
inventions

Article

Autonomous Mobile Ground Control Point Improves
Accuracy of Agricultural Remote Sensing through
Collaboration with UAV

Xiongzhe Han 1,2,*, J. Alex Thomasson 1, Tianyi Wang 1 and Vaishali Swaminathan 1

1 Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843,
USA; thomasson@tamu.edu (J.A.T.); timothywangty@tamu.edu (T.W.);
vaishaliswaminathan@tamu.edu (V.S.)

2 Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National
University, Chuncheon, Kangwon 24341, Korea

* Correspondence: hanxiongzhe@kangwon.ac.kr; Tel.: +1-979-777-3628

Received: 31 October 2019; Accepted: 25 January 2020; Published: 2 March 2020
����������
�������

Abstract: Ground control points (GCPs) are critical for agricultural remote sensing that require
georeferencing and calibration of images collected from an unmanned aerial vehicles (UAV) at
different times. However, the conventional stationary GCPs are time-consuming and labor-intensive
to measure, distribute, and collect their information in a large field setup. An autonomous mobile GCP
and a collaboration strategy to communicate with the UAV were developed to improve the efficiency
and accuracy of the UAV-based data collection process. Prior to actual field testing, preliminary tests
were conducted using the system to show the capability of automatic path tracking by reducing the
root mean square error (RMSE) for lateral deviation from 34.3 cm to 15.6 cm based on the proposed
look-ahead tracking method. The tests also indicated the feasibility of moving reflectance reference
panels successively along all the waypoints without having detrimental effects on pixel values in
the mosaicked images, with the percentage errors in digital number values ranging from −1.1% to
0.1%. In the actual field testing, the autonomous mobile GCP was able to successfully cooperate with
the UAV in real-time without any interruption, showing superior performances for georeferencing,
radiometric calibration, height calibration, and temperature calibration, compared to the conventional
calibration method that has stationary GCPs.

Keywords: autonomous mobile GCP; collaboration strategy; georeferencing; radiometric calibration;
height calibration; temperature calibration

1. Introduction

The use of unmanned aerial vehicles (UAVs) as platforms to collect high-resolution multi-spectral
imagery is increasing rapidly in a wide variety of environmental and geographical studies including
in agriculture [1–3], forestry [4–6], ecology [7–9], mining [10–12], coastal assessments [13–15], and
fluvial surveys [16–18]. In agriculture, obtaining the accurate and timely status of crop growth, such
as canopy greenness, leaf area, water stress estimation, and various geographic features, including
crop area and digital surface models (DSMs), especially measured systematically over the growing
season, is of great interest to plant breeders and agronomists. Since UAV platforms can significantly
improve the spatial and temporal resolution of field images, they are increasingly used in precision
agriculture to maximize crop yield and to protect crops from losses [19,20]. To accelerate breeding
and genetics research, many types of imaging sensors, such as RGB [21,22], multispectral [23,24], and
thermal [25,26], are used on UAVs for mapping phenotypes at the plot or plant scale resolution [27–29].
The increasing capabilities of such remote sensing techniques are continuously pushing boundaries
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in agronomy and plant science, leading to the development of efficient management practices and
selection of superior plant varieties to meet current and future food demand.

Ground control points (GCPs) are used in creating aerial image mosaics, and their helpfulness
depends on their quality and quantity. Most UAVs are equipped with low-quality global positioning
system (GPS) receivers that are used to record the camera position during image capture, with a
few exceptions that use high-accuracy GPS [30–32]. Thus, employing high-precision GCPs in field
survey measurements is generally critical to improve the geometric accuracy and quality of digital
terrain models (DTMs), DSMs, and image mosaics [33,34]. In addition, some studies [35–37] have
demonstrated that increasing the quantity of GCPs installed across the fields, especially when the area
of interest is large, can remarkably improve photogrammetric surveys.

