
Citation: Seibold, G. On the

Evaluation of Higher-Harmonic-

Current Responses for High-Field

Spectroscopies in Disordered

Superconductors. Condens. Matter

2023, 8, 95. https://doi.org/

10.3390/condmat8040095

Academic Editors: Antonio Bianconi

and Yasutomo Uemura

Received: 13 October 2023

Revised: 8 November 2023

Accepted: 10 November 2023

Published: 13 November 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article
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Abstract: We discuss a formalism that allows for the calculation of a higher-harmonic-current
response to a strong applied electric field for disordered superconducting systems described on
the basis of tight-binding models with on- and/or intersite interactions. The theory is based on an
expansion of the density matrix in powers of the field amplitudes, where we solve the equation of
motion for the individual components. This allows the evaluation of higher-order response functions
on significantly larger lattices than one can achieve with a previously used approach, which is based
on a direct temporal integration of the equation of motion for the complete density matrix. In the case
of small lattices, where both methods can be applied by including also the contribution of collective
modes, we demonstrate the agreement of the corresponding results.
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1. Introduction

Both linear and non-linear response spectroscopies provide valuable and comple-
mentary information on the excitations of high-temperature superconductors. Since the
discovery of these materials, optical conductivity measurements have been central in
advancing our understanding of the unusual electronic properties, including, e.g., the
superconducting gap, the pseudogap, or the transition from a Mott-insulating state to a
(non-)Fermi liquid (for a review, see, e.g., [1]).

On the other hand, the development of non-equilibrium spectroscopies has signifi-
cantly advanced our understanding of complex materials, due to the possibility of disen-
tangling different dynamical processes via their different relaxation times [2]. With regard
to superconducting materials, measurements of the non-linear current response have been
recently been applied in order to elucidate the order parameter dynamics, which, as a scalar
quantity, is not visible in the equilibrium response. Corresponding experiments have been
conducted in NbN [3–5], MgB2 [6,7], pnictides [8], and cuprate superconductors [9–12],
whereas the theoretical understanding of these studies was advanced in [13–24]. Basically,
the current density in response to an applied vector potential A(t) can be expanded up
to third order as jα = χ

(1)
αβ Aβ + χ

(3)
αβγδ Aβ Aγ Aδ, where χ(1) is the linear response, which is

related to the optical conductivity. On the other hand, χ(3) incorporates processes where
the (scalar) order parameter fluctuations δ∆ are driven by terms quadratic in A(t) so that
the third harmonic generation (THG) is expected to be enhanced at twice the frequency
of the incoming field 2ω corresponding to the spectral gap 2∆ of the superconductor (SC).
However, it has been shown [13] that, for clean single-band s-wave SCs, these amplitude
(“Higgs”) excitations yield only a minor contribution to the THG, which instead is domi-
nated by the BCS quasiparticle excitations across the SC spectral gap. For a square lattice,
the amplitude excitations only become visible when the THG is measured at an angle
of π/4 with respect to the bond direction, which suppresses the QP contribution. For a
clean system, the response is only due to the diamagnetic current, while disorder induces
also a paramagnetic contribution [4,15,16,19]. It has been shown [19] that, at moderate
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disorder, the response is still dominated by the BCS part, while collective modes may yield
comparable contributions only in the limit of strong disorder.

In this context, various approximations for the theoretical description of disorder
within the BCS theory have been considered. In the weakly disordered limit kFl � 1,
previous work [16,21] was either based on the Mattis–Bardeen model [25] or on the self-
consistent Born approximation [4]. The summation of diagrams with impurity ladders,
equivalent to the solution of quasiclassical Eilenberger equations and formally valid for
arbitrary scattering rate, was accomplished in [15]. In our previous work [19,26], we treated
the influence of disorder on the THG exactly by solving the time-dependent Bogoljubov–de
Gennes equations on finite lattices with local Anderson-type disorder. Formally, this has
been achieved by adding a time-dependent vector potential to the Hamiltonian and by
computing the resulting dynamics from the equation of motion for the time-dependent
density matrix. This formalism can be accomplished in two different ways, which have
been used in [19] and [26], respectively. First, the dynamics of the full density matrix can
be computed from the equation of motion, and at the end, the various harmonic contri-
butions, proportional to the corresponding power in the amplitude of the applied vector
potential ∼ An

