
inventions

Article

Modelling, Simulation and Control of the Walking of
Biped Robotic Devices—Part I : Modelling and
Simulation Using Autolev

Giuseppe Menga *,† and Marco Ghirardi †

Control and Computer Engineering Department, Politecnico di Torino, Corso Duca Degli Abruzzi 24,
10124 Torino, Italy; marco.ghirardi@polito.it
* Correspondence: menga@polito.it; Tel. +39-011-0907272
† These authors contributed equally to this work.

Academic Editor: Chien-Hung Liu
Received: 23 November 2015; Accepted: 7 March 2016; Published: 22 March 2016

Abstract: A biped robot is a mechanical multichain system. The peculiar features, that distinguishes
this kind of robot with respect to others, e.g., industrial robots, is its switching nature between
different phases, each one is the same mechanics subject to a different constraint. Moreover, because
these (unilateral) constraints, represented by the contact between the foot/feet and the ground, play
a fundamental role for maintaining the postural equilibrium during the gait, forces and torques
returned must be continuously monitored, as they pose stringent conditions to the trajectories that
the joints of the robot can safely follow. The advantages of using the Kane’s method to approach the
dynamical model (models) of the system are outlined. This paper, divided in three parts, deals with
a generical biped device, which can be an exoskeleton for rehabilitation or an indipendent robot.
Part I is devoted to modelling and simulation, part II approaches the control of walk in a rectilinear
trajectory, part III extends the results on turning while walking. In particular, this part I describes
the model of the biped robot and the practicalities of building a computer simulator, leveraging
on the facilities offered by the symbolic computational environment Autolev that complements the
Kane’s method.

Keywords: mechanical multi-chain; non-holonomic systems; hybrid complementarity systems;
biped robotics; simulation; Kane’s method; object oriented design

1. Introduction

A biped robot is a particular mechanical multichain system, which, as the time evolves, switches
between phases (single stance, double stance, each one divided by subphases), characterized by
different constraints. This has several consequences:

From a postural equilibrium point of view because these (unilateral) constraints, represented by
the contact between the foot/feet and the ground, play a fundamental role for maintaining the
postural equilibrium during the gait, their returned forces and torques pose stringent conditions to
the trajectories that the joints of the robot can safely follow, and must be continuously monitored;

From the robot control point of view the changing constraints modify the number of degrees of
freedom (DOF) of the dynamics, that can result underactuaded or overactuaded depending on the
ground contacts, and the controller itself must be a switching system.

The authors have been involved for several years in modelling and control of biped robots
for entertainment [1] and exoskeletons for postural rehabilitation [2], so they were faced from the
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beginning with the problem to provide the different projects with a reliable simulator. Commercial
products such as ADAMS [3] were considered too limited from several points of view:

1. the need to build an hybrid system switching among several phases;
2. obtaining from the non-linear dynamical equations matrices of the linearized model to be used

for designing a (linear) control;
3. deriving explicitly computer code for the expressions of Jacobians matrices, kinematics, and in

general of mechanical quantities needed for analysis and then to be embedded in the control;
4. obtaining from the ground constraint the theoretical expressions of reaction forces/torques on the

feet needed to evaluate the postural equilibrium, to balance the weight and offer compliance to
the swing foot in the contact with the ground.

For these reasons the approach to build a completely open simulator, with full control of the
programming was pursued.

Hybrid complementarity dynamical systems [4,5] model the behaviour of biped robots during
walk. They are the basis of the control of bipeds through forward dynamics (see [6] section 16.3).
These models correctly treat the contact between the ground and the feet as unilateral constraints. We
follow here a different approach by considering the contact as a bilateral constraint and describing the
system as different non-holonomic dynamical models, one for each phase of the gait. This has, with
respect to classical approaches, some advantages: the models are simpler, as they don’t require the
iterative computation of lagrangian multipliers needed to solve the constraints, they explicitly show
for each phase the degrees of freedom of the dynamics, allowing to choose independent and depend
control variables, and offering analitically reaction forces and torques at the ground. However, this
approximation has one drawback: these models can handle patological walking situations of slipping
or detachment of the foot from the ground only indirectly. To take full advantage of the approach,
instead of the standard equations proposed in the literature the Kane’s method [7] has been adopted
in order to derive the multi-chain dynamics. This method was originated in the spacecraft dynamics
community, and apparently is not widely known in the robotic, and particularly biped robotic field,
yet. A primer of the method will be given in one of the next sections, but just as introduction
one of its advantages, with respect to other methods, is the capability to derive unitarily from the
biped free in the space the several lower order non-holonomic representations in the presence of
different constraints. For a more detailed discussion on simulators of multibody chains, specifically
using the Kane’s method see [8]. Moreover the Kane’s method is complemented with a symbolic
computational environment, originally called Autolev and now MotionGenesis Kane 5.x [9], that
generates all mathematical expressions needed for modelling and design controls, and produces
prototypical source code in Fortran, Matlab or C of the equations in ordinary differential form (ODEs)
even for non holonomical constrained systems, which can be simulated using standard solvers.

In this framework are easily available, also, expressions of a variety of mechanical
quantities needed for the analysis, such as linearization matrices, kinematics, Jacobians, explicit
reaction forces/torques from the constraints, kinetic energy, generalized impulses, generalized
momentum, etc.