Precision agriculture is aimed at optimizing farming by maximizing productivity while minimizing
costs [38] and environmental risks. It depends on sensing technologies to provide spatiotemporal field
data for accurate positioning and mapping, data-analysis techniques for multivariate optimization
of mapped data, and automation technologies to apply the right types and amounts of production
inputs at optimal times and locations. Wireless networks have recently been introduced in precision
agriculture to gather and transmit field data [39]. In a non-mobile wireless network architecture,
the networked devices (nodes) are at fixed positions; e.g., in irrigation management, water quality
monitoring [40,41], control of humidity, temperature, carbon dioxide, and other significant factors
in greenhouses [42,43]. In a mobile architecture, the node devices move across the field during
operational periods; e.g., with data collection by farm vehicles, when a central farm manager or
computer oversees farm operations [44]. Numerous studies have demonstrated the utility of wireless
network technology in precision agriculture, but most have been limited to specific limited applications
over short distances. In one of our recent studies [45], a system of multifunctional GCPs and a wireless
network to communicate with the UAV were developed to improve the speed of GCP setup and provide
GCP data collection in real-time during UAV flights. The GCPs used in this study were not conventional
single-purpose systems. They demonstrated excellent potential for georeferencing, radiometric, and
height calibrations to reduce remote-sensing errors, and automating real-time communication to
maximize efficiency.

Collaboration among multiple autonomous vehicles could improve work rates and allow
time-critical tasks to meet deadlines by scaling up the number of operational machines [46,47].
Collaboration occurs when multiple vehicles share the same general task at the same time, and it
requires real-time wireless communication among vehicles on a peer-to-peer basis [48]. There has
been widespread interest in the investigation of collaborative motion control of fleets of autonomous
vehicles in agriculture [49].

One application in which collaboration may be particularly useful is in-field calibration of
remote-sensing systems. True calibration requires not simply sensor calibration, but measuring a
known object in the environment where unknown objects will be measured. Sensor values from
the unknown objects are then adjusted relative to the measurements of the known object. To be
repeatable from location to location and date to date, UAV measurements of plant reflectance, height,
and temperature require radiometric, height, and temperature calibrations. Radiometric calibration
provides consistent reflectance data under a wide range of environmental conditions [50,51]. GCPs with
known reflectance can be placed in the field, and crop reflectance data can be rapidly acquired by
flying the UAV equipped with a camera. The data can then later be calibrated with respect to the GCPs’
reflectance in post-processing, or possibly in real-time. Vegetation indices from the calibrated data
can potentially be used for making decisions and performing actions in farm management [52,53].
Height calibration involves improving the accuracy of crop height estimation based on the DSM.
Known-height GCPs can be used to provide height calibration data [54]. During the growing season,
variability in the height of crops provides essential information on plant health, growth, and response
to environmental effects. Recent studies have shown that crop height can be derived from 3D dense
point cloud data derived from structure-from-motion (SfM) [55,56], and GCP-based height calibration
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improves the accuracy of plant-height estimates [54]. Furthermore, UAV-based thermal remote sensing
has been applied to agricultural purposes, including plant disease detection, irrigation scheduling,
evaluation of fruit maturity, and detection of bruises in fruits and vegetables [57,58]. Using UAVs to
acquire highly accurate thermal image data requires integration with thermal references on the ground.
Ribeiro-Gomes et al. [59] proposed a calibration method for uncooled thermal cameras based on a
neural network, considering the sensor temperature and the digital response of each pixel as input data.
Thermal imaging has remained underexploited in the remote sensing domain for high throughput
phenotyping [60,61]. During thermal radiometric calibration, accounting for environmental conditions
that prevail during UAV image acquisition is very important for good accuracy [62,63]. Han et al. [64]
demonstrated the feasibility of using thermoelectric module-based temperature-controlled reference
panels for calibrating thermal images with reasonable accuracy in a wheat field. Carefully conducted
data calibration is time-consuming and labor-intensive based on the current methods. Therefore, it is
essential to develop automated calibration systems and methods that are appropriate for UAV-image
data collection in agriculture.

The overall goal of this research was to develop an autonomous mobile GCP for accurate
UAV-based agricultural remote sensing, in order to optimize the cost, productivity, efficiency, and
environmental impacts associated with agricultural production. Specific objectives of this study were
(1) to design, build, and test collaborative ground and aerial autonomous vehicles for acquisition of
calibrated agricultural remote sensing data and (2) to evaluate the autonomous mobile GCP in terms
of quality of georeferencing and calibration for reflectance, height, and temperature as compared to the
conventional system with fixed GCPs.