0 , have to be extracted numerically; see [19]. This is a rather flexible approach,
which allows considering the influence of collective modes (amplitude, phase, charge) and,
in principle, also allows incorporating different pump–probe protocols. However, for a
lattice with N sites, the density matrix for a superconductor has dimensions 2N × 2N so
that the formalism is restricted to small lattices only. Second, as outlined in [26], the density
matrix can be expanded from the beginning in powers of the applied vector potential. The
equations of motion can be immediately formulated in frequency space for the individual
components and allow for the computation of the current response at the respective order.
This approach is less flexible in the time domain, but can be applied to much larger lattices
as relevant for the investigation of d-wave superconductors, at least on the BCS level, as
was demonstrated in [26].

Here, we compared in detail both formalisms and also discuss how collective modes
can be incorporated into the second approach. Section 2 introduces the model, and we
will analyse the two different approaches for the computation of the THG in a disordered
tight-binding lattice with attractive on-site interaction (“attractive Hubbard model”) in
Section 3. In the same section, we also compare the outcome of both procedures for the
case of a disordered s-wave system. We conclude our discussion in Section 4.

2. Model

We illustrate our formalism within the attractive Hubbard model on a square lattice
plus local on-site disorder (cf., e.g., [19,27–29]):

H = ∑
ijσ

tijc†
iσcjσ − |U|∑

i
ni↑ni↓ + ∑

iσ
Viniσ (1)

where the local potential Vi is taken from a flat distribution −V0 ≤ Vi ≤ +V0.
To describe the SC state, Equation (1) is solved in the mean-field using the Bogoljubov-de-

Gennes (BdG) transformation:

ciσ = ∑
k

[
ui(k)γk,σ − σv∗i (k)γ

†
k,−σ

]
which yields the eigenvalue equations:

ωkun(k) = ∑j tnjuj(k) + [Vn − |U|2 〈nn〉 − µ]un(k) + ∆nvn(k) (2)

ωkvn(k) = −∑j t∗njvj(k)− [Vn − |U|2 〈nn〉 − µ]un(k) + ∆∗nun(k) (3)

and the SC order parameter is defined as ∆n = −|U|〈cn,↓cn,↑〉.
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From the eigenvalue problem, Equations (2) and (3), one can iteratively determine the
ground state density matrixR with the elements:

ρij = 〈c†
i,↑cj,↑〉 = ∑

k

[
vi(k)v∗j (k)(1− f (Ek)) + u∗i (k)uj(k) f (Ek)

]
ρ̄ij = 〈ci,↓c†

j,↓〉 = ∑
k

[
ui(k)u∗j (k)(1− f (Ek)) + v∗i (k)vj(k) f (Ek)

]
κij = 〈ci,↓cj,↑〉 = ∑

k

[
−ui(k)v∗j (k)(1− f (Ek)) + v∗i (k)uj(k) f (Ek)

]
which in compact notation can be written as

R =

(
ρ κ†

κ ρ̄

)
.

The BdG approximated energy can then be expressed via the density matrix as

EBdG = ∑
ij

tij
(
ρij − ρ̄ij

)
+ U ∑

i
(ρii(1− ρ̄ii) + κ∗iiκii) + ∑

i
Vi[ρii − ρ̄ii + 1],

and the BdG-Hamiltonian matrix is defined as

HBdG
ij =

∂EBdG

∂Rji
. (4)

In the absence of an external field, the density matrix R and the Hamiltonian HBdG

commute, so that the density matrix has no time evolution. The dynamics of R(t) is
induced via the coupling to the electromagnetic field ~E(t) = −∂~A(t)/∂t. Let us consider,
e.g., the case of a (spatially constant) field along the x direction. Ax(t) is coupled to the
system via the Peierls substitution c†

i+x,σci,σ → eiAx(t)c†
i+x,σci,σ, where, for simplicity, we

will drop from the equations all the constants by putting the lattice spacing, the electronic
charge e, the light velocity c, and the Planck constant h̄ equal to one. The Peierls substitution
modifies the kinetic energy part, leading to the following contribution to EBdG:

TBdG = −t
{

eiAx ρi+x,i + e−iAx ρi−x,i − e−iAx ρ̄i+x,i − eiAx ρ̄i+x,i

}
− t′

{
eiAx ρi+x,i+y + e−iAx ρi−x−y,i −−e−iAx ρ̄i+x+y,i − eiAx ρ̄i+x+y,i

+ eiAx ρi+x,i−y + e−iAx ρi−x+y,i − e−iAx ρ̄i+x−y,i − eiAx ρ̄i+x−y,i

}
(5)

where we included a nearest (∼t) and next-nearest (∼t′) neighbour hopping into the Hamiltonian.

3. Computation of the Dynamics

The equation of motion for the density matrix reads

i
d
dt
R =

[
R,HBdG

]
(6)

with the BdG-Hamiltonian matrix given by Equation (4).
Solving Equation (6) yields a time-dependent BdG energy EBdG(t) and, thus, a time-

dependent current density, which is obtained from

jx(t) = −
1
N

∂EBdG

∂Ax
= − 1

N
∂TBdG(t)

∂Ax
(7)
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with N denoting the number of sites. The task is now to evaluate the current response for
a given order in the amplitude of the applied vector potential. As a first step, we expand
Equation (5) up to third order in Ax, which yields

jx =

(
1− 1

2
A2

x

)
jx
para + Ax

(
1− 1

6
A2

x

)
jx
dia (8)

with

jx
para = it ∑

n
[ρn+x,n − ρ̄n−x,n − ρn−x,n + ρ̄n+x,n]

+ it′∑
n

[
ρn+x+y,n − ρ̄n−x−y,n − ρn−x−y,n + ρ̄n+x+y,n

]
+ it′∑

n

[
ρn+x−y,n − ρ̄n−x+y,n − ρn−x+y,n + ρ̄n+x−y,n

]
jx
dia = −t ∑

n
[ρn+x,n − ρ̄n−x,n + ρn−x,n − ρ̄n+x,n]

− t′∑
n

[
ρn+x+y,n − ρ̄n−x−y,n + ρn−x−y,n − ρ̄n+x+y,n

]
− t′∑

n

[
ρn+x−y,n − ρ̄n−x+y,n + ρn−x+y,n − ρ̄n+x−y,n

]
.

Here, the subscripts para and dia refer to the usual identification of the leading terms
coupling the gauge field to the fermionic operators in the Hamiltonian, i.e., the linear coupling
between the paramagnetic term and Ax and a quadratic coupling between the electronic
density and A2

x, which leads to the standard diamagnetic contribution to the current in the
linear response. However, both jx

para and jx
dia still contain the vector potential to all orders

in Ax.
Writing Ax(t) = A0 f (t), we can expand the currents in a power series in A0:

jx
para = ∑

n
An

0 jx,(n)
para

jx
dia = ∑

n
An

0 jx,(n)
dia

which, upon inserting into Equation (8), allows us to extract the various current contribu-
tions to order n, j(n)x . In particular, the third harmonic contribution to the current density
reads

j(3)x (t) = jx,(3)
para (t)−

1
2

f 2(t)jx,(1)
para (t) + f (t)jx,(2)

dia (t)− 1
6

f 3(t)jx,(0)
dia (9)

where we find that the dominant paramagnetic and diamagnetic contributions are given by
jx,(3)
para and A0 jx,(2)

dia . On the other hand, jx,(1)
para and jx,(0)

dia also enter the calculation of the optical
conductivity in first order.

