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Abstract: Four-dimensional visualization, i.e., three-dimensional space plus time, of fluid flow and
its interactions in geological materials using positron emission tomography (PET) requires suitable
radiotracers that exhibit the desired physicochemical interactions. 76Br is a likely candidate as a
conservative tracer in these studies. [76Se]CoSe was produced and used as the target material for the
production of 76Br via the (p,n) reaction at a Cyclone 18/9 cyclotron. 76Br was separated from the
target by thermochromatographic distillation using a semi-automated system, combining a quartz
glass apparatus with a synthesis module. 76Br was successfully produced at the cyclotron with
a physical yield of 72 MBq/µAh (EOB). The total radiochemical yield of 76Br from the irradiated
[76Se]CoSe target (EOS) was 68.6%. A total of 40 MBq–100 MBq n.c.a. 76Br were routinely prepared
for PET experiments in 3 mL 20 mM Cl− solution. The spatial resolution of a PET scan with 76Br
in geological materials was determined to be about 5 mm. The established procedure enables the
routine investigation of hydrodynamics by PET techniques in geological materials that strongly sorb
commonly used PET tracers such as 18F.

Keywords: 76Br; cyclotron; targetry; target processing; PET; phantom

1. Introduction
1.1. Motivation

The 4D visualization (three-dimensional space and time) of fluid flow and its reactions
in geological materials via positron emission tomography (PET) is a key tool for a wide
range of environmental transport studies [1]. The method has been successfully applied to
characterize advective flow in fractures [2,3] and porous media [4–6] as well as diffusive
flux in clay material [7]. Even comprehensive studies of transport processes in soil and
similar surface materials have been conducted utilizing positron emitting tracers [8,9]. De-
pending on the scope of the study, conservative or reactive tracers are used. Conservative
tracers do not interact with the surrounding geological material; they are inert [10–14]. The
positron-emitting halide 18F is widely used as conservative tracer in geochemical studies,
but the chemical inertness of the tracers depends strongly on the boundary conditions
and the studied substrate. 18F, which is commonly used as [18F]KF, cannot be considered
a conservative tracer in the presence of strongly sorbing minerals like goethite or kaoli-
nite [15–18] or in carbonatic materials [19]. While 124I has been previously employed in
positron-tomographic transport studies [1], it is not suited for conservative transport stud-
ies in all substrates. In complex geomaterials like soils, iodine undergoes redox chemistry
altering its mobility [20]. This necessitates the need for an alternative radionuclide such as
76Br as a conservative tracer in geochemical studies. To our knowledge, no studies using
76Br as a PET tracer in geochemical investigations have been conducted.

Recent publications discuss 76Br as a suitable radio tracer for theranostic radiophara-
maceuticals [21–23].
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1.2. 76Br
76Br has a physical half-life of 16.2 h and decays via positron emission (55%) and

electron capture (45%) to 76Se (stable) [24]. The decay parameters of 76Br (Table 1) do not
indicate 76Br to be an ideal PET tracer. The high β+ energies (max. > 3 MeV, mean 1.18 MeV)
limit the spatial resolution to several millimeters. Pair production (γ3–γ6) and γ emission
close to 511 keV (γ1) will contribute to unwanted random coincidences.

Table 1. End-point energies of the main β+ and γ from 76Br decay [24].

End-Point
Energy [keV]

Intensity
[%]

Energy
[keV]

Intensity
[%]

β1 871 6.3 γ1 559.09 74.0
β2 990 5.2 γ2 657.02 15.9
β3 3382 25.8 γ3 1216.10 8.8
β4 3941 6.0 γ4 1853.67 14.7

γ5 2950.53 7.4
γ6 2792.69 5.6

1.3. Cross Section and Targetry
76Se(p,n)76Br, 76Se(d,2n)76Br, 75As(3He,2n)76Se, and 75As(4He,3n)76Se are examples of

cyclotron-based pathways for the production of 76Br [25–29]. Of these, only 76Se(p,n)76Br is
a possible reaction within the specification of the cyclotron used (iba Cyclone 18/9). The
energy-dependent cross section for the reaction is shown in Figure 1. The maximum of the
cross section is obtained at a proton energy of Ep ~ 13 MeV.
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Figure 1. Experimental cross section σ as function of proton energy Ep for the 76Se(p,n)76Br reac-
tion [25].

