupathi et al. [25] focused on thermal performances of Fe

_{3}O

_{4}and Al

_{2}O

_{3}nanoparticles flow over a Riga surface. The flow of ferrofluid in a cavity was numerically tackled by Li et al. [26]. Saranya et al. [27] studied the thermal features of ferrofluid subject to the aligned magnetic force. Besthapu et al. [28] utilized the slip effects in stagnation point flow of nanofluid over a convectively heated surface. Abdelmalek et al. [29] investigated the thermally developed flow of viscous nanofluid in grooved computational channel. Rasool et al. [30] analyzed the aspects I entropy generation in flow of Williamson nanofluid over a nonlinear stretched surface. Reddy and Chamkha [31] analyzed the heat transfer enhancement in flow of Al

_{2}O

_{3}–water and TiO

_{2}–water nanoparticles in presence of diffusion-thermo features. RamReddyet al. [32] examined the Soret effects in mixed convection flow of nanofluid with the help of convective boundary conditions. The Falkner-Skan flow of Williamson nanofluid in presence of variable Prandtl number was focused by Basha et al. [33].

- Develop an unsteady mathematical model for flow of Casson nanofluid induced by a periodically oscillating stretched surface.
- The bioconvection aspects of nanoparticles are studied in presence of gyrotactic microorganisms.
- In current analysis, the viscosity of fluid is assumed to be temperature dependent.
- The novel features like mixed convection, activation energy, and nonlinear thermal radiation are also utilized to examine the heat and mass transfer phenomenon.
- The physical consequences for each flow parameter are illustrated graphically.

## 2. Mathematical Modeling

- The magnetic force features are taken into account by imposing it in vertical directions. Following to the assumption of very large magnetic diffusivity, the effects of induced magnetic field and Hall current are neglected.
- The viscosity of fluid is assumed to be temperature dependent by using famous Reynolds exponential concept.
- The activation energy features are utilizedin the concentration by using Arrhenius relations.
- The nanofluid temperature, concentration, and gyrotactic microorganisms are symbolizedby T, C, and N, respectively.
- Let T
_{w}be the surface temperature, C_{w}is surface concentration, while N_{w}is for surface motile density.

## 3. Homotopy Analysis Method

## 4. Convergence Analysis

## 5. Solution Verification

## 6. Discussion

## 7. Final Remarks

- The temperature-dependent viscosity, thermophoresis parameter, and Casson fluid parameter effectively improve the nanofluid temperature.
- The radiation parameter and heating source constant increases the temperature profile.
- Presence of activation energy and Casson fluid parameter improves the concentration field of nano-materials.
- The increment in Peclet number bioconvection and Lewis number declined microorganisms field while this physical quantity get maximum variation with Casson fluid parameter and bioconvection Rayleigh number.
- The wall shear force oscillates with time which increases for viscosity parameter and Casson fluid parameter.
- The results from the present flow model havevarious fundamental applications in solar energy systems, heat transfer enhancement, cooling and heating processes, environmental applications, thermal engineering, bio-sensors, enzymes, energy consumptions, bio-fuels applications and bio-technology.
- The obtained results can be further extended for different non-Newtonian fluid models by performing the stability analysis and utilizing distinct features like entropy generation, Joule heating, variable thermal conductivity, porous medium etc.

## Author Contributions

## Funding

## Conflicts of Interest

## Nomenclature

$\left(u,v\right)$ | Velocity component |

$C$ | Concentration |

${T}_{w}$ | Surface temperature |

${N}_{w}$ | Surface motile density |

${\mu}^{\ast}$ | Temperature dependent viscosity |

${\beta}^{\ast}$ | Coefficient of volume suspension |

${\alpha}_{\otimes}$ | Thermal diffusivity |

$\nu $ | Knematic viscosity |

${\Lambda}^{\otimes}$ | Effective heat nanoparticles and effective base liquid heat capacity |

