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Abstract: Transverse beam emittance plays a key role in the performance of high-brightness accel-
erators. Characterizing beam emittance is often carried out using a quadrupole scan, which fits
beam matrix elements to experimental measurements using first-order beam dynamics. Despite its
simplicity at face value, this procedure is difficult to automate due to practical limitations. Key issues
that must be addressed include maintaining beam size measurement validity by keeping beams
within the radius of diagnostic screens, ensuring that measurement fitting produces physically valid
results, and accurately characterizing emittance uncertainty. We describe a demonstration of the
Bayesian exploration technique towards solving this problem at the Argonne Wakefield Accelerator,
enabling a turn-key, autonomous quadrupole scan tool that can be used to quickly measure beam
emittances at various locations in accelerators with limited operator input.
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1. Introduction

Particle accelerators are complex instruments that require constant operator supervi-
sion and control to produce high-quality beams for use in a variety of scientific endeavors.
Often, this requires measuring beam attributes that have a high impact on accelerator
applications, most notably, the transverse beam emittance. A common method of measur-
ing beam emittances is a quadrupole scan [1], where a quadrupole is used to rotate the
transverse beam distribution in phase space while measuring the projected beam size on a
downstream diagnostic screen.

Quadrupole scans are relatively straightforward to perform manually or automati-
cally given prior measurements or knowledge of beam properties in the accelerator. The
quadrupole strength is scanned at fixed intervals between upper and lower bounds,
predetermined by operators based on prior experience or beam dynamics simulations.
Quadrupole focusing strengths must be chosen such that the beam remains within the
confines of the diagnostic screen and is focused enough to be resolvable above background
noise in screen measurements in order to guarantee that measurements of the beam size
are accurate. On the other hand, a wide range of focusing strengths must be used to sample
multiple phase advances in order to accurately calculate the beam emittance.

This beam size sampling method works well for repeated measurements of beam
emittances in well-understood beamline configurations. However, it becomes inefficient
to perform quadrupole scans in novel contexts such as varying operational conditions
or new beamlines. Determining the sample spacing and the lower and upper bounds of
fixed quadrupole scans is a tedious and inefficient trial-and-error process that must be
repeated for each beamline and operating configuration. As a result, it is challenging to use
quadrupole scans for emittance measurements when performing optimization of upstream
beamline parameters. This is especially true if upstream beamline parameters significantly
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affect the beam size and divergence at the quadrupole scan location, which in turn alters
the range of quadrupole strengths that lead to valid beam size measurements.

These challenges also present a barrier towards future autonomous operation of ac-
celerator facilities. Emittance measurements using the quadrupole scan method require
substantial operator oversight to configure, monitor and validate the results. Beam size
measurements are often subject to errors due to noise and uncertainties. Reconstructions
of the beam phase space distribution using least-squares fitting of experimental data can
be strongly influenced by these errors. Even small errors in the determination of beam
matrix elements < x2 >,< x′2 >,< xx′ > from this fitting can have major ramifications
for calculating the beam emittances ε =

√
< x2 >< x′2 > − < xx′ >2 due to catastrophic

cancellation effects. For example, if the true transverse phase space has the second-order
beam moments < x2 >= 2.0 mm2,< x′2 >= 2.0 mrad2,< xx′ >= 1.9 mm.mrad, then
the beam has a emittance of ε = 0.62 mm.mrad. However, a 5% error in the determi-
nation of < x2 > (< x2 >= 2.1 mm2) results in an emittance measurement error of
24% (ε = 0.77 mm.mrad). This limits the accuracy of least-squares fitting techniques for
determining the beam emittance, and in the worst case, can result in physically invalid
(imaginary) emittance predictions. Emittance measurement algorithms used in the con-
text of autonomous accelerator operations need to be robust to these potential errors and
produce only physically valid predictions of the beam emittance.

In this work, we introduce and demonstrate a “turn-key” technique for robust, au-
tonomous characterization of beam emittances with calibrated uncertainty estimates that
requires little to no operator oversight. Our method uses a model-based algorithm, built
from scratch, to autonomously choose quadrupole focusing strengths that maximize in-
formation gain about the beam size response. We then use robust statistical regression
techniques to fit experimental measurements of the beam size as a function of quadrupole
strength, taking into account beam dynamics principles and measurement noise. Samples
drawn from the statistical model are then used to produce a detailed probability distri-
bution of possible emittance values. This technique is demonstrated in an experiment
conducted at the Argonne Wakefield Accelerator.

2. Materials and Methods

Here we detail our algorithm for sampling beam sizes at different quadrupole strengths
and analyzing beam size data.