The melting point of elemental selenium of 221 ◦C together with its thermal con-
ductivity of 0.52 Wm−1K−1 [30] does not favor the use of elemental selenium as tar-
get material. Alternatively, other substances like [76Se]ZnSe, [76Se]SnSe, [76Se]Cu2Se,
[76Se]CuSe, [76Se]NiSe and [76Se]CoSe are discussed as target materials [21,31–34]. In this
work, [76Se]CoSe is used as the target material due to its thermal stability, high Se content
and a low amount of unwanted secondary activation products.

2. Materials and Methods
2.1. Target Material

Elemental cobalt (powder, purity 99.998%, Alfa Aesar, Kandel, Germany) and ele-
mental 76Se (powder, isotopic enriched 99.8 ± 0.1 atom%, STB Isotope Germany GmbH,
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Hamburg, Germany) were mixed stoichiometrically and heated up to 1200 ◦C in an evacu-
ated quartz glass ampule and kept at this temperature for 60 min. Afterwards the ampule
was cooled down to room temperature immediately. The formed [76Se]CoSe was removed
from the ampule and pressed under argon atmosphere at 1075 ◦C in a cavity (Ø = 12 mm,
h = 1 mm) of a niobium disc (Ø = 24 mm, h = 2 mm) (Nb foil, thickness 2 mm, purity 99.8%,
Alfa Aesar, Kandel, Germany).

2.2. Target Irradiation

A cyclotron Cyclone 18/9 (IBA, Ottignies-Louvain-la-Neuve, Belgium) was used for
the irradiation of the target. The cyclotron provided protons with an energy of 18 MeV and
a current of 100 µA and deuterons with an energy of 9 MeV and a current of 40 µA on target.
The target was positioned at port 4 at the Compact Solid Target Irradiation System (COSTIS,
IBA Nirta target, Belgium). The target was cooled at the front with helium (60 L·min−1) and
at the back with water (16 L·min−1). The required proton energy of 13 MeV was achieved
by proper selection of the vacuum window (800 µm aluminum). Max. current on the target
was 5 µA, irradiation time was from 10 to 25 min.

2.3. Target Processing

Thermochromatographic distillation was used after end of bombardment (EOB) to sep-
arate 76Br from the [76Se]CoSe target [21]. Figure 2 shows a scheme of the semi-automatic
system used. It combined a quartz glass apparatus with a modular synthesis machine
(SCINTOMICS GmbH, Gräfelfing, Germany) controlled by the software Variocontrol (SCIN-
TOMICS GmbH, Gräfelfing, Germany). After EOB, the irradiated target was placed in
a tube furnace within a quartz glass tube (RC1) under argon atmosphere at 1055 ◦C for
10 min. The released 76Br was trapped in a cooling trap (ICE). After heating, the target
was immediately cooled down to room temperature. The cooling trap (ICE) was removed
and the transfer line was allowed to reach room temperature. A total of 15 mL water (R1)
was used to rinse the system and transfer the 76Br into trap T1 containing 5 mL of water.
A syringe pump was used to transfer the combined volume of 20 mL containing 76Br to
cartridge C1 (Sep-Pak Accell Plus QMA Plus Light Cartridge, Waters) for purification and
concentration. The cartridge was rinsed with 3 mL water (R2) and 76Br eluted with 20mM
KCl solution (R3). All the released gasses passed through a sodium thiosulfate solution
(T2), trapping all remaining 76Br.
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2.4. γ-Spectrometry

Two γ-spectrometry systems were used for validation of the radionuclidic purity
and quantification. To determine the produced radionuclides after EOB, the target was
positioned in front of a high purity germanium detector (GEM-C5060) equipped with
a Stirling cooler and DSPEC 500 (AMETEK GmbH, Meerbusch, Germany) at a distance
of 575 cm. Quality and process control was carried out using a high purity germanium
detector (GEM-20180-P) equipped with a Stirling cooler and DSPEC pro (AMETEK GmbH,
Meerbusch, Germany) at 400 cm distance between sample and detector.