2. Materials and Methods

2.1. Unmanned Mobile GCP

2.1.1. Structure

An autonomous mobile GCP (Figure 1) was constructed with aluminum structure to minimize
weight while maintaining adequate strength. The GCP platform consists of a robotic base layer,
a control-unit layer, and a reference layer. The base layer consists of two DC Brushless motors
(10 inch-1000W; QS Motor, Taizhou, Zhejiang, China), two motor drivers (QSKBS48101X; QS Motor,
Taizhou, Zhejiang, China), two motor batteries (48V-20Ah; QS Motor, Taizhou, Zhejiang, China), two
rechargeable batteries (SLR155; Vmax, Belleville, MI, USA), and four spring-loaded caster wheels
(eight inch, 200lb; Shepherd Hardware Products, Three Oaks, MI, USA). The design of the base
layer enabled differential speed steering control of the front wheels in rugged agricultural terrains.
The control-unit layer hosted the following: (1) a high-level controller with an industrial computer
(ML500G-50; Logic Supply, South Burlington, VT, USA) that served as a navigation terminal to run path
tracking algorithms; (2) two RTK-GPS units (C94-M8P RTK-GPS; Ublox, Thalwil, Switzerland) that
enabled determination of positions and heading angles of the mobile GCP; (3) an XBee radio transceiver
(XBP9B-DMST-002; Digi International, Minnetonka, MN, USA) for communication between the UAV
and mobile GCP; (4) a low-level controller with a field-programmable gate array (FPGA) embedded
processor (myRIO-1900; National Instrument, Austin, TX, USA) to operate the motor wheels; and (5)
two temperature controllers (090097; Droking, Guangzhou, Guangdong, China) to control the thermal
reference panels. Similar to the hardware setup used in our previous studies [64], the two prototype
temperature calibration reference panels (cooling and heating) and the two radiometric calibration
reference panels (dark gray and light gray) installed on the reference layer facilitated calibration of
images from cameras, such as RGB, multispectral, and thermal.
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Figure 1. Individual components of the improved accuracy remote sensing system that comprises an
autonomous mobile GCP, the Matrice 100 UAV, and a base station.

2.1.2. Navigation System

The autonomous navigation of the GCP was based on a path tracking algorithm implemented
through a control system consisting of high-level and low-level controllers (Figure 2). While the
high-level controller regulated navigation, the low-level controller regulated differential speed steering.
Navigation in the high-level control module was based on waypoint tracking principles: when the
mobile GCP arrives within a pre-defined limit of boundary offset (LBO) distance of a waypoint, or
deviates from the target path, the high-level controller tries to maintain trajectory by searching for the
next waypoint. The waypoint data, created in the route data definition file (RDDF) format [65], were
used for path planning commands that include waypoint indexes, northing and easting coordinates,
LBO values, and traveling velocities. A look-ahead tracking method, which is conventionally used
for autonomous navigation [66,67], was implemented to steer the mobile GCP on a trajectory defined
by the pre-determined waypoints. Figure 3 depicts the look-ahead tracking method used to locate
subsequent target points (e.g., point M) on the path and determine corresponding steering angles,
relative to the current position of the mobile GCP. For a path look-ahead distance (Lt), defined as
the length of the prospective path, an imaginary point A was determined by adding the look-ahead
distance to the current location (point A′) in its direction of motion. Line AM, perpendicular to line A′A,
was constructed and the target point M was projected at the point of intersection of line AM and line
WPn WPn+1. For each generated target point, the steering angle of the mobile GCP was re-calculated
to guide the system along the path based on the look-ahead tracking method. The steering angle at
each location was calculated by subtracting the new waypoint angle (θ1) from the heading angle (θ2).
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Figure 3. Schematic diagram of the look-ahead tracking method for locating subsequent target points
on the path and determining corresponding steering angles (nomenclature: WP = waypoint; M = target
point; A = imaginary point; A′ = current location; Lt = look-ahead distance; θ1 = new waypoint angle;
θ2 = heading angle).

The real-time corrections for steering angle and velocity were relayed from the high-level
controller to the low-level controller through a universal asynchronous receiver/transmitter (UART)
serial communication device. The differential steering required to change the orientation of the GCP
and make it turn was achieved by unbalancing the left and right motor voltages, which resulted in
one drive running faster than the other to make a more gradual turn, rather than an in-place turn that
rotates about a central point. The difference in rotational speeds was proportional to the magnitude
and direction of the steering angle and was controlled by a closed-loop motor speed controller that
used speed values measured from the rotary encoders of the motor wheel as feedback signals.

