# Smart Integration of a DC Microgrid: Enhancing the Power Quality Management of the Neighborhood Low-Voltage Distribution Network

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Proposed System Description and the Control Technique

#### 2.1. The Proposed System Description

#### 2.2. The Control Technique

_{q}will be equal to zero. Then, the I

_{d}reference is calculated in (3), as follows:

_{dvr}to represent the voltage regulator direct current share. This voltage regulator direct current component can be calculated from (4) to (6), as follows:

## 3. Results and Discussion

#### 3.1. Case Study A

#### 3.2. Case Study B

## 4. Hardware Implementation and Experimental Results

## 5. Conclusions

## Author Contributions

## Acknowledgments

## Conflicts of Interest

## References

- Cvetkovic, I.; Boroyevich, D.; Mattavelli, P.; Lee, F.C.; Lucia, O.; Sarnago, H. Design of Home Appliances for a DC-Based Nanogrid System: An Induction Range Study Case. IEEE J. Emerg. Sel. Top. Electron.
**2013**, 1, 315–326. [Google Scholar] - Parchure, A.; Tyler, S.J.; Peskin, M.A.; Rahimi, K.; Broadwater, R.P.; Dilek, M. Investigating PV Generation Induced Voltage Volatility for Customers Sharing a Distribution Service Transformer. IEEE Trans. Ind. Appl.
**2017**, 53, 71–79. [Google Scholar] [CrossRef] - Chamana, M.; Chowdhury, B.H.; Jahanbakhsh, F. Distributed Control of Voltage Regulating Devices in the Presence of High PV Penetration to Mitigate Ramp-Rate Issues. IEEE Trans. Smart Grid
**2018**, 9, 1086–1095. [Google Scholar] [CrossRef] - Wang, Y.; Zhang, N.; Li, H.; Yang, J.; Kang, C. Linear three-phase power flow for unbalanced active distribution networks with PV nodes. CSEE J. Power Energy Syst.
**2017**, 3, 321–324. [Google Scholar] [CrossRef] - Alam, M.J.E.; Muttaqi, K.M.; Sutanto, D. Community Energy Storage for Neutral Voltage Rise Mitigation in Four-Wire Multigrounded LV Feeders with Unbalanced Solar PV Allocation. IEEE Trans. Smart Grid
**2015**, 6, 2845–2855. [Google Scholar] [CrossRef] - Nallusamy, S.; Parvathyshankar, D.; Velayutham, D.; Govindarajan, U. Power quality improvement in a low-voltage DC ceiling grid powered system. IET Power Electron.
**2015**, 8, 1902–1911. [Google Scholar] [CrossRef] - Wunder, B.; Ott, L.; Szpek, M.; Boeke, U.; Weiß, R. Energy efficient DC-grids for commercial buildings. In Proceedings of the 2014 IEEE 36th International Telecommunications Energy Conference (IN℡EC), Sao Paulo, Brazil, 17–20 August 2014; pp. 1–8. [Google Scholar]
- Peña-Alzola, R.; Bianchi, M.A.; Ordonez, M. Control Design of a PFC with Harmonic Mitigation Function for Small Hybrid AC/DC Buildings. IEEE Trans. Power Electron.
**2016**, 31, 6607–6620. [Google Scholar] [CrossRef] - Nilsson, D.; Sannino, A. Efficiency analysis of low-and medium-voltage DC distribution systems. In Proceedings of the Power Engineering Society General Meeting, Denver, CO, USA, 6–10 June 2004; pp. 2315–2321. [Google Scholar]
- Arrillaga, J.; Watson, N.R. Power System Harmonics; John Wiley and Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Ahmed, F.; Ebrahim, T.; Youssef, A.; Mohammed, O.A. Power Quality Improvements for Integration of Hybrid AC/DC Nanogrids to Power Systems. In Proceedings of the 2017 Ninth Annual IEEE Green Technologies Conference (GreenTech), Denver, CO, USA, 29–31 March 2017; pp. 171–176. [Google Scholar]
- Krajačić, G.; Duić, N.; Vujanović, M.; Kılkış, Ş.; Rosen, M.A.; Al-Nimr, M.A. Sustainable development of energy, water, and environmental systems for future energy technologies and concepts. Energy Convers. Manag.