The fragments of C software generated by Autolev have been casted, with few small
modifications, into a framework of Object Oriented Design in C++ obtaining the hybrid nonlinear
system simulation we needed and an easy interface with control modules and reference trajectory
generators. Moreover, some of the mathematical expressions present in the model can be extracted
from the simulator and in the future embedded in the real time hardware to become integral part of
the control.

This paper extends the study of a lower limb exoskeleton for postural rehabilitation [2] and is
composed by three parts. This first part is devoted to modelling and simulation, part II approaches
the control of walk in a rectilinear trajectory, part III extends the results on turning while walking.
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The organization of Part I is as follows: a review of previous work, specifically hybrid
complementary dynamical systems, is presented in Section 2; in Section 3 a biped robot and its
mechanical model is described; in Section 4 the general scheme of the simulator is presented.

2. Hybrid Complementarity Dynamical Systems

A small review of these models is taken from the related literature [10–13].
A biped robot is a three-dimension rigid multichain. Basically, the internal configuration

variables q1 are the ones of the joint space Q. However, it is usual to consider a walking robot as
a system free in the space, but subject to non-constant unilateral constraints. Hence, the configuration
space is Q ⊕R6, where the six dimensional displacement of a given body is parameterized by q2.
Assuming that the body structure is rigid, continuous dynamics can be expressed under the following
Lagrangian form

M(q) · q̈ + C(q, q̇) · q̇ + G(q) = Γ(q, q̇, τ) + Γext, (1)

where q = (q1, q2)
T ∈ Rn is the parametrization vector of the whole configuration space of the biped

considered as free in 3D space, Γ ∈ Rn is the generalized efforts vector (function of the joint actuation
torque τ ∈ Rm), M is the inertia matrix, C are the centrifugal, gyroscopic, and Coriolis contribution,
and G is the generalized gravity force vector. Note that the set (q, q̇) constitutes the state of the
biped, in the sense of the theory of dynamic systems. Γext are torques generated by external reactions
(ground contacts, interaction with objects) and they can be expressed as follows:

Γext = J(q)T · λ(q, q̇) (2)

where J(q) is the Jacobian matrix of the points of the biped to which the external forces are applied
and λ(q, q̇) are the Lagrangian multipliers corresponding to the amplitudes of these reactions.

The vector λ can be split in:
λ = (λn, λt)

T (3)

where λn and λt are the normal and tangential components of the reactions, respectively. λn satisfies
the complementarity condition

λT
n · f (q) = 0, λn ≥ 0, f (q) ≥ 0 (4)

with J(q) = {∂ fi(q)/∂qj}, i, j = 1 · · · n and λt the Coulomb’s friction condition for each component:

|λti | ≤ µλni (5)

Moreover, switching from single to double stance, the impact and restitution law has to be
considered in setting the initial condition for the next phase.

Note, from an implementation point of view, that during simulation λ has to be numerically
evaluated iteratively.

3. A Biped Robot

3.1. Mechanical Modelling

As it is known, the model of a multi-body system like a biped robot can be derived using
different, essentially equivalent, methods. However, the ease of use of the various methods
differs; some are more suited for multibody dynamics than others. The Newton-Euler method is
comprehensive in that a complete solution for all the forces and dynamic variables are obtained, but it
is inefficient. Applying the Newton-Euler method requires that force and moment balances be applied
for each body taking in consideration every interactive and constraint force. Therefore, the method
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is inefficient when only a few of the system’s forces need to be solved for. Lagrange’s Equations
provides a method for disregarding all interactive and constraint forces that do not perform work.
The major disadvantage of this method is the need to differentiate scalar energy functions (kinetic
and potential energy). This is not much of a problem for small multibody systems, but becomes an
efficiency problem for large multibody systems.

In this work, instead, the so-called Kane’s method ([7]) has been chosen. This method
is particularly interesting in this case because it is equally applicable to either holonomic or
non-holonomic systems and, for non-holonomic systems, without the need to introduce Lagrangian
multipliers. Briefly, the main contribution of the Kane’s method is that, through the concepts of
motion variables (later called generalized speeds), the vectors of partial velocities and partial angular
velocities, generalized active forces and generalized inertia forces, the dynamical equations are
automatically determined, enabling forces and torques having no influence on the dynamics to be
eliminated early in the analysis. Early elimination of these noncontributing forces and torques greatly
simplifies the mathematics and enables problems having greater complexity to be handled. More
into details:

Generalized coordinates and speeds A multi-body system, which possesses n degrees of freedom, is
represented by a state with a n dimensional vector q of configuration variables (generalized coordinates)
and an identical dimension vector u of generalized speeds called also motion variables, that could be
any nonsingular combination of the time derivatives of the generalized coordinates that describe the
configuration of a system. These are the kinematical differential equations:

ur = ∑
i=1,··· ,n

Yri q̇i, r = 1, · · · , n (6)

Yri may be in general nonlinear in the configuration variables so that the equations of motion can
take on a particularly compact (and thus computationally efficient) form with the effective use of
generalized speeds.

Partial velocities and angular velocities Partial velocities of each point (partial angular velocity of
each body) are the n three-dimensional vectors expressing the velocities of that point (angular velocity
of that body) as a linear combination of the generalized speeds. Let be vP the translational velocity of
a point P and ωB the rotational velocity of a body B with respect to the inertial reference frame, then

vP = ∑r=1..n vP
r ur

ωB = ∑r=1..n ωB
r ur

(7)

where vP
r and ωB

r are the rth partial velocity and partial angular velocity of P and B, respectively.