2.2. Unmanned Aerial Systems

A quadcopter UAV (Matrice 100; DJI, Shenzhen, Guangdong, China) was used to collect
remote-sensing data and, in collaboration with the autonomous mobile GCP, enable calibration. The
UAV was autonomously piloted with mission planning software (Pix4Dcapture; Pix4D SA, Lausanne,
Switzerland) and remotely controlled during flights with DJI’s remote controller. The maximum flight
time was approximately 20 min, with a maximum range of 2 km and a maximum take-off weight of 3.6
kg. Prior to field testing, a multispectral camera (RedEdge; MicaSense, Seattle, WA, USA) installed on
the UAV was used in a preliminary test; then an RGB camera (Zenmuse X3; DJI, Shenzhen, Guangdong,
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China) and a thermal camera (ICI 8640 P-series; Infrared Cameras Inc; Beaumont, TX, USA) were
carried on the UAV separately to investigate whether the proposed autonomous mobile GCP would
perform as expected for collaborative remote-sensing calibration. All the cameras were triggered by an
onboard controller to vary the frame rate based on flight speed for optimal overlap between images.

The UAV was equipped with a modified RTK-GPS system (Figure 4) consisting of a low-cost GPS
module (C94-M8P RTK-GPS; Ublox, Thalwil, Switzerland), an Arduino controller (UNO; Arduino,
Somerville, MA, USA), a STM32 microcontroller (STM32F103C8T6; STMicroelectronics, Geneva,
Switzerland), and separate XBee radio receiver and transmitter units (XBP9B-DMST-002; Digi
International, Minnetonka, MN, USA). An RTK base station was used and included an Ublox
GPS module serving in base mode, a STM32 microcontroller, and an Xbee radio transmitter unit. The
differential-correction signals from the base station were transmitted through the XBee radio receiver
to the STM32 microcontroller mounted on the UAV, which then delivered the signals to the GPS-rover
module through the UART serial communication interface to achieve high GPS accuracy (within 2 cm
error) in real-time. The corrected coordinates of the UAV during the flight were transmitted to the
autonomous mobile GCP at 10 Hz with a baud rate of 19,200 bps through the Arduino controller and
the XBee radio transmitter.

Inventions 2019, 4, x FOR PEER REVIEW 6 of 18 

autonomous mobile GCP would perform as expected for collaborative remote-sensing calibration. 
All the cameras were triggered by an onboard controller to vary the frame rate based on flight speed 
for optimal overlap between images. 

The UAV was equipped with a modified RTK-GPS system (Figure 4) consisting of a low-cost 
GPS module (C94-M8P RTK-GPS; Ublox, Thalwil, Switzerland), an Arduino controller (UNO; 
Arduino, Somerville, MA, USA), a STM32 microcontroller (STM32F103C8T6; STMicroelectronics, 
Geneva, Switzerland), and separate XBee radio receiver and transmitter units (XBP9B-DMST-002; 
Digi International, Minnetonka, MN, USA). An RTK base station was used and included an Ublox 
GPS module serving in base mode, a STM32 microcontroller, and an Xbee radio transmitter unit. The 
differential-correction signals from the base station were transmitted through the XBee radio receiver 
to the STM32 microcontroller mounted on the UAV, which then delivered the signals to the GPS-
rover module through the UART serial communication interface to achieve high GPS accuracy 
(within 2 cm error) in real-time. The corrected coordinates of the UAV during the flight were 
transmitted to the autonomous mobile GCP at 10 Hz with a baud rate of 19,200 bps through the 
Arduino controller and the XBee radio transmitter. 

 
Figure 4. View of the modified RTK-GPS system onboard the UAV, consisting of a GPS module, 
Arduino controller, a GPS antenna, a STM32 microcontroller, and two XBee radio devices. 

2.3. Collaboration Strategy 

The autonomous mobile GCP has the potential to replace multiple conventional fixed GCPs 
[45,54], which have been used to improve the quality of image data and increase the efficiency of the 
calibration process. A collaboration strategy was proposed as shown in Figure 5. The mobile GCP 
was first placed close to the UAV starting point, and it subsequently navigated to the LBO of the 
starting point during takeoff. The decision to move towards the next target point was made based on 
the UAV coordinates sent continuously to the mobile GCP. The GCP control system checked whether 
the distance between the two platforms (𝐷𝐷) exceeded a threshold value (𝑀𝑀), which is the width of the 
ground footprint captured in the aerial imagery. The decision to move also depended on the direction 
of flight away from the mobile GCP, which was determined by checking whether the distance 
between subsequent points in the direction of flight increased continually (𝐷𝐷1 < 𝐷𝐷2). If all conditions 
were met, it was assumed the mobile GCP had been imaged by the UAV at the waypoint, and then 
the next waypoint should be used as a new target point. The mobile GCP reached the target point 
before the UAV returned and approached the mobile GCP within the threshold range 𝑀𝑀. The process 
was to be repeated in a cyclical manner throughout the flight. 