${E}_{a}$ | Activation energy |

${\rho}_{p}$ | Nanoparticles density |

${\rho}_{m}$ | Motile microorganism density |

$n$ | Rate constant |

${b}^{\oplus}$ | Chemotaxis constant |

$\kappa $ | Boltzmann constant |

$\theta $ | Dimensionless temperature profile |

$S$ | oscillating frequency to stretching rate ratio |

$\mathsf{\Omega}$ | Hartmann number |

$Rb$ | Bioconvection Rayleigh number |

$\mathrm{Pr}$ | Prandtl number |

$\sigma $ | Reaction constant |

$Nt$ | Thermophoresis parameter |

$Pe$ | Peclet number |

$k$ | Thermal conductivity |

${q}_{s}$ | Mass flux |

${\mathrm{Re}}_{x}$ | Local Reynolds number |

$S{h}_{x}$ | Local Sherwood number |

$T$ | Temperature |

${\rho}_{f}$ | Fluid density |

${K}_{r}$ | Reaction rate |

${D}_{B}$ | Diffusion constant |

$\kappa $ | Boltzmann constant |

${w}^{\oplus}$ | Swimming cells speed |

$\varphi $ | Concentration profile |

$\chi $ | Motile microorganism |

$\lambda $ | Mixed convection parameter |

$Nb$ | Brownian motion parameter |

$Nr$ | Buoyancy ratio constant |

$\varpi $ | microorganisms concentration difference |

$Le$ | Lewis number |

$E$ | activation energy constant |

$Lb$ | Bioconvection Lewis number |

${q}_{h}$ | Heat flux at wall |

${q}_{n}$ | Motile microorganism flux |

$N{u}_{x}$ | Local Nusselt number |

$N{n}_{x}$ | Local motile density number |

$N$ | Gyrotactic microorganisms |

${C}_{w}$ | surface concentration |

$t$ | Time |

$\mathsf{\Gamma}$ | Casson fluid parameter |

${\sigma}^{\otimes}$ | Electrical conductivity |

${D}_{m}$ | Microorganisms diffusion constant |

${B}_{0}$ | Magnetic field strength |

$g$ | Gravity |

## References

- Afzal, K.; Aziz, A. Transport and heat transfer of time dependent MHD slip flow of nanofluids in solar collectors with variable thermal conductivity and thermal radiation. Results Phys.
**2016**, 6, 746–753. [Google Scholar] [CrossRef][Green Version] - Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. ASME Publ. Fed.
**1995**, 231, 99–106. [Google Scholar] - Buongiorno, J. Convective Transport in Nanofluids. J. Heat Transf.
**2005**, 128, 240–250. [Google Scholar] [CrossRef] - Turkyilmazoglu, M. Flow of nanofluid plane wall jet and heat transfer. Eur. J. Mech. B Fluids
**2016**, 59, 18–24. [Google Scholar] [CrossRef] - Bhatti, M.M.; Khalique, C.M.; Bég, T.A.; Bég, O.A.; Kadir, A. Numerical study of slip and radiative effects on magnetic Fe
_{3}O_{4}-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion. Mod. Phys. Lett. B**2019**, 34, 2050026. [Google Scholar] [CrossRef] - Zhang, L.; Arain, M.B.; Bhatti, M.; Zeeshan, A.; Hal-Sulami, H. Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl. Math. Mech.
**2020**, 41, 637–654. [Google Scholar] [CrossRef] - Ijaz, M.; Ayub, M. Nonlinear convective stratified flow of Maxwell nanofluid with activation energy. Heliyon
**2019**, 5, e01121. [Google Scholar] [CrossRef][Green Version] - Shahrestani, M.I.; Maleki, A.; Shadloo, M.S.; Tlili, I. Numerical Investigation of Forced Convective Heat Transfer and Performance Evaluation Criterion of Al
_{2}O_{3}/Water Nanofluid Flow inside an Axisymmetric Microchannel. Symmetry**2020**, 12, 120. [Google Scholar] [CrossRef][Green Version] - Mahanthesh, B.; Amala, S.; Gireesha, B.J.; Animasaun, I.L. Effectiveness of exponential heat source, nanoparticle shape factor and Hall current on mixed convective flow of nanoliquids subject to rotating frame. Multidiscip. Model. Mater. Struct.