**2016**, 125, 1–14. [Google Scholar] [CrossRef] - Chowdhury, B.H. Power Quality. IEEE Potentials
**2001**, 20, 5–11. [Google Scholar] [CrossRef] - Munir, S.; Li, Y.W. Residential Distribution System Harmonic Compensation Using PV Interfacing Inverter. IEEE Trans. Smart Grid
**2013**, 4, 816–827. [Google Scholar] [CrossRef] - Wada, K.; Fujita, H.; Akagi, H. Considerations of an active shunt filter based on voltage detection for installation on a long distribution feeder. IEEE Trans. Ind. Appl.
**2002**, 38, 1123–1130. [Google Scholar] [CrossRef] - Lee, T.-L.; Cheng, P.-T.; Akagi, H.; Fujita, H. A Dynamic Tuning Method for Distributed Active Filter Systems. IEEE Trans. Ind. Appl.
**2008**, 44, 612–623. [Google Scholar] [CrossRef] - Cheng, P.-T.; Lee, T.-L. Distributed Active Filter Systems (DAFSs): A New Approach to Power System Harmonics. IEEE Trans. Ind. Appl.
**2006**, 42, 1301–1309. [Google Scholar] [CrossRef] - Ward, D.J. The impact of distribution system design on harmonic limits. In Proceedings of the Power Engineering Society 1999 Winter Meeting, New York, NY, USA, 31 January–4 February 1999; Volume 2, pp. 1110–1114. [Google Scholar]
- Haidar, A.M.A.; Muttaqi, K.M.; Sutanto, D. Technical challenges for electric power industries due to grid-integrated electric vehicles in low voltage distributions: A review. Energy Convers. Manag.
**2014**, 86, 689–700. [Google Scholar] [CrossRef] - López-Martín, V.M.; Azcondo, F.J.; Pigazo, A. Power Quality Enhancement in Residential Smart Grids Through Power Factor Correction Stages. IEEE Trans. Ind. Electron.
**2018**, 65, 8553–8564. [Google Scholar] [CrossRef] - Illindala, M.; Venkataramanan, G. Frequency/Sequence Selective Filters for Power Quality Improvement in a Microgrid. IEEE Trans. Smart Grid
**2012**, 3, 2039–2047. [Google Scholar] [CrossRef] - Corasaniti, V.F.; Barbieri, M.B.; Arnera, P.L. Compensación con filtro activo de potencia hibrido en una planta industrial. In Proceedings of the ARGENCON Congreso Bienal de IEEE Argentina, Córdoba, Argentina, 13–15 June 2012. [Google Scholar]
- Bhattacharya, A.; Chakraborty, C.; Bhattacharya, S. Parallel-Connected Shunt Hybrid Active Power Filters Operating at Different Switching Frequencies for Improved Performance. IEEE Trans. Ind. Electron.
**2012**, 59, 4007–4019. [Google Scholar] [CrossRef] - Al Sayari, N.; Chilipi, R.; Barara, M. An adaptive control algorithm for grid-interfacing inverters in renewable energy based distributed generation systems. Energy Convers. Manag.
**2016**, 111, 443–452. [Google Scholar] [CrossRef] - Hamid, M.I.; Jusoh, A. Reduction of waveform distortion in grid-injection current from single-phase utility interactive PV-inverter. Energy Convers. Manag.
**2014**, 85, 212–226. [Google Scholar] [CrossRef] - Guerrero-Rodríguez, N.F.; Rey-Boué, A.B. Modelling, simulation and experimental verification for renewable agents connected to a distorted utility grid using a Real-Time Digital Simulation Platform. Energy Convers. Manag.
**2014**, 84, 108–121. [Google Scholar] [CrossRef] - Rahman, M.S.; Oo, A.M.T. Distributed multi-agent based coordinated power management and control strategy for microgrids with distributed energy resources. Energy Convers. Manag.
**2017**, 139, 20–32. [Google Scholar] [CrossRef] - Wu, J.-C.; Wu, K.-D.; Jou, H.-L.; Wu, Z.-H.; Chang, S.-K. Novel power electronic interface for grid-connected fuel cell power generation system. Energy Convers. Manag.
**2013**, 71, 227–234. [Google Scholar] [CrossRef] - Calleja, H.; Jimenez, H. Performance of a grid-connected PV system used as an active filter. Energy Convers. Manag.
**2004**, 45, 2417–2428. [Google Scholar] [CrossRef] - Altin, N.; Ozdemir, S. Three-phase three-level grid interactive inverter with fuzzy logic based maximum power point tracking controller. Energy Convers. Manag.
**2013**, 69, 17–26. [Google Scholar] [CrossRef] - Salehi, V.; Mohamed, A.; Mazloomzadeh, A.; Mohammed, O.A. Laboratory-Based Smart Power System, Part II: Control, Monitoring, and Protection. IEEE Trans. Smart Grid
**2012**, 3, 1405–1417. [Google Scholar] [CrossRef] - Ebrahim Ahmed, F.; Ahmed, S.; Elmasry, S.E.; Mohammed, O.A. Implementation of a PV emulator using programmable DC power supply. SoutheastCon
**2015**, 2015, 1–7. [Google Scholar] - Elsayed, A.; Ebrahim Ahmed, F.; Mohammed, H.; Mohammed, O.A. Design and implementation of AC/DC active power load emulator. SoutheastCon
**2015**, 2015, 1–5. [Google Scholar] - Salehi, V.; Mohamed, A.; Mazloomzadeh, A.; Mohammed, O.A. Laboratory-Based Smart Power System, Part I: Design and System Development. IEEE Trans. Smart Grid
**2012**, 3, 1394–1404. [Google Scholar] [CrossRef]