Figure 4. View of the modified RTK-GPS system onboard the UAV, consisting of a GPS module,
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2.3. Collaboration Strategy

The autonomous mobile GCP has the potential to replace multiple conventional fixed GCPs [45,54],
which have been used to improve the quality of image data and increase the efficiency of the calibration
process. A collaboration strategy was proposed as shown in Figure 5. The mobile GCP was first placed
close to the UAV starting point, and it subsequently navigated to the LBO of the starting point during
takeoff. The decision to move towards the next target point was made based on the UAV coordinates
sent continuously to the mobile GCP. The GCP control system checked whether the distance between
the two platforms (D) exceeded a threshold value (M), which is the width of the ground footprint
captured in the aerial imagery. The decision to move also depended on the direction of flight away from
the mobile GCP, which was determined by checking whether the distance between subsequent points
in the direction of flight increased continually (D1 < D2). If all conditions were met, it was assumed
the mobile GCP had been imaged by the UAV at the waypoint, and then the next waypoint should be
used as a new target point. The mobile GCP reached the target point before the UAV returned and
approached the mobile GCP within the threshold range M. The process was to be repeated in a cyclical
manner throughout the flight.
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2.4. Experimental Design

2.4.1. Preliminary Tests

Two preliminary tests were conducted with the autonomous mobile GCP. Prior to conducting
field tests, the autonomous tracking was tested on flat ground to investigate whether the mobile GCP
would follow a pre-defined path, and also to evaluate its performance in autonomous maneuvering.
An RDDF was created for a predefined path with a U-turn that connected two 25-m long parallel
paths. The trajectories of the mobile GCP as it traveled at 3 km/h were recorded to compare two
path-tracking algorithms: simple waypoint tracking and look-ahead tracking. The second part of
preliminary testing was to investigate the appropriate moving distance of the mobile GCP to improve
UAV remote sensing data. The UAV was flown with the multispectral camera at an altitude of 60 m
above ground level (AGL) and a ground speed of approximately 15 m/s. Two 61-cm square reflectance
reference panels (dark gray and light gray) were manually moved along the field road with two
movement patterns during UAV flights. The panels were first placed on successive waypoints, and
second on only odd-numbered successive waypoints, after the UAV had flown away from the previous
waypoint (Figure 5). The distances between two adjacent flight paths were 15.9 m, and the size of a
single image on the ground (i.e., black-color rectangle) was 53 m × 49 m. To investigate the effects of
the GCP movement on image quality in each mosaicked image, the digital numbers (DNs) extracted
from the reflectance references on the mosaicked images were compared to the raw images, which
included the corresponding reflectance reference panels.

2.4.2. Field Tests

The experiment was conducted within two hours of solar noon in a 0.1 km2 cotton field at the
Texas A&M AgriLife research farm (headquarters at latitude 30.549635 N, longitude 96.436821 W in the
WGS-84 coordinate system) near College Station, Texas, USA (Figure 6). Two UAV flights, with RGB
and thermal cameras flown separately, were conducted at 45 m AGL with ground speed of roughly 17
m/s, to achieve approximate ground resolutions of 1.93 cm and 6.62 cm during the respective flights.
A 75% overlap in both forward and sideward directions was achieved for both the RGB and thermal
images. Mosaicking of the RGB and thermal images was performed with Pix4Dmapper (Pix4D SA,
Lausanne, Switzerland) software. Two image-processing methods (conventional and a proposed new
method) were implemented with ArcMap 10.3 (ESRI, Redlands, CA, USA) to evaluate the effectiveness
of the autonomous mobile GCP for georeferencing, radiometric calibration, height calibration, and
temperature calibration.
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Conventional calibration was implemented by georeferencing the image mosaic with coordinates
from the RTK-GPS system on four fixed GCPs that had been developed in our previous research [54].
These were installed semi-permanently on the ground at the corners of the test field. Consistent with
the method used in our previous study, height calibration of the DSM was performed by fitting three
points, extracted from the upper and lower levels of a multi-level GCP and the ground, into a linear
equation. This fixed GCP, fastened to the ground on the southwest side of the field, had three 61-cm
square calibration reference panels (dark, medium, and light gray) installed at both levels. Radiometric
calibration of the image mosaic was implemented with a linear equation derived by fitting the average
DN values to reflectance values of the calibration reference panels in each spectral band. To calibrate
temperature with the conventional method, the average DN values of the fixed color panels on the
multi-level GCP were extracted, and then calibration parameters were calculated by using temperatures
measured with an IR thermometer (Fluke 64 MAX, Fluke, Everett, WA, USA).