**2019**, 15, 758–778. [Google Scholar] [CrossRef] - Hayat, T.; Bibi, F.; Farooq, S.; Khan, A.A. Nonlinear radiative peristaltic flow of Jeffrey nanofluid with activation energy and modified Darcy’s law. J. Braz. Soc. Mech. Sci. Eng.
**2019**, 41, 296. [Google Scholar] [CrossRef] - Maleki, A.; Elahi, M.; Assad, M.E.H.; Nazari, M.A.; Shadloo, M.S.; Nabipour, N. Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS. J. Therm. Anal. Calorim.
**2020**, 1–12. [Google Scholar] [CrossRef] - Shahzad, F.; Sagheer, M.; Hussain, S. MHD tangent hyperbolic nanofluid with chemical reaction, viscous dissipation and Joule heating effects. AIP Adv.
**2019**, 9, 025007. [Google Scholar] [CrossRef] - Ibrahim, W. Magnetohydrodynamics (MHD) flow of a tangent hyperbolic fluid with nanoparticles past a stretching sheet with second order slip and convective boundary condition. Results Phys.
**2017**, 7, 3723–3731. [Google Scholar] [CrossRef] - Wang, N.; Maleki, A.; Nazari, M.A.; Tlili, I.; Shadloo, M.S. Thermal Conductivity Modeling of Nanofluids Contain MgO Particles by Employing Different Approaches. Symmetry
**2020**, 12, 206. [Google Scholar] [CrossRef][Green Version] - Nadeem, S.; Ullah, N.; Khan, A.U. Impact of an oblique stagnation point on MHD micropolar nanomaterial in porous medium over an oscillatory surface with partial slip. Phys. Scr.
**2019**, 94, 065209. [Google Scholar] [CrossRef] - Khan, S.U.; Shehzad, S.A. Brownian movement and thermophoretic aspects in third grade nanofluid over oscillatory moving sheet. Phys. Scr.
**2019**, 94, 095202. [Google Scholar] [CrossRef] - Ibrahim, W.; Gizewu, T. Tangent hyperbolic nanofluid with mixed convection flow: An application of improved Fourier and Fick’s diffusion model. Heat Transf. Asian Res.
**2019**, 48, 4217–4239. [Google Scholar] [CrossRef] - Eid, M.R.; Mabood, F. Entropy analysis of a hydromagnetic micropolar dusty carbon NTs-kerosene nanofluid with heat generation: Darcy-Forchheimer scheme. J. Therm. Anal. Calorim.
**2020**, 1–18. [Google Scholar] [CrossRef] - Eid, M.R.; Mahny, K.; Dar, A.; Muhammad, T. Numerical study for Carreau nanofluid flow over a convectively heated nonlinear stretching surface with chemically reactive species. Phys. A Stat. Mech. Appl.
**2020**, 540, 123063. [Google Scholar] [CrossRef] - Al-Hossainy, A.F.; Eid, M.R.; Zoromba, M.S. SQLM for external yield stress effect on 3D MHD nanofluid flow in a porous medium. Phys. Scr.
**2019**, 94, 105208. [Google Scholar] [CrossRef] - Eid, M.R. Effects of NP Shapes on Non-Newtonian Bio-Nanofluid Flow in Suction/Blowing Process with Convective Condition: Sisko Model. J. Non-Equilib.
**2020**, 45, 97–108. [Google Scholar] [CrossRef] - Boumaiza, N.; Kezzar, M.; Eid, M.R.; Tabet, I. On numerical and analytical solutions for mixed convection Falkner-Skan flow of nanofluids with variable thermal conductivity. Waves Random Complex Media
**2019**, 1–20. [Google Scholar] [CrossRef] - Eid, M.R.; Al-Hossainy, A.F.; Zoromba, M.S. FEM for Blood-Based SWCNTs Flow Through a Circular Cylinder in a Porous Medium with Electromagnetic Radiation. Commun. Theor. Phys.
**2019**, 71, 1425. [Google Scholar] [CrossRef] - Rehman, K.U.; Shahzadi, I.; Malik, M.; Al-Mdallal, Q.; Zahri, M. On heat transfer in the presence of nano-sized particles suspended in a magnetized rotatory flow field. Case Stud. Therm. Eng.
**2019**, 14, 100457. [Google Scholar] [CrossRef] - Ragupathi, P.; Abdul Hakeem, A.K.; Al-Mdallal, Q.M.; Ganga, B.; Saranya, S. Non-uniform heat source/sink effects on the three-dimensional flow of Fe
_{3}O_{4}/Al_{2}O_{3}nanoparticles with different base fluids past a Riga plate. Case Stud. Therm. Eng.**2019**, 15, 100521. [Google Scholar] [CrossRef] - Li, Z.; Shafee, A.; Ramzan, M.; Rokni, H.B.; Al-Mdallal, Q.M. Simulation of natural convection of Fe