Generalized active and inertia forces The n generalized forces acting on a system are constructed
by the scalar product (projection) of all contributing forces and torques on the partial velocities and
partial angular velocities of the points and bodies they are applied to.

Let us consider a system composed by N bodies Bi, where the torque TBi , and force RPi applied to
a point Pi of Bi are the equivalent resultant ("replacement" [7]) of all active forces and torques applied
to Bi. Then

FBi
r = ω

Bi
r · Ti

Bi + vPi
r · RPi

r (8)

is the rth generalized active force acting on Bi and

Fr = ∑
i=1,··· ,N

FBi
r (9)
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the rth generalized active force acting on the whole system. Identically for the inertia forces, indicated
as F∗r .

The dynamical equations for an n degree of freedom system are formed out from generalized
active and inertial forces F∗r

Fr + F∗r = 0, r = 1, · · · , n. (10)

These are known as Kane’s dynamical equations.
They result in a n dimensional system of second order differential equations (2n order state

variable representation) on generalized coordinates and speeds

M̄(q)u̇ + C̄(q, u)u + Ḡ(q)− Γ̄(q, u, τ) = 0, (11)

where the parameter definitions are similar but not identical of Equation (1) and more efficient
computationally [8].

Non-holonomic constraints When m constraints on the motion variables are added to the model,
only n−m generalized speeds are independents.The system is, then, called a non-holonomic system.
The non-holonomic constraints are expressed as a set of m linear relationships between dependent and
independent generalized speeds of the type

ur = ∑
i=1,··· ,p

Ariui, r = p + 1, · · · , n, (12)

with p = n−m. In this case, selected the independent speeds, the Kane’s method immediately offers
the minimal 2p order state variable representation from

F̃r + F̃∗r = 0, r = 1, · · · , p, (13)

where Kane calls F̃r and F̃∗r non-holonomic generalized active and inertial forces, while the remaining
m original redundant equations resolve themselves in the expressions of the m reaction forces/torques
returned by the constraints (because the Kane’s method is fundamentally based on the projection of
forces on a tangent space on which the system dynamics are constrained to evolve, spanned by the
partial velocities, reaction forces/torques result from the projection on its null-space).

Obviously, the choice of independent speeds is not unique, and they are usually found by
inspection. However, a systematic way may be adopted considering that Equation (12) in the implicit
vectorial form defines the null-space of u. Split u in independent and dependent generalized speeds
u1, u2 and rewrite Equation (12), introducing the matrix A, pxm, as

(AT ,−Imxm) ·
[

u1

u2

]
= 0. (14)

The columns of [
A

−Imxm

]
(15)

and [
Ipxp

AT

]
(16)

span, respectively null-space and range of u. In order to obtain the most robust variables, permute the
components of u in the independent generalized speeds so as to minimize the conditioning number
of either equation (15) or (16).

Moreover, it is always possible to handle an holonomic (configuration) constraint as if it is
non-holonomic, that is, to treat it as a motion constraint. This is particularly advantageous in biped
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robotics, in fact, considering foot/feet contact to the ground as non-holonomic contraints, from the
reaction forces/torques returned from the constraint, the Zero Moment Point (ZMP) coordinates, and
hence the Center of Pressure (CoP), can readily found as shown in the following subsection.

3.2. Robot Configuration

In this section the specific biped robotic structure we exploit in our practical applications in
described. The key bodies and points are depicted in the Figures 1 and 2 where the frontal and the
sagittal view of the robot are depicted. It is composed of 7 bodies: feet, legs, thighs, hat (HAT: head,
arm and trunk), connected by 12 joints: 2 ankles, 2 knees and 2 hips. Each ankle has 3 DOF, the knee
1 and the hip 2. In order to guarantee a natural gait the feet are allowed to rotate along y. This is
equivalent to a hinge on the toes or on the heels of the foot/feet on the ground, resulting in 13 or 14
joints that can be potentially controlled, in single or double stance, respectively. In fact, to guarantee
a human like walk it is mandatory that toe alone, or toe and heel joints are active [14–16].
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Figure 1. The robot: frontal plane - joint configuration.
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Figure 2. The robot: sagittal plane—single and double stance.

Assuming the system free to move in the sagittal and frontal planes, but for simplicity not
to rotate along the z axis (the walk is considered to be along a straight line without turns), it is
characterized by 17 DOF and an identical number of generalized variables and speeds, chosen here
as the derivatives of the generalized variables. These are (angles are characterized by the rotation
axis, the joint name and the limb index; positions by the axis, the point name and the limb index):

• The three positions on space of a reference point of f oot1, were reaction forces are applied, taken
at the center of the toe: xtoe1 , ytoe1 , ztoe1 .

• The two angles of the frame of foot 1: θx f oot1
, θy f oot1 .

• The joint angles (as depicted in Figure 1): θxankle1
, θyankle1

,θzankle1
, θknee1 , θxhip1

, θyhip1
, θxhip2

, θyhip2
,

θknee2 , θxankle2
, θyankle2

and θzankle2
.