The proposed calibration method involved using the mobile GCP in autonomous operation to
follow a predefined path, which included six waypoints along the farm road on the southwest side of
the test field. The strategy for collaboration between GCP and UAV, which was used to determine
the state of the mobile GCP at each waypoint, was based on the positions of the UAV during flight.
The spatial coordinates measured aboard the mobile GCP at each stopping point were used for
georeferencing, and the height and reference panel reflectance values at each of these points were used
for calibration. Height calibration was performed by fitting a linear equation through known height
values of the ground and the reference layer of the mobile GCP. Radiometric calibration was performed
based on reflectance from the dark and light gray reference panels mounted on top of the mobile
GCP. To perform temperature calibration of the thermal image mosaic, the temperature reference
panels installed on the top of the mobile GCP were powered on in advance for 10 min to ensure
stable temperatures before UAV-based thermal image collection. The temperature control modules
were set to 20 ◦C for the low-temperature reference and 60 ◦C for the high-temperature reference, to
cover the full range of temperature variations that crops experience during the season. Consistent
with the method used in our previous study [64], temperature calibration of the image mosaic was
performed with a linear calibration equation based on pixel values extracted from the low-temperature
reference and high-temperature reference. These values were the median of all pixels arranged on each
temperature reference.
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Accuracies of measurements obtained from the UAV-based images from the conventional and the
proposed autonomous mobile GCP-based calibration methods were evaluated for georeferencing and
object reflectance, height, and temperature calibrations in the image mosaic. To validate radiometric
calibration, the average reflectance error for each band in the calibrated image mosaic was calculated
from reflectance values of three differently colored panels (dark, medium, and light gray), which
were placed on the southwest and northeast sides of the test field. Similar to the test for radiometric
calibration, the average height error in the calibrated DSM was calculated based on two different
heights of boxes (54.6 cm and 109.2 cm) placed near the differently colored panels. Georeferencing
accuracy was validated by comparing horizontal accuracies of center point coordinates on the four
boxes, as estimated from the calibrated image mosaic, with the actual coordinates measured with the
RTK-GPS. The surface temperatures of the color panels extracted from the calibrated thermal image
mosaic were compared with the manual temperature measurements taken around the time of UAV
flight with the Fluke IR thermometer.

3. Results and Discussion

3.1. Preliminary Tests

3.1.1. Evaluation of Path Tracking Accuracy

Figure 7a,b show the actual trajectories of the mobile GCP along a U-shaped path on asphalt
pavement, obtained from the simple waypoint tracking and the look-ahead tracking methods,
respectively. There was little difference in the trajectories between the two methods on the first
straight path. However, the efficiency of look-ahead tracking became evident along the turn and
the second straight path, as the mobile GCP was more stable and maintained its trajectory along the
predefined path. Look-ahead tracking had a root mean square error (RMSE) in tracking that remained
within an acceptable range of 20 cm along the two straight paths. In contrast, simple waypoint tracking
had a much larger RMSE (Table 1). Figure 8 presents the histograms of the lateral deviations along the
entire trajectory for the two tracking methods. Most of the sampling points were distributed between 0
and 20 cm for the look-ahead tracking method, with the average error in deviation being 15.6 cm. In
summary, the preliminary test showed that the look-ahead tracking method performed better in path
tracking and, hence, it is a better candidate for autonomous navigation of the mobile GCP for UAV
remote sensing.
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Table 1. Comparison of RMSEs between the waypoint tracking and look-head tracking methods.

Simple Waypoint Tracking Look-Ahead Tracking

Line 1 18.1 cm 14.5 cm
Line 2 44.5 cm 19.0 cm
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3.1.2. Difference of DNs Error between Image Mosaic and Single Image

Figure 9a,b show portions of the mosaicked image obtained when the two reflectance reference
panels were moved along the farm road for every waypoint in the flight path and every odd numbered
waypoints in the flight path, respectively. When the reflectance reference panels were compared
between the two image mosaics, no apparent difference was observed. The average DN values of the
reflectance reference panels from single images were compared with DN values from the mosaicked
images. When the reflectance panels were moved to each waypoint (Figure 10a), the percentage
differences between mosaicked and raw images were low (−1.1–0.1%). When the panels were moved
only to the odd numbered waypoints (Figure 10b), the errors were −4.2–1.3%. Moving the mobile
GCP to each waypoint reduced the errors possibly because having more proximal references better
captured spatial variability in the field, and having more tie points during mosaicking improved the
image quality and, hence, the reflectance accuracy. This preliminary test also showed that there should
be no significant concern about errors that might result from moving reflectance reference panels