2.1. Conducting Autonomous Beamsize Measurements

Our algorithm for selecting the quadrupole strengths at which we measure the beam
size is an adaptation of the Bayesian optimization [2] algorithm. Bayesian optimization
starts by creating a statistical model of an objective function, known as a Gaussian pro-
cess [3] (GP), to make predictions of the mean function value and corresponding uncertainty
using previously measured data and expected function smoothness. This model is then used
by an acquisition function to forecast the anticipated value of making future measurements.
The acquisition function is then maximized to select the next parameter setting to measure.

Instead of optimizing the objective function, our algorithm, coined Bayesian exploration [4],
aims to characterize the objective function (in this case the beam size) as a function of
quadrupole strengths by choosing measurements that have the highest predicted uncer-
tainty. This process is shown in Figure 1. Given a set of previous measurements {x, y} of
the RMS beam size, a GP model produces both a prediction of the beam size (µ(x)) as a
function of quadrupole focusing strength and the corresponding uncertainty (σ(x)) of that
prediction. The acquisition function is defined as α(x) = σ(x) and is maximized to select
the next value of x to be observed. This, in turn, causes the sampling algorithm to choose
points that maximize model uncertainty, thus maximally increasing the information gained
about the beam size dependence for each experimental measurement. In one-dimensional
problems, such as quadrupole scans, this algorithm will sample points in a quasi-grid like
pattern, depending on the distribution of initial sample points.
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Figure 1. Illustration of our algorithm for characterizing unknown functions. (Left): Our algorithm
chooses points by maximizing a acquisition function (orange) that is equal to the model uncertainty
(light blue) based on previous observations (green). (Center): This acquisition function is then
multiplied by the probability that a constraint is satisfied (red) predicted by a second, independent
model using measurements of the constraining function. In this case, the constraint is satisfied when
the constraining function value is less than zero. (Right): The total acquisition function (purple)
comprised of both uncertainty and constraint terms.

In addition to this intelligent sampling strategy, our algorithm also considers obser-
vational constraints that need to be satisfied during characterization. For quadrupole
scans, primary constraints involve ensuring valid beam size measurements by keeping
the beam within a region of interest on the diagnostic screen and ensuring that the beam
is focused enough to be discernible from background noise. As a result, the range of
quadrupole strengths that result in valid beam size measurements is strongly dependent on
upstream beam parameters and beamline configuration. Bayesian exploration prevents the
selection of invalid quadrupole parameters by building independent GP models of each
constraining function and using them to predict the likelihood that a given quadrupole
strength satisfies the constraints. This process is shown in Figure 1. We determine the
likelihood of an input point meeting the constraint by integrating the GP model’s predicted
probability distribution over constraint-compliant values. The acquisition function is scaled
by this likelihood, which lessens the chance of selecting future measurements with a low
probability of satisfying the constraint.

We developed a specific constraining function to effectively reduce the frequency of
invalid beam size measurements in the context of imaging diagnostics. For GP models
to effectively predict where input points satisfy the given constraints, the constraining
functions must have a relatively smooth dependence on input parameters. To satisfy this
requirement, we developed what we will refer to here as a “bounding-box” constraint, as
shown in Figure 2. We specify a circular region of interest (ROI) in screen images with a
center pixel coordinate C and a radius r (also given in pixels). After processing the raw
screen image of a beam (using a Gaussian smoothing filter and a fixed minimum threshold),
we calculate the weighted centroid and RMS size of the beam intensity inside the ROI in
both the vertical and horizontal directions. We then create a rectangular bounding box
centered at the beam centroid with side lengths equal to four times the RMS beam sizes in
each direction, which encapsulates most if not all of the beam intensity on the screen for
observed beams. The constraint function is then defined by the maximum distance between
the ROI center and the bounding box corners, c = maxi||C− Si|| − r, where Si denotes
the pixel coordinates of each bounding box corner. If the beam bounding box is inside the
circular ROI, then this constraining function is negative; conversely, if it extends beyond the
bounding box boundary, then the constraining function value is positive. To prevent diffuse
beams we use a constraint on the total intensity of all pixel values inside the ROI, requiring
a minimum intensity for valid beam size measurements. If individual measurements of the
beam do not satisfy all of these constraints, the measurement of the beam size is discarded
while constraining function values are retained, as shown in Figure 3.
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Figure 2. Diagram showing bounding box style image constraint.

Figure 3. (Left): Beam sizes squared plotted for both the horizontal and vertical directions as a
function of quadrupole current, along with Bayesian model fits using a second-order polynomial
kernel. (Right): Constraining function measurements and model predictions. Dashed line denotes
the maximum allowed value of the penalty function that satisfies the constraint. A majority of
measurements chosen by our algorithm satisfy the constraint, which would not be the case for
random or grid-like sampling of quadrupole strengths.