2.5. PET/CT

To evaluate the feasibility of 76Br as a radiotracer for positron emission tomography
(PET), a phantom was measured. The phantom consists of a PTFE cylinder of 50 mm
diameter with 5 drill holes (1 mm, 2 mm, 3 mm, 4 mm, and 5 mm). The bores were
filled with 76Br in 20 mM KCl (as received from radiochemical workup) at an activity
concentration of 31.7 MBq/mL.

PET was conducted using an 18-cassette scanner (ClearPET; Elysia-Raytest, Strauben-
hardt, Germany) with a cylindrical field of view of 135 mm diameter and 109 mm height.
The images were reconstructed using the STIR Library [35].

Scatter correction, based on attenuation maps derived from µCT-measurements, was
applied using a Monte Carlo algorithm as described by [1]. Mass attenuation coefficients
for 511 keV were calculated based on data from the XCOM database [36].

A 22Na-point-source (540 Bq) was mounted on the outside of the sample. The position
of this marker could be accurately identified in both in CT and PET. Image coregistration
between PET and CT was achieved by using this marker as a fiducial.

3. Results
3.1. Targetry

The production of [76Se]CoSe by mixing elemental cobalt and elemental 76Se stoichio-
metrically and heating up to 1200 ◦C in an evacuated quartz glass ampule for 60 min was
tested with the natSe compound. We observed silvery shining amorphous deposits sticking
to the quartz glass surface up to loose metallic glassy nuggets (Figures 3 and 4). This
came along with grayish or reddish remains deposited at the inner surface of the quartz
glass ampule indicating the formation of amorphous and polymorphous selenium species.
Incomplete chemical reaction and the presence of oxygen are likely reasons. A key factor
for improvement was a careful vacuum melting of the quartz glass ampule and thereby
retaining the vacuum.
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Figure 3. Evacuated quartz glass ampules containing CoSe after heating in the furnace at 1200 ◦C for
60 min. Left: Closed ampule—silvery shining amorphous deposits together with grayish or reddish
remains at the inner surface of the quartz glass ampule. Right: opened ampule—porous and brittle
CoSe is strongly sticking to the quartz surface.
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Figure 4. Evacuated quartz glass ampules containing CoSe after heating in the furnace at 1200 ◦C
for 60 min. Left: Closed ampule—loose metallic glassy nuggets with no remains. Right: CoSe with
metallic shine—easily removeable from quartz glass.

The formed [76Se]CoSe was removed from the ampule and pressed under argon
atmosphere at 1075 ◦C in a cavity (Ø = 12 mm, h = 1 mm) of a niobium disc (Ø = 24 mm,
h = 2 mm) (Nb foil, thickness 2 mm, purity 99.8%, Alfa Aesar, Kandel, Germany) (Figure 5).
230 mg [76Se]CoSe would have resulted in a ~ 26 µm homogeneous coating of the Nb cavity,
assuming perfect pressing procedure. However, the cavity of the niobium disc was not
entirely filled with [76Se]CoSe after hot pressing. A more complete cover of the cavity could
be achieved by an increase of [76Se]CoSe starting material or further thorough repetitions
of the pressing process. However, this would risk further loss of [76Se]CoSe by splattering
out of the cavity during the pressing procedure. We refrained from further optimization
of the hot pressing, because the imperfect coverage of the cavity was neglectable for the
intended 76Br production.
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Figure 5. Left: Niobium disc with [76Se]CoSe nugget on top. Right: Niobium disc with hot-pressed
[76Se]CoSe.

3.2. Target Irradiation

After irradiation, the target did not show any visible alteration. The weight of the
target was controlled before and after irradiation. No weight loss was observable (n = 6).
The deposited [76Se]CoSe was firmly fixed on the niobium backing. After irradiation, the
target was transferred to γ-spectrometry. Two radionuclides were identified (Figure 6). 76Br
was produced with a yield of ~72 MBq/µAh (EOB). Aside 76Br, 93mMo was also identified.
93mMo is formed in the niobium target backing via 93Nb(p,n)93mMo reaction. The spectrum
shows the prominent γ-radiation at 263.05 keV (57.4%) and 684.693 keV (99.9%).
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Figure 6. γ-spectrum section of an irradiated target disc. Identified radio nuclides are 76Br (red) and
93mMo (green) (blue: 511 keV annihilation radiation).