Inventions 2020, 5, 12 11 of 18

during flights, an advance over current agricultural UAV remote-sensing research, which typically
uses stationary reflectance reference panels in the field.
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3.2. Field Tests

3.2.1. Collaboration between UAV and Mobile GCP

Figure 11a shows the actual trajectories of the UAV (black dots) and the autonomous mobile GCP
(yellow dots) that were synchronized with the collaboration strategy mentioned previously. The mobile
GCP operated autonomously, without any interruption, and traversed to predefined waypoints with a
maximum lateral deviation <15 cm (RMSE = 5.8 cm). Figure 11b shows the results of heading angles
and operation mode commands obtained from the mobile GCP along the farm road. There was no
change in heading angle when the mobile GCP was stopped at each waypoint, and heading fluctuated
from 297.3◦ to 317.3◦ when in motion. Overall the mobile GCP performed as expected, stopping or
moving forward along the six waypoints when the operation commands changed from on (“1”) to off

(“0”) or from off to on, respectively. The proposed path tracking algorithm and collaboration strategy
worked effectively to establish communication between the UAV and the mobile GCP.
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3.2.2. Evaluating the Accuracy of Image Calibration

Table 2 compares the errors in georeferencing, radiometric calibration, height calibration, and
temperature calibration for the conventional and proposed methods. The coordinates of the boxes
placed in the field (Figure 6), extracted from the two image mosaics, indicated that our proposed
method has better georeferencing accuracy: within 10 cm of the coordinates measured with the
RTK-GPS. Although the proposed method significantly reduced georeferencing errors on the southwest
side of the field where the mobile GCP platform traversed, there was no noticeable improvement on
the northeast side of the field farther from the mobile GCP. This result indicates the potential of the
proposed method for including more GCPs to cover regions of the field too far away to benefit from a
single mobile GCP.
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Table 2. Accuracy improvements results between conventional method and proposed method from
the georeferencing, radiometric calibration, height calibration, and temperature calibration.

Item Field Location
Calibration Error

Conventional Method Proposed Method

Position (m)
Southwest side

Shorter box 0.327 0.052
Taller box 0.240 0.082

Northeast side
Shorter box 0.321 0.435
Taller box 0.357 0.471

Reflectance (%)

Southwest side

Black tile
R: 2.398 R: 0.896
G: 2.995 G: 1.160
B: 3.541 B: 1.838

Gray tile
R: 5.774 R: 0.735
G: 4.920 G: 0.115
B: 4.242 B: 0.290

White tile
R: 3.502 R: 2.586
G: 4.510 G: 2.771
B: 3.299 B: 2.134

Northeast side

Black tile
R: 2.252 R: 1.747
G: 2.085 G: 0.108
B: 6.556 B: 1.031

Gray tile
R: 5.983 R: 0.902
G: 3.486 G: 0.976
B: 3.915 B: 0.558

White tile
R: 2.420 R: 1.522
G: 4.304 G: 2.245
B: 1.364 B: 0.199

Height (m)
Southwest side

Shorter box 0.0626 0.0408
Taller box 0.0258 0.0149

Northeast side
Shorter box 0.0497 0.0409
Taller box 0.0428 0.0308

Temperature (◦C)

Southwest side
Black tile 8.742 0.761
Gray tile 9.516 1.357
White tile 4.136 1.435

Northeast side
Black tile 7.567 2.240
Gray tile 7.259 2.036
White tile 3.406 3.621

The proposed method also performed better in terms of radiometric calibration, with error in
calibration ranging from 0.115% to 2.771%, as compared to 1.364–6.556% for the conventional method.
These results indicate that radiometric calibration based on the mobile GCP can more efficiently
account for variation in illumination and atmospheric conditions on UAV images taken across the field,
compared to those obtained with only one set of calibration panels.