_{3}O_{4}-water ferrofluid in a circular porous cavity in the presence of a magnetic field. Eur. Phys. J. Plus**2019**, 134, 77. [Google Scholar] [CrossRef] - Saranya, S.; Al-Mdallal, Q. Non-Newtonian ferrofluid flow over an unsteady contracting cylinder under the influence of aligned magnetic field. Case Stud. Therm. Eng.
**2020**, 100679. [Google Scholar] [CrossRef] - Besthapu, P.; Haq, R.U.; Bandari, S.; Al-Mdallal, Q. Thermal radiation and slip effects on MHD stagnation point flow of non-Newtonian nanofluid over a convective stretching surface. Neural Comput. Appl.
**2017**, 31, 207–217. [Google Scholar] [CrossRef] - Abdelmalek, Z.; Rehman, K.U.; Al-Mdallal, Q.; Al-Kouz, W.; Malik, M. Dynamics of thermally magnetized grooved flow field having uniformly heated circular cylinder: Finite element analysis. Case Stud. Therm. Eng.
**2020**, 100718. [Google Scholar] [CrossRef] - Rasool, G.; Zhang, T.; Chamkha, A.J.; Shafiq, A.; Tlili, I.; Shahzadi, G. Entropy Generation and Consequences of Binary Chemical Reaction on MHD Darcy–Forchheimer Williamson Nanofluid Flow Over Non-Linearly Stretching Surface. Entropy
**2019**, 22, 18. [Google Scholar] [CrossRef][Green Version] - Reddy, P.S.; Chamkha, A.J. Soret and Dufour effects on MHD convective flow of Al
_{2}O_{3}-water and TiO_{2}-water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv. Powder Technol.**2016**, 27, 1207–1218. [Google Scholar] [CrossRef] - Ramreddy, C.; Murthy, P.S.; Chamkha, A.J.; Rashad, A.M. Soret effect on mixed convection flow in a nanofluid under convective boundary condition. Int. J. Heat Mass Transf.
**2013**, 64, 384–392. [Google Scholar] [CrossRef] - Basha, H.T.; Sivaraj, R.; Reddy, A.S.; Chamkha, A.J.; Tilioua, M. Impacts of temperature-dependent viscosity and variable Prandtl number on forced convective Falkner–Skan flow of Williamson nanofluid. SN Appl. Sci.
**2020**, 2, 1–14. [Google Scholar] [CrossRef][Green Version] - Kuznetsov, A. The onset of nanofluid bioconvection in a suspension containing both nanoparticles and gyrotactic microorganisms. Int. Commun. Heat Mass Transf.
**2010**, 37, 1421–1425. [Google Scholar] [CrossRef] - Kuznetsov, A.V. Nanofluid bioconvection in water-based suspensions containing nanoparticles and oxytactic microorganisms: Oscillatory instability. Nanoscale Res. Lett.
**2011**, 6, 100. [Google Scholar] [CrossRef][Green Version] - Mallikarjuna, B.; Rashad, A.M.; Chamkha, A.J.; Abdou, M. Mixed bioconvection flow of a nanofluid containing gyrotactic microorganisms past a vertical slender cylinder. Front. Heat Mass Transf.
**2018**, 10, 21. [Google Scholar] [CrossRef][Green Version] - Uddin, M.J.; Alginahi, Y.; Bég, O.A.; Kabir, M.N. Numerical solutions for gyrotactic bioconvection in nanofluid-saturated porous media with Stefan blowing and multiple slip effects. Comput. Math. Appl.
**2016**, 72, 2562–2581. [Google Scholar] [CrossRef] - Amirsom, N.A.; Uddin, M.J.; Ismail, A.I.M. MHD boundary layer bionanoconvective non-Newtonian flow past a needle with Stefan blowing. Heat Transf. Asian Res.