Indicate with pedix 1 the right leg and pedix 2 the left leg, and use conventionally foot 1 as the
supporting foot. The two configurations of single and double stance are defined as follows:

Single Stance: The exoskeleton is sustained by f oot1. Both feet are allowed to rotate around y
only, in particular f oot1 is connected to the ground by a hinge at the toe1 point, and it is imposed that
the trunk is oriented straight ahead. Then, the three translational velocities of toe1 ẋtoe1 , ẏtoe1 , żtoe1 , the
three rotational velocities θ̇x f oot1

, θ̇x f oot2
, θ̇z f oot2

of both feet and the rotational velocity of the trunk θ̇zhat

are zero (motion constraints). In these conditions the system has 10 DOF (7 have been constrained
out of the original 17). The unique possible choices of independent generalized speeds is:

θ̇s = [θ̇y f oot1
, θ̇xankle1

, θ̇yankle1
, θ̇knee1 , θ̇xhip1

, θ̇yhip1
,

θ̇xhip2
, θ̇yhip2

, θ̇knee2 , θ̇yankle2
]T

(17)
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controlled by 10 torques at the corresponding joints

Ts = [Ty f oot1
, Txankle1

, Tyankle1
, Tknee1 , Txhip1

, Tyhip1
,

Txhip2
, Tyhip2

, Tknee2 , Tyankle2
]T .

(18)

Note that, if the toe of f oot1 is passive we have an under-actuated system.
On the other hand, the motion constraints resolve themselves in 3 forces: Fx f oot1

, Fy f oot1
, Fz f oot1

,
and 4 torques: Tx f oot1

, Tzankle1
, Txankle2

, Tzankle2
of reaction. The first four, along with the control torque

Ty f oot1
, characterizing the foot reactions from the ground

F f oot1 = [Fx f oot1
, Fy f oot1

, Fz f oot1
, Tx f oot1

, Ty f oot1
]T (19)

are very important in determining the ZMP, the remaining three, vice versa, not essential for
posture, will be ignored (The corresponding joints will be separately controlled with respect to the
main multivariable control, in order to keep the biped trunk, as well as the swing foot, oriented
straight ahead).

Double stance: when the exoskeleton is in double stance, both feet are on the ground. As they can
rotate around y, it is assumed that f oot1 is connected to the ground by a hinge, as before, at toe1 and
the f oot2 at heel2, and the center of the heel (xheel2 , yheel2 , zheel2 ) is the reference point where reaction
forces are applied. Hence, the system loses 3 more degrees of freedom resulting in 7. There are
four possible choices of independent generalized speeds, however, the best conditioned, according to
Section 3.1, is:

θ̇d = [θ̇y f oot1
, θ̇xankle1

, θ̇yankle1
, θ̇knee1 , θ̇yhip1

,

θ̇knee2 , θ̇yankle2
]T

(20)

and the system in this condition is controlled by the 7 torques at the corresponding joints

Td = [Ty f oot1
, Txankle1

, Tyankle1
, Tknee1 , Tyhip1

,

Tknee2 , Tyankle2
]T .

(21)

Note that the remaining 5 torques, comprehensive of Ty f oot2
at the hinge of heel2, if it is active,

Taux = [Txhip1
, Txhip2

, Tyhip2
, Txankle2

, Ty f oot2
]T . (22)

are redundant for position control. Txankle2
, which is irrelevant in single stance, along with the whole

vector Equation (22), will play a significant role in load balance in double.

The complete list of the motion variables, constraints, reaction forces and torques, joint torques
needed for position control, and redundant joint torques for single and double stance are contained
in Tables 1 and 2.

Reaction and control force/torques at the foot/feet are particularly important in biped robotics:

F f ooti
= [Fx f ooti

, Fy f ooti
, Fz f ooti

, Tx f ooti
, Ty f ooti

]T (23)

where i = 1, 2 and, specifically, the CoP coordinates, derived from the ZMP, result in:

CoPx =
−Ty f oot1

−Ty f oot2
+xtoe1∗Fz f oot1

+xheel2
∗Fz f oot2

Fz f oot1
+Fz f oot2

,

CoPy =
Tx f oot1

+Tx f oot2
+ytoe1∗Fz f oot1

+yheel2
∗Fz f oot2

Fz f oot1
+Fz f oot2

(24)
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where Tj f ooti
, Fz f ooti

, xtoei , yheeli , i = 1, 2, j = x, y are torques and vertical forces with their points of
application on the soles of the feet, toe1 and heel2 . For an in-depth discussion on CoP and ZMP
see [6].

Table 1. Single Stance.

Motion
Constraints Reactions

Position Free
Variables Control Forces/Torques

θ̇y f oot1
Ty f oot1

Fx f oot2

θ̇yankle1
Tyankle1

Fy f oot2

θ̇knee1
Tknee1

Fz f oot2

θ̇yhip1
Tyhip1

Tx f oot2

θ̇yhip2
Tyhip2

Ty f oot2

θ̇knee2 Tknee2 Tz f oot2

θ̇yankle2
Tyankle2

θ̇xankle1
Txankle1

θ̇xhip1
Txhip1

θ̇xhip2
Txhip2

θ̇xankle2
θ̇x f oot2 Txankle2

θ̇zankle1
θ̇zhat Tzankle1

θ̇zankle2
θ̇z f oot2

Tzankle2

θ̇x f oot1
θ̇x f oot1

Tx f oot1
ẋtoe1 ẋtoe1 Fx f oot1
ẏtoe1 ẏtoe1 Fy f oot1
żtoe1 żtoe1 Fz f oot1

Table 2. Double Stance.