3.3. Target Processing

The 76Br was distilled from the target at 1055 ◦C within 10 min and concentrated at
a QMA Plus Light cartridge. Differing from published data [21,23], we used a chloride
solution instead of an ammonia solution for the extraction of 76Br. The attempts to extract
76Br with ammonia solution were not successful. The switch to the chloride system also
improved compatibility of the final stock solution with the required ionic strength and pH
for the planned PET transport studies on geological samples.

Non-radioactive 10 µM Br− solution and 250 µM–20 mM Cl− solution were used to-
gether with ion chromatography (ICS-1600, Dionex GmbH, Idstein, Germany) to determine
the minimal required Cl− concentration for the quantitative extraction of 76Br. Only the
20 mM Cl− solution allowed a quantitative extraction of 76Br. Figure 7 shows the elution
of 76Br with 20 mM Cl− solution. 76Br was found in samples 3–5 of the collected 1 mL
fractions. Less than 0.1% of 76Br remained at the cartridge.
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Figure 7. Chromatogram of the elution of 76Br from a QMA cartridge using a 20 mM chloride
solution.

The overall radiochemical yield of 76Br from the irradiated [76Se]CoSe target was
about 68.6 ± 5.0% (EOS). Incomplete rinsing of the head of the quartz glass tube (RC1) after
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dry distillation caused major losses of 76Br, accounting for up to 95% of the total synthesis
losses. No 93mMo was present in the final product.

3.4. PET

As shown in Figure 8A, the 76Br activity can be localized via PET in a PTFE sample.
The maximum observed activity concentration was 2516 Bq/mL.
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Line profiles of PET activity taken across the bore positions (Figure 8B) show Gaussian
equivalent FWHM of 6.4 mm (1 mm bore) to 12 mm (4 mm bore). For the bores larger than
1 mm, a local activity minimum can be observed at the position of the actual bore hole,
while the peak activities occur in the surrounding material. Due to preparative error, data
for the 2 mm-bore were not evaluated.

4. Discussion and Conclusions

The production of n.c.a. 76Br at a small 18 MeV cyclotron has been established.
The target preparation via hot pressing resulted in a target disc, withstanding repeated
application and showing yields comparable to published data. The target did not show
alterations during irradiation; no drop of yield was observed after repeated irradiation of
the target. Nevertheless, a more homogeneous distribution of target material in the cavity of
the target disc could further improve the stability of the target due to a more homogeneous
temperature profile within the target and also entail higher yields (MBq/µAh) in the
76Br production. The integration of a quartz glass apparatus into a modular synthesis
module allows the preparation of ~100 MBq n.c.a. 76Br EOS within 3 mL. The process was
optimized for extraction with Cl− solution. A fixed interval of 2 min was used between the
1 mL extraction steps. Further optimization in respect of the kinetics of the ion exchange
within the QMA could contribute to a smaller volume and higher concentration of the final
product. The radiochemical yield was 68.6 ± 5.0%. The aforementioned PET experiments
on geological samples require 40–100 MBq 76Br, which fits the apparatus used here very well.
The limiting factor for production of higher activities is the high amount of manual target
handling required. Placement of the target in the quartz glass tube and the positioning in
the furnace was done manually by hand. The current system would need optimization in
respect of radio protection. Measurements on a PET phantom confirmed the feasibility of
76Br as a PET tracer. In contrast to medical applications, the high density of geomaterials
limits the positron free range to reasonable values. As the line profiles in Figure 8B show,
annihilation primarily happens in the polymer surrounding the bores rather than in the
liquid. The achievable resolution, limited by the positron energy, is about 5 mm (cf. to
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1 mm for 18F); however, much smaller features may be detected given sufficient radiotracer
activity concentrations.
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