**2018**, 48, 727–743. [Google Scholar] [CrossRef] - Khan, W.A.; Rashad, A.M.; Abdou, M.; Tlili, I. Natural bioconvection flow of a nanofluid containing gyrotactic microorganisms about a truncated cone. Eur. J. Mech. B Fluids
**2019**, 75, 133–142. [Google Scholar] [CrossRef] - Zohra, F.T.; Uddin, M.; Basir, F.; Ismail, A.I.M. Magnetohydrodynamic bio-nano-convective slip flow with Stefan blowing effects over a rotating disc. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst.
**2019**. [Google Scholar] [CrossRef] - Zhao, M.; Xiao, Y.; Wang, S. Linear stability of thermal-bioconvection in a suspension of gyrotactic micro-organisms. Int. J. Heat Mass Transf.
**2018**, 126, 95–102. [Google Scholar] [CrossRef] - Farooq, S.; Hayat, T.; Alsaedi, A.; Ahmad, B. Numerically framing the features of second order velocity slip in mixed convective flow of Sisko nanomaterial considering gyrotactic microorganisms. Int. J. Heat Mass Transf.
**2017**, 112, 521–532. [Google Scholar] [CrossRef] - Chamkha, A.; Rashad, A.M.; Kameswaran, P.K.; Abdou, M.M.M. Radiation Effects on Natural Bioconvection Flow of a Nanofluid Containing Gyrotactic Microorganisms Past a Vertical Plate with Streamwise Temperature Variation. J. Nanofluids
**2017**, 6, 587–595. [Google Scholar] [CrossRef] - Hayat, T.; Shafiq, A.; Alsaedi, A. Effect of Joule Heating and Thermal Radiation in Flow of Third Grade Fluid over Radiative Surface. PLoS ONE
**2014**, 9, e83153. [Google Scholar] [CrossRef][Green Version] - Khan, S.U.; Ali, N.; Mushtaq, T.; Rauf, A.; Shehzad, S.A. Numerical Computations on Flow and Heat Transfer of Casson Fluid over an Oscillatory Stretching Surface with Thermal Radiation. Therm. Sci.
**2019**, 23, 3365–3377. [Google Scholar] - Bhatti, M.; Khan, S.U.; Bég, O.A.; Kadir, A. Differential transform solution for Hall and ion-slip effects on radiative-convective Casson flow from a stretching sheet with convective heating. Heat Transf.
**2019**, 49, 872–888. [Google Scholar] [CrossRef] - Wang, C.Y. Nonlinear streaming due to the oscillatory stretching of a sheet in a viscous fluid. Acta Mech.
**1988**, 72, 261–268. [Google Scholar] [CrossRef] - Abbas, Z.; Wang, Y.; Hayat, T.; Oberlack, M. Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface. Int. J. Non-Linear Mech.
**2008**, 43, 783–793. [Google Scholar] [CrossRef][Green Version] - Zheng, L.; Jin, X.; Zhang, X.-X.; Zhang, J.-H. Unsteady heat and mass transfer in MHD flow over an oscillatory stretching surface with Soret and Dufour effects. Acta Mech. Sin.
**2013**, 29, 667–675. [Google Scholar] [CrossRef] - Liao, S. Advances in the Homotopy Analysis Method; World Scientific Pub Co Pte Lt: Singapore, 2013. [Google Scholar]
- Turkyilmazoglu, M. Analytic approximate solutions of rotating disk boundary layer flow subject to a uniform suction or injection. Int. J. Mech. Sci.
**2010**, 52, 1735–1744. [Google Scholar] [CrossRef] - Turkyilmazoglu, M. The analytical solution of mixed convection heat transfer and fluid flow of a MHD viscoelastic fluid over a permeable stretching surface. Int. J. Mech. Sci.
**2013**, 77, 263–268. [Google Scholar] [CrossRef] - Turkyilmazoglu, M. Convergence Accelerating in the Homotopy Analysis Method: A New Approach. Adv. Appl. Math. Mech.
**2018**, 10, 925–947. [Google Scholar] [CrossRef]