Motion
Constraints Reactions

Position Free
Variables Control Forces/Torques

θ̇y f oot1
Ty f oot1

θ̇yankle1
Tyankle1

θ̇knee1
Tknee1

θ̇yhip1
Tyhip1

θ̇yhip2
ẋheel2 Fx f oot2

Tyhip2

θ̇knee2 Tknee2

θ̇yankle2
Tyankle2

θ̇xankle1
Txankle1

θ̇xhip1
żheel2 Fz f oot2

Txhip1

θ̇xhip2
ẏheel2 Fy f oot2

Txhip2

θ̇xankle2
θ̇x f oot2

Tx f oot2
Txankle2

θ̇zankle1
żhat Tzankle1

θ̇zankle2
θ̇z f oot2

Tzankle2

θ̇x f oot1
θ̇x f oot1

Tx f oot1
ẋtoe1 ẋtoe1 Fx f oot1
ẏtoe1 ẏtoe1 Fy f oot1
żtoe1 żtoe1 Fz f oot1

Ty f oot2

3.3. Unilateral Constraint and Collision

As a consequence of switching between different non-holonomic models during simulation,
unilateral constraints and collisions cannot be ignored.
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Clearly, adopting non-holonomic dynamics assuming points of the feet fixed to the ground is
valid for bilateral constraints, ignoring eventual detachment from the ground and slipping (Even if
possible, it would be too cumbersome to switch among still more different models if each one of
the different conditions occur.). In the approaches based on forward dynamics, as it is shown in
Section 2, the necessary conditions for satisfying unilateral constraints are directly embedded into
the simulation. Vice versa, we adopt here a minimalistic view, noting that in a physiological gait,
normally, bilateral constraints on the feet are not assumed to be violated. Hence, we design a priori
walking strategies and we test through the simulator that this effectively occurs, by monitoring, a
posteriori, reaction forces/torques for the conditions:

Fz f ooti
> 0, i = 1, 2 (25)

and
|Fj f ooti

| < µFz f ooti
, j = x, y, i = 1, 2. (26)

Obviously, the control we propose cannot adapt itself to pathological conditions, like a
slipping surface.

For the second point, mechanics of the collision of the swing foot to the ground when switching
from single to double stance cause the transfer of final conditions of one phase to the initial conditions
of the successive, with a reduced number of state variables. With reasonable assumptions of
non-slipping and anelastic restitution the reaction impulsive force Fheel2 at the impact and the initial
conditions of the generalized speeds for the new phase u(t+) can be computed. Also for this aspects
we are facilitated by Autolev that offers all the mechanical quantities we need.

The following analysis is based on two concepts: generalized impulse and generalized
momentum [7,17]. Let us indicate, as usual, with vheel2

r the r-th component of the partial velocity
vectors of heel2 on single stance, the generalized impulse on the heel2 at the contact with the ground at
instant t is defined as the scalar product of the integral of the reaction impulsive force Fheel2 δ(t− τ)

in the time interval t− ÷ t+ with the corresponding partial velocities

Ir ≈ vheel2
r (t−)T · Fheel2 , r = 1, · · · , n, (27)

the generalized momentum is defined as partial derivative of the kinetic energy K with respect to the
r-th generalized speed

pr(t) = ∂K/∂ur, r = 1, · · · , n, (28)

then, Kane proves that
Ir ≈ pr(t+)− pr(t−). (29)

Indicate the matrices
Vheel2 = (vheel2

1 (t−) · · · vheel2
n (t−)) (30)

P = {∂pi(t−)/∂uj}, i, j = 1, · · · , n (31)

of vectors of partial velocities, and of partial derivatives of pr(t) with respect to the generalized
speeds, and the vectors

I = (I1 · · · In)
T = Vheel2 T · Fheel2 (32)

u(t) = (u1(t) · · · un(t))T (33)

vheel2(t) = Vheel2 · u(t) (34)

of generalized impulses, of generalized speeds, and the heel2 velocity, respectively.
Then, from Equation (27) to Equation (31), taking into account Equations (32) and (34), and

considering that vheel2(t−) is given and vheel2(t+) is zero, assuming non-slipping condition and
inelastic collision, the following system of equations is solved to derive the unknown Fheel2 and u(t+):
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[
−Pu(t−)

0

]
=

[
vheel2(t)T −P

0 vheel2(t)

]
·
[

Fheel2

u(t+)

]
(35)

On this respect it is worth a last remark on the controller. It will be a hybrid system, switching
between two phases, as well as the biped robot. In single stance all its control components will be
controlled in position, in double stance, however, the system will be over-actuated. The redundant
components are, then, advantageously exploited to control reaction forces, as described in [2]. So, the
collision will be easily accomodated by anticipating the switching of the control to the double stance,
of a time compatible with the actuator response, e.g., exploiting ultrasound sensors under the feet.
Then the control of reaction forces by the torques Taux of Equation (22) in double stance will offer the
needed compliance at the time of the collision. This is especially significant for accomodating the foot
at the correct hight and orientation in the case of uneven ground floor.

3.4. The Stride in a Gait Cycle

A stride in a gait cycle, when walking, is composed of two main phases (double and single
stance) and several sub-phases [18–20]. Figure 3 shows an example of one step with the major events.

While the sub-phases defined by the physiologists cannot be adopted directly here, as they don’t
refer to different mechanical configurations, the event will be used in the paper.

Figure 3. behaviour of the θy f ooti
and the major events during a step.

For simplicity in the presented approach, system is switching between the two main phases only.