**Figure 3.**A comparison between the active, reactive power, and the per unit (p.u.) voltage at buses X, M, and Z, respectively.

**Figure 5.**The three-phase voltage, load current, converter current, and bus current, respectively, at point of common coupling (PCC).

**Figure 6.**Phasor Diagram for the voltage and current at PCC (

**a**) before the proposed technique and (

**b**) after the proposed technique.

**Figure 7.**Simulation results: (

**a**) direct current (DC) link bus voltage (V), (

**b**) output power of photovoltaic (PV) system (Watt), (

**c**) local DC load power (Watt), and (

**d**) the grid tie converter power (Watt).

**Figure 8.**Simulation results: (

**a**) alternating current (AC) load current, (

**b**) zoom in for the AC load current between (16.0–16.1) s, (

**c**) zoom in for AC load current between (18.5–18.6) s, (

**d**) zoom in for AC supply current between (16.0–16.1) s, (

**e**) zoom in for AC supply current between (18.5–18.6) s, and (

**f**) AC supply current.

**Figure 10.**Experimental results show the unbalance compensation and harmonics mitigation: (

**a**) DC link bus voltage (V), (

**b**) the output power of PV system (Watt), (

**c**) AC load current, (

**d**) zoom in for AC load current between 25.03 and 25.1 s, (

**e**) zoom in for AC load current between 150.03 and 150.1 s, (

**f**) zoom in for AC load current between 200.03 and 200.1 s, (

**g**) zoom in for AC supply current between (25.03 and 25.1 s, (

**h**) zoom in for AC supply current between 150.03 and 150.1) s, (

**i**) zoom in for AC supply current between 200.03 and 200.1 s, and (

**j**) AC supply current.

**Figure 11.**Experimental results showing the power factor correction effect on Phase A voltage and Phase A current: (

**a**) Phase A Voltage (V) and load current, (

**b**) zoom in between 25.03 and 25.1 s, (

**c**) zoom in between 150.03 and 150.1 s, (

**d**) zoom in between 200.03 and 200.1 s, (

**e**) zoom in for between 25.03 and 25.1 sec, (

**f**) zoom in between 150.03 and 150.1 s, (

**g**) zoom in between 200.03 and 200.1 s, and (

**h**) Phase A voltage (V) and Phase A supply current.

Component | Parameter | Specification |
---|---|---|

Boost Converter | power rating | 2500 W |

IGBT module | SKM100GAL12T4 | |

switching frequency | 5 kHz | |

L, R_{L} | 6 mH, 0.21Ω | |

Bidirectional AC/DC Converter | power rating | 1800 W |

IGBT module | SK45GB063 | |

switching frequency | 10.89 kHz | |

AC Filter | L , R_{L} | 12 mH, 0.31 Ω |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ebrahim, A.F.; Saad, A.A.; Mohammed, O.
Smart Integration of a DC Microgrid: Enhancing the Power Quality Management of the Neighborhood Low-Voltage Distribution Network. *Inventions* **2019**, *4*, 25.
https://doi.org/10.3390/inventions4020025

**AMA Style**

Ebrahim AF, Saad AA, Mohammed O.
Smart Integration of a DC Microgrid: Enhancing the Power Quality Management of the Neighborhood Low-Voltage Distribution Network. *Inventions*. 2019; 4(2):25.
https://doi.org/10.3390/inventions4020025

**Chicago/Turabian Style**

Ebrahim, Ahmed F., Ahmed A. Saad, and Osama Mohammed.
2019. "Smart Integration of a DC Microgrid: Enhancing the Power Quality Management of the Neighborhood Low-Voltage Distribution Network" *Inventions* 4, no. 2: 25.
https://doi.org/10.3390/inventions4020025