The linear height calibration of the proposed method reduced errors in object height estimation
(<4 cm) on both sides of the field, compared to the height estimation errors (<6 cm) that resulted from
the conventional method. One point to note, however, is that shorter boxes had relatively high height
estimation errors. This is consistent with the results observed in other studies [68,69] where point
clouds of shorter objects and crops had higher estimation errors. Due to their proximity to the ground
and relatively low pixel representation, shorter objects produce fewer image gradients to effectively
distinguish them from ground pixels during SfM reconstruction. This suggests that mounting reference
panels on taller mobile GCPs can improve the calibration accuracy in height estimation.
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Linear calibrations for temperature in both the conventional and the proposed methods significantly
improved the correlation between the ground truth measurements and the mean temperature extracted
from the calibrated image pixels that corresponded to the three different color panels. Actual
temperatures ranged from 43.4 ◦C to 52.2 ◦C. As expected, the proposed method had smaller errors
in temperature estimation (2.0 ◦C–3.26 ◦C) due to the accurately controlled temperature reference
panels on the mobile GCP, compared to the conventional method (3.4 ◦C–7.6 ◦C). This reduction in
error has important implications and shows potential for the proposed method to be used for various
applications, including monitoring of crop stresses, crop diseases, and soil water stress, and planning
for irrigation scheduling and harvesting operations. The main advantage of the mobile GCP is that
it has a specific and tight dynamic temperature range from 20 ◦C to 60 ◦C to cover temperature
variations in crops, as opposed to the conventional method, which only can calibrate over a narrow
range of high temperatures (41 ◦C–54 ◦C) during the summer season. More accurate temperature
measurements based on the proposed method can improve on-farm decision-making. In summary,
the results from the field tests validated the potential of an autonomous mobile GCP in accurate
georeferencing, radiometric calibration, height calibration, and temperature calibration of UAV-based
agricultural remote sensing data.

3.3. Benefits, Challenges, and Future Work

The mobile GCP proposed in this project can be beneficial in terms of both cost and technical
efficiency for a range of agricultural studies, including precision management and high throughput
phenotyping. The design, which was based on low-cost mechanical and electronic components,
cost approximately $3600 in total. However, labor cost was not accounted for since the system was
developed in the lab. As discussed in the previous sections, using a mobile GCP synchronized with
the flight pattern of the UAV can reduce the time and labor involved in deploying multiple GCPs
across the field, while simultaneously providing better outcomes in terms of accuracies in parameter
calibration and estimation.

Some of the practical limitations that were observed with the mobile GCP during the course of
the project were (1) low stability while navigating through uneven terrains due to heavy-weight of the
system and low capability of suspensions, (2) maintaining stable temperatures on the cooling panel
during hot summer days with the current setup, and (3) lack of coverage in parts of the field farther
away from the mobile GCP’s path, which resulted in un-uniform accuracies in parameter estimation
across the field. The future work will focus on overcoming the above-mentioned limitations by (1)
improving the structural design of the mobile GCP in terms of stability and ruggedness, (2) attaching
additional cooling units for stable cooling panel temperature, and (3) using two or more mobile GCPs
based on other cooperation strategies in order to obtain more uniform coverage for accurate calibration
and estimation. Additionally, we will also focus on the optimization of waypoints in order to improve
the overlap between images and adapt to fields with irregular boundaries. A possible source of error in
UAV remote-sensing data is camera auto exposure, which changes the exposure-time and gain settings
for each image, such that reflectance values are not collected consistently across a field. For this reason,
efforts are needed to enable UAV-based cameras to use consistent optimal settings throughout the
flight mission.

4. Conclusions

An autonomous mobile GCP was developed for the purposes of improving UAV-based agricultural
data collection efficiency and georeferencing, radiometric, height, and temperature calibration accuracies.
A navigation system was developed for automatic path tracking and wireless communication
between the autonomous GCP and UAV for collaboration in field operations. Look-ahead tracking
(RMSE = 15.6 cm) was superior to simple waypoint tracking (RMSE = 34.3 cm) for path tracking and
proved to be an excellent candidate for autonomous navigation. Moving the mobile GCP along every
waypoint in the flight path gave low percentage errors (−1.1–0.1%) in radiometric calibration compared
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to moving along only the odd-numbered waypoints. Lastly, errors in georeferencing and radiometric,
height, and temperature calibrations from the proposed mobile-GCP method were significantly lower
compared to those obtained from the conventional method. Overall these results indicate that the
collaboration strategy between the autonomous mobile GCP and the UAV has potential to improve
accuracy and efficiency in agricultural remote sensing applications. In the future fixed exposure
with the multispectral camera can be used to reduce errors in reflectance estimation [70], and more
validation objects be employed to more strongly demonstrate the reliability of using autonomous
mobile GCPs for agricultural remote sensing.
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