Double stance In the double stance model the two feet are hinged to the ground f oot1 at toe1 and
f oot2 at heel2. During the stance, starting from the event Heel2 strike from the previous single stance,
followed by Foot2 f lat and terminating with Toe1 o f f (For simplicity here these last two events are set
at the same instant.), the weight is transferred from f oot1 to f oot2.

Single stance In the single stance model the supporting f oot1 is hinged at toe1. The phase starts with
the supporting f oot1 f lat at the event Toe2 o f f , followed by Heel1 o f f and ending with Heel2 strike.
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If during the first sub-phase the posture is controlled by the support of the foot flat on the ground,
during the second the active torque on the toe1 joint is needed.

Note that there are two symmetrical models for each stance. We define them as modes: right
(the conventional one of Figures 1 and 2) and left mode. They differ by a parameter that assumes the
value +1 for the right mode and−1 for the left mode, and by exchanging the two sets of limb indexes
in the left mode. During the gait, in order to alternate right stance phase and left stance phase, we
adopted the following convention: when switching from single to double stance the same mode is
maintained, from double to single stance the mode is switched.

4. Building the Simulator

4.1. The Autolev Symbolic Computation

In Autolev the description of holonomic or non-holonomic systems is identical. Along with
the definition of the structure of the multichain (bodies, points, segment COGs, masses, inertias,
kinematical relationships). For the dynamics, input forces/torques, states and output variables
have to be specified. States are however divided in positions and velocities, linked by kinematical
differential equations:

State 1 the generalized coordinates;

State 2 the generalized speeds;

Kinematical differential equations the relationships between coordinate derivatives and speeds
(Equation (6);

Input all forces and torques (comprehensive of those returned by the constraints) with reference,
respectively, to the points or bodies of application, to be considered external, hence to be
possibly controlled;

Output the desired variables in output, e.g., joint angles and speed, COG and ZMP coordinates,
swing foot coordinates, Jacobian matrices, linearizations matrices of the differential equations,
reaction forces/torques, matrices of partial derivatives of reaction forces/torques with respect to
input control torques, partial velocities, generalized impulse, generalized momentum, etc. In
addition, for non-holonomic systems it is required to declare:

• the non-holonomic constraints on the generalized speeds (see Equation (12));
• the selected dependent generalized speeds;
• forces and torques, in the previous declaration, resulting from the constraints, therefore, not to be

considered as external input, but internally derived by the simulator.

The Autolev environment interprets the configuration and declarations and generates the
dynamical equations and espressions for the output variables (individuals, vectors or matrices as
defined), splitting for efficiency in an array of internal variables (called Z) the intermediate results.
As output, the source code in C, Fortran or Matlab and an initialization file are returned. Two group
of files are then generated, one for each stance.

4.1.1. The Generated Code

The code generated for simulation is composed of the variable declarations, a main program and
a set of routines. Among them, a group of service routines are identical for any configuration (reading
input parameters and initial conditions, formatting output variables, implementing Runge-Kutta
numerical integration), vice versa, three functions are specific of each configuration:

Initialization parameters and state initialization (setting parameters and initial conditions);
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State derivative computation a function that computes the state derivative (generalized coordinates
and generalized speeds), given the control input, to be called at each phase initializations and at each
sampling period during integration by the Runge-Kutta routine in order to update the intermediate
expressions, variables and the state;

Output computation a function to calculate at each sampling period any other intermediate
expression or variable dependent on the state, state derivative, and input, declared as output in the
program. These samples are also saved in a file at the end of the simulation.

For control, a module (the controller) has to be added to the simulation code that sets before each
sampling time, the values of forces/torques declared as control input.

4.2. The Object Oriented Composition of the Program

The C code returned by Autolev, with a few simple modifications, that we automated with
a parser, can be embedded in an object oriented programming framework originating one class
for each phase of the system, all inheriting from a common base parent, as shown in Figure 4.
The base parent contains the declaration of the common variables (intermediate expressions Z,
parameters, generalized coordinate, generalized speeds and their derivatives, and the mode variable
(+1,−1), implements the common service routines, and declares as virtual one protected method for
computing the derivative of the state, and two public methods: one for initialization in the right and
left mode, and one for returning output variables. Each one of the phase classes implements the three
virtual methods.

Figure 4. The object model of the simulator in UML notation [21].

4.2.1. The Main Class

The main class has as member variables one instance of each phase class (SingleStance,
DoubleStance) of the system, a pointer to the currentModel, a Preview to generate the reference
trajectories, and a Control class to generate the control inputs. It runs the simulation from initial
to final instants with two threads: one, event driven (Toe1o f f , Heel2strike), controlling the phases
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and modes through a state machine, depicted in Figure 5, the other with a given fixed sampling time
closing the control loop. Samples of Autolev Code Fragments for building the model and generate
the C++ code are presented in Appendix A.

Figure 5. The state machine of the simulator in SDL notation [21].

The Preview

The preview generates the nominal reference trajectories of the robot in the Cartesian space,
composed by the COG and COP trajectories in the frontal and sagittal planes, the position and angles
of the swing foot in single stance, the rotation angles of both feet in double stance.

The Control

The control is a sampled time hybrid dynamical system: at each time period it receives reference
and feedback signals and returns the control, updating its state. It switchs configuration at each phase
of the model.