2.2. Calculating Emittances

Once beam size data has been collected, we determine the distribution of possible
emittances from the data by drawing samples from a GP trained on the data set combined
with a physics-informed kernel function. It is known from first-order beam dynamics that
the beam size squared should have a quadratic dependence on the focusing strength of the
quadrupole, so in turn, we use a second-order polynomial kernel for the GP model. As
a result, samples drawn from the GP model will also have quadratic dependence on the
quadrupole strength (see Figure 4). A corresponding emittance value for each sample is
calculated by fitting each functional sample independently to the analytical model of beam
transport through a quadrupole and drift, resulting in a distribution of emittance values from
the GP model of the beam sizes. GP samples that predict negative beam sizes or imaginary
emittances are dropped from the distribution in a process known as rejection sampling.

2.3. Experimental Demonstration

We conducted an experimental demonstration of automatic emittance measurements
at the Argonne Wakefield Accelerator (AWA) [5]. Our study attempted to characterize the
beam emittance of beams exiting the accelerating section of the AWA beamline using a
single quadrupole magnet (effective length 0.12 m) and a YAG diagnostic screen located
1.065 m downstream. First, the beam was centered on the screen and manipulated by
upstream quadrupoles to fit within the ROI. Then, we used the python library Xopt [6]
to sample four chosen points to create an initial data set. Xopt was then used to perform
constrained Bayesian exploration as described in the previous sections with a Gaussian
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process. After a fixed number of iterations, the algorithm was terminated and the data was
used to calculate a distribution of possible emittances.

Figure 4. Plots showing samples drawn from the Gaussian process model used to determine the
beam emittance for the horizontal (left) and vertical (right) axes. Samples that correspond to
imaginary emittances are denoted as “invalid” and are rejected when calculating the distribution
of predicted emittances.

3. Results

Results from the experimental demonstration are shown in Figures 3–5. In Figure 3
(left), we observe that Bayesian exploration distributed beam size measurements evenly
throughout the valid input space of quadrupole strengths. Figure 3 (right) shows that the
constraining function was learned during the exploration process, resulting in only three
measurements that violated the constraint.

Figure 5. Distribution of horizontal and vertical emittances calculated using samples drawn from the
predictive model. Dashed vertical lines denote mean values.

Figure 4 shows samples drawn from the GP model. An emittance value is calculated
for each sample using a second-order polynomial fit to calculate elements of the beam
matrix. Samples that predict an imaginary beam emittance (approximately 10% for the
data sets shown here) are considered “invalid” and are rejected. Figure 5 shows predictions
of the beam emittance from valid samples drawn from the predictive beamsize model. Our
algorithm predicted a horizontal emittance of εx,n = 54± 15 mm.mrad and a vertical emit-
tance of εy,n = 91± 28 mm.mrad. Furthermore, our algorithm identified the asymmetry in
the probability distribution, with longer tails below the median value. Finally, our algo-
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rithm predictions are consistent with conventional least-squares fitting of the experimental
data, which predicts transverse emittances of εx,n = 40 mm.mrad and εy,n = 65 mm.mrad.

Despite relatively small uncertainty in the predictive beamsize model, there is still signif-
icant uncertainty in the beam emittance. It is likely that these large uncertainties are a result
of a combination of factors, including the noisy measurements and catastrophic cancellation
effects described earlier. The well-calibrated uncertainty metrics produced by our algorithm
can be used to inform optimization algorithms for tuning upstream beamline parameters.

4. Discussion

Our results show that this algorithm is successful in automating the quadrupole
scan process given arbitrary upstream beamline parameters, thus reducing the burden
on accelerator operators when emittance measurements are needed. The algorithm can
select quadrupole strengths to rotate the beam in phase space while adhering to practical
constraints that provide valid beam size measurements. This enables future attempts to
automate the optimization of beam emittances at AWA and other accelerator facilities.

This method can be further improved through several means. First, beam size mea-
surements at every shot can be used in creating the predictive model, as opposed to using
averaged measurements, which would improve the accuracy of uncertainty estimates of
the emittance due to jitter. Second, the speed of decision making in the algorithm could be
increased by using a mesh numerical optimizer of the acquisition function, since the decision
space is only one-dimensional. Third, to promote efficient sampling of quadrupole strengths
on each side of the beam size minimum, the upper confidence bound acquisition function [7]
can be used with a large β parameter to bias exploration towards quadrupole strengths that
are closer to the observed beam size minimum. Finally, instead of using the beam images
to calculate RMS beam sizes for fitting a polynomial model, the entire image can be used to
accurately reconstruct the transverse phase space distribution, as is done in [8].
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