**Figure 3.**Variation in $\theta $ for (

**a**) $\mathsf{\Omega}$ and $\mathsf{\Gamma},$ (

**b**) $Nt$ and $Nb,$ (

**c**) $Nr$ and $Rb,$ (

**d**) $\mathrm{Pr}$ and $\delta ,$ (

**e**) $Rd$ and ${\theta}_{w}$.

**Figure 4.**Variation in $\varphi $ for (

**a**) $Nt$ and $\mathsf{\Gamma},$ (

**b**) $S$ and $\mathsf{\Omega},$ (

**c**) $Nr$ and $E$.

**Figure 6.**Variation in ${\mathrm{Re}}_{x}^{1/2}{C}_{f}$ for (

**a**) $\mathsf{\Gamma}$ and (

**b**) $\delta $.

**Table 1.**Comparison of ${f}_{\eta \eta}\left(0,\tau \right)$ with [48] when $S=1,\mathsf{\Gamma}\to \infty ,$ $\mathsf{\Omega}=0,$ $\delta =0,$ $\lambda =0,$ $Nr=0$ and $Rb=0$.

$\mathit{\tau}$ | Abbas et al. [48] | Present Results |
---|---|---|

$\tau =1.5\pi $ | 11.678656 | 11.678657 |

$\tau =5.5\pi $ | 11.678707 | 11.678708 |

$\tau =9.5\pi $ | 11.678656 | 11.678656 |

**Table 2.**Illustration of $-{\theta}_{\eta}\left(0,\tau \right),$ $-{\phi}_{\eta}\left(0,\tau \right)$ and $-{\chi}_{\eta}\left(0,\tau \right)$ for different flow parameters when $\tau =\pi /2$.

$\mathit{\delta}$ | $\mathit{N}\mathit{r}$ | $\mathit{R}\mathit{b}$ | $\mathit{\Gamma}$ | $\mathit{\Omega}$ | $\mathit{\lambda}$ | $-{\mathit{\theta}}_{\mathit{\eta}}\left(0,\mathit{\tau}\right)$ | $-{\mathit{\phi}}_{\mathit{\eta}}\left(0,\mathit{\tau}\right)$ | $-{\mathit{\chi}}_{\mathit{\eta}}\left(0,\mathit{\tau}\right)$ |
---|---|---|---|---|---|---|---|---|

0.2 0.4 0.6 | 0.3 | 0.1 | 0.3 | 0.5 | 0.5 | 0.45639 0.43208 0.41438 | 0.42355 0.41327 0.40768 | 0.57866 0.55554 0.53154 |

0.1 | 0.2 0.4 0.6 | 0.50523 0.47768 0.45455 | 0.47764 0.44542 0.41457 | 0.55657 0.52098 0.50896 | ||||

0.2 0.4 0.6 | 0.51214 0.48365 0.45456 | 0.44458 0.42898 0.40624 | 0.54811 0.53632 0.51614 | |||||

0.2 0.4 0.6 | 0.50256 0.47248 0.42695 | 0.46384 0.43657 0.41468 | 0.57213 0.54112 0.525333 | |||||

0.2 0.4 0.6 | 0.52659 0.47647 0.44892 | 0.44128 0.426589 0.39321 | 0.55526 0.53456 0.505254 | |||||

0.2 0.4 0.6 | 0.51653 0.54895 0.57035 | 0.47486 0.51559 0.53236 | 0.55546 0.565478 0.59598 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Al-Khaled, K.; Khan, S.U.
Thermal Aspects of Casson Nanoliquid with Gyrotactic Microorganisms, Temperature-Dependent Viscosity, and Variable Thermal Conductivity: Bio-Technology and Thermal Applications. *Inventions* **2020**, *5*, 39.
https://doi.org/10.3390/inventions5030039

**AMA Style**

Al-Khaled K, Khan SU.
Thermal Aspects of Casson Nanoliquid with Gyrotactic Microorganisms, Temperature-Dependent Viscosity, and Variable Thermal Conductivity: Bio-Technology and Thermal Applications. *Inventions*. 2020; 5(3):39.
https://doi.org/10.3390/inventions5030039

**Chicago/Turabian Style**

Al-Khaled, Kamel, and Sami Ullah Khan.
2020. "Thermal Aspects of Casson Nanoliquid with Gyrotactic Microorganisms, Temperature-Dependent Viscosity, and Variable Thermal Conductivity: Bio-Technology and Thermal Applications" *Inventions* 5, no. 3: 39.
https://doi.org/10.3390/inventions5030039