5. Conclusions

In this paper, a modelling approach and a computer simulator for biped robotics, outlining
the advantages of adopting the Kane’s method to describe the dynamics, has been proposed.
The simulator has been developed in Object Oriented programming with the C++ language by
exploiting, for the software code of the mathematical expressions, the symbolic dynamic manipulator
Autolev that complements the Kane’s method. The Kane’s method together with Autolev, with
the introduction of intermediary variables to avoid repetions, assure tha maximum efficiency
of computation.

As a case study, a 3D standard 12 DOF biped configuration has been considered, however it is
clear that the approach can be advantageously applied to different configurations.

Especially attractive is the handling of non-holonomic constraints, when used for rehabilitation,
with the possibility to embed in the model different kinds of constraints, as mentioned in Section 2,
such as interaction with a chair or a pair of crutches, a thrust, etc. In fact the original motivation of
this work has been the development of a lower limb haptic exoskeleton for postural rehabilitation,
that is actually being currently built under Italian Government grants, and a sit-to-stand exercise
implementation [22].
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The object oriented framework adopted to develop the simulator is based on the G + +

programming environment by SYCO [21].
Examples of controls based on this model can be found in [2] and in part 2 and 3 of this paper.
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Appendix A. Code Fragments

The following listing presents a sample of the input code of Autolev to generate the Kane’s
dynamical equations, the COG coordinates, the matrices of the linearized model, the COG Jacobian
matrix, the sensitivity of reaction forces/torques from joint input torques. The single stance
configuration has been considered here.

% Declara t ion of the c o n f i g u r a t i o n v a r i a b l e s
Var iab les xthetaAnkle1 ’ , ythetaAnkle1 ’ , ythetaAnkle1 ’ , ythetaAnkle2 ’ ,
zthetaAnkle1 ’ , zthetaAnkle2 ’ , thetaKnee1 ’ , thetaKnee2 ’ , xthetaHip1 ’ ,
xthetaHip2 ’ , ythetaHip1 ’ , ythetaHip2 ’ , xthetaFoot1 ’ , ythetaFoot1 ’ ,
xFoot1 ’ , yFoot1 ’ , zFoot1 ’
% Dec lara t ion of the motion v a r i a b l e s
MotionVariables ’ uxAnkle1 ’ , uxAnkle2 ’ , uyAnkley1 ’ , uyAnkley2 ’ , uzAnklez1 ’ ,
uzAnklez2 ’ , uKnee1 ’ , uKnee2 ’ , uxHip1 ’ ’ , uxHip2 ’ , uyHipy1 ’ , uyHipy2 ’ ,
uxFoot1 ’ , uyFoot1 ’ , vxFoot1 ’ , vyFoot1 ’ , vzFoot1 ’
% Dec lara t ion of the vec tor of r e a c t i o n f o r c e s /torques to be computed
% and returned by by Autolev
Zee_Not = [ FxFoot1 ; FyFoot1 ; FzFoot1 ; TxFoot1 ; TzAnkle1 ; TxAnkle2 ; TzAnkle2 ]
% Command t h a t generates the Kane dynamical equat ions
% Zero i s the vec tor cont ianing the d i f f e r e n t i a l equat ions eq . ( 1 1 )
Zero = Fr ( ) + F r S t a r ( )
% Command t h a t r e s o l v e s nonholonomic c o n s t r a i n t s :
% i t generates the reduced order dynamical equat ions
% and re turns the r e a c t i o n f o r c e s /torques
Kane ( Zee_Not )
% The COG coordinates : cm re turns the COG vector
% dot performs the s c a l a r product of the vec tor with the x , y and z a x i s
cogx = dot (cm(No, foot1 , foot2 , leg1 , Thigh1 , leg2 , Thigh2 , Hat ) ,N1>)
cogy = dot (cm(No, foot1 , foot2 , leg1 , Thigh1 , leg2 , Thigh2 , Hat ) ,N2>)
cogz = dot (cm(No, foot1 , foot2 , leg1 , Thigh1 , leg2 , Thigh2 , Hat ) ,N3>)
% The time d e r i v a t i v e s ( Dt ) of the COG coordinates are computed
cogxp = Dt ( cogx )
cogyp = Dt ( cogy )
cogzp = Dt ( cogz )
% The v e c t o r s of the c o n f i g u r a t i o n v a r i a b l e s ,
% of the genera l ized spees and a c c e l e r a t i o n s are defined
t h e t a s = [ thetayFoot1 , thetayAnkle1 , thetaKnee1 , thetayHip1 , thetayHip2 , thetaKnee2
, thetayAnkle2 , thetaxAnkle2 , thetaxHip1 , thetaxHip2 ]
u = [ uyFoot1 , uyAnkle1 , uKnee1 , uyHip1 , uyHip2 , uKnee2 , uyAnkle2 , uxAnkle1 , uxHip1 , uxHip2 ]
up = [ uyFoot1 ’ , uyAnkle1 ’ , uKnee1 ’ , uyHip1 ’ , uyHip2 ’ , uKnee2 ’ , uyAnkle2 ’ , uxAnkle1 ’
, uxHip1 ’ , uxHip2 ’ ]

% The vec tor of input j o i n t torques i s defined
torques = [ TyFoot1 , TyAnkle1 , TKnee1 , TyHip1 , TyHip2 , TKnee2 , TyAnkle2 , TxAnkle1 , TxHip1
, TxHip2 ]

% COG Jacobian has been computed making the p a r t i a l d e r i v a t i v e s (D) of COG v e l o c i t y
% with r e s p e c t to the genera l ized speeds
Jcog = D( [ cogxp ; cogyp ; cogzp ] , u )
% The matr ices of the l i n e a r i z e d dynamical model are computed as p a r t i a l d e r i v a t i v e s
% of the vec tor of the d i f f e r e n t i a l equat ions
% the i n e r t i a matrix with r e s p e c t to the a c c e l e r a t i o n s
IM = D( Zero , up )
Zero0 = evaluate ( Zero , u = 0 , up = 0 , torques = 0)
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% L i n e a r i z a t i o n of g r a v i t a t i o n a l f o r c e s with r e s p e c t to the p o s i t i o n s
K = D( Zero0 , t h e t a s )
% The input matrix with r e s p e c t to the input j o i n t torques
B = D( Zero , torques )
% The matrix of l i n e a r r e l a t i o n s h i p between r e a c t i o n s f o r c e s /torques
% with r e s p e c t to inputs
J f o r c e _ t o r q u e = D( Zee_Not , torques )

% The command p a r t i a l s re turns the p a r t i a l v e l o c i t i e s of heel2
V = p a r t i a l s ( V_Heel2_N >)
% Momentum returns the angular momentum
P = momentum( genera l ized )

Next is a fragment of the Autolev output; Z2545, Z2535, ... are intermediary variables generated
automatically for efficiency from the environment. The first line is one component of the vector of the
dynamical differential equations, the second line is the expression of the vertical reaction forces on
foot 1.

−> ( 3 0 7 7 ) ZERO[ 1 ] = Z2545 + Z2535∗uxAnkle1 ’ + Z2536∗uyAnkle1 ’ + Z2537∗uyAnkle2 ’
+ Z2538∗uKnee1 ’ + Z2539∗uKnee2 ’ + Z2540∗uxHip1 ’ + Z2541∗uxHip2 ’ + Z2542∗uyHip1 ’
+ Z2543∗uyHip2 ’ + Z2544∗uyFoot1 ’

( . . . )

−> ( 3 0 6 1 ) FzFoot1 = Z2405∗uxAnkle1 ’ + Z2406∗uyAnkle1 ’ + Z2407∗uyAnkle2 ’
+ Z2408∗uKnee1 ’ + Z2409∗uKnee2 ’+ Z2410∗uxHip1 ’ + Z2411∗uxHip2 ’
+ Z2412∗uyHip1 ’+ Z2413∗uyHip2 ’ + Z2414∗uyFoot1 ’ − Z2472

A sample of the simulate method of the class Main, controlled by the state machine of Figure 5.
singleStance.in and doubleStance.in are initialization files automatically generated from Autolev.

s i n g l e S t a n c e . r e a d I n i t ( " s i n g l e S t a n c e . in " ) ;
doubleStance . r e a d I n i t ( " doubleStance . in " ) ;
currentModel = &doubleStance ;
i n t mode = currentModel−>getMode ( ) ;
currentTime = currentModel−>getTime ( ) ;
samplingTime = currentModel−>getSamplingTime ( ) ;

c o n t r o l . setSamplingTime ( samplingTime ) ;
currentModel−>i n i t ( currentModel−>g e t S t a t e ( ) , mode) ;
c o n t r o l . i n i t ( currentModel−>g e t S t a t e ( ) , mode , preview . r e f e r e n c e ( currentTime )
, currentModel−>getPhase ( ) ) ;

Vector modelInput = c o n t r o l . output ( ) ;
currentModel−>d e r i v a t i v e ( modelInput ) ;
currentModel−>output ( ) ; / / p r i n t i n i t i a l v a l u e s

while ( currentTime < Tend )
{

currentModel−>runga_kutta ( modelInput , currentTime ) ;
currentTime = currentModel−>getTime ( ) ;

i f ( stateMachine ( currentTime ) ) / / s e n s e e v e n t s o f h e e l _ s t r i k e and t o e _ o f f
{

Vector s t a t e = currentModel−>g e t S t a t e ( ) ;
i n t mode = currentModel−>getMode ( ) ;
i f ( currentModel == &s i n g l e S t a n c e )
{

currentModel = &doubleStance ;
currentModel−>i n i t ( s t a t e , mode) ;

}
e lse
{
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currentModel = &s i n g l e S t a n c e ;
currentModel−>i n i t ( s t a t e , mode ∗= −1) ;

}
c o n t r o l . i n i t ( s t a t e , mode , preview . r e f e r e n c e ( currentTime )
, currentModel−>getPhase ( ) ) ;
modelInput = c o n t r o l . output ( ) ;
currentModel−>d e r i v a t i v e ( modelInput ) ;
currentModel−>output ( ) ;

}
e lse
{

Vector modelOutput = currentModel−>output ( ) ;
c o n t r o l . next ( modelOutput , preview . r e f e r e n c e ( currentTime ) ) ;
modelInput = c o n t r o l . output ( ) ;

}

}

The last fragment is the Autolev generated implementation in C code of the previous vertical
reaction force at foot 1:

ForcezFoot1 = z [2 405 ]∗uAnkle1p + z [2 406 ]∗uAnkley1p + z [2 407 ]∗uAnkley2p +
z [ 240 8 ]∗uKnee1p + z [24 09 ]∗uKnee2p + z [24 10 ]∗uHip1p + z [24 11 ]∗uHip2p +
z [ 241 2 ]∗uHipy1p + z [ 241 3 ]∗uHipy2p + z [ 241 4 ]∗ uFooty1p − z [ 2 4 7 2 ] ;
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