In [19], we numerically integrated Equation (6) using an Adams–Bashforth algorithm
and an initialising fourth-order Runge–Kutta method. The resulting time-dependent
currents jx

para and jx
dia then were separated numerically into the individual components

jx,(n)
para and jx,(n)

dia from which, after the Fourier transformation, the frequency-dependent
third harmonic response Equation (9) was evaluated. In particular, at low energies, this
procedure is rather time consuming since the integration has to be performed over several
periods of the incoming field.

Here, we compared this approach with a different strategy, where from the beginning,
we expanded the density matrix in powers of the applied vector potential:

R = ∑
n=0

An
0R(n) . (10)
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Here,R(0) is the equilibrium density matrix for which[
R(0),HBdG

]
= 0 , (11)

as we already emphasised above.
According to Equation (9), higher-order contributions to the density matrixR(n) al-

low for the computation of the non-harmonic current responses jx,(n)
para and jx,(n)

dia , which,
as we will show in the following, can be directly obtained in the frequency space. The
next subsections will address in detail the evaluation of the current responses up to third
order, including the contribution from collective mode via the random phase approxima-
tion (RPA).

3.1. First Order

The first-order current contribution, relevant for the evaluation of the optical conduc-
tivity, is given by

j(1)x = jx,(1)
para + A0 jx,(0)

dia (12)

which requires the evaluation of the density matrix up to order n = 1.
By selecting all terms ∼A0 in the equation of motion, Equation (6), one obtains

iṘ(1)
=
[

R(1), H(0)
]
− |U|

[
R(0), D(1)

]
+ f (t)

[
R(0), V

]
(13)

with

V =

(
v 0
0 v

)
(14)

and

vnm = −it[δm,n+x − δm,n−x]− it′
[
δm,n+x+y − δm,n−x−y

]
− it′

[
δm,n+x−y − δm,n−x+y

]
.

The matrix D(1) is defined as

D(1) =

(
−ρ̄

(1)
D κ

†,(1)
D

κ
(1)
D −ρ

(1)
D

)
(15)

and the subscript D indicates that it only contains the diagonal elements of the respective
matrices, e.g., [ρ(1)D ]nm ≡ [ρ(1)]nmδnm, which are part of R(1).

The non-perturbed Hamiltonian H(0) (i.e., for A0 = 0) can be diagonalised:

H̃(0)
= T−1H(0)T =



−EN . . . 0 0 . . . 0
...

. . . 0
... . . .

...
0 . . . −E1 0 . . . 0
0 . . . 0 E1 . . . 0
...

...
...

. . .
...

0 . . . 0 0 . . . EN
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and the same transformation also diagonalises the non-perturbed density matrix:

R̃(0)
= T−1R(0)T =



1 . . . 0 0 . . . 0
...

. . . 0
... . . .

...
0 . . . 1 0 . . . 0
0 . . . 0 0 . . . 0
...

...
...

. . .
...

0 . . . 0 0 . . . 0


.

With this transformation, Equation (13) can be written as

i ˙̃R(1)
nm = (Emm − Enn)R̃1

nm − |U|(R̃0
nn − R̃0

mm)D̃(1)
nm + (R̃0

nn − R̃0
mm)Ṽnm f (t) (16)

where Ṽ and D̃(1) denote the transformed matrices, Equations (14) and (15).
We now perform a Fourier transformation:

R̃1
nm(ω) =

∫
dteiωtR̃1

nm(t)

f (ω) =
∫

dteiωt f (t)

so that Equation (16) reads

R̃1
nm(ω) =

R̃0
nn − R̃0

mm
ω− Emm + Enn

Ṽnm f (ω)− |U| R̃0
nn − R̃0

mm
ω− Emm + Enn

D̃(1)
nm

≡ χ̃
(0)
nm(ω)Ṽnm f (ω)− |U|χ̃(0)

nm(ω)D̃(1)
nm . (17)

On the BCS level (U = 0), the density matrix is now obtained by transforming back to
R(1)

ij in the original site representation. For the practical computation, χ̃nm(ω → ω − iε)
should be shifted into the complex plane in order to avoid singularities.

Including fluctuations means including the corrections due to the matrix D(1). In
the original site representation and in the case of local interactions (as in the present case
of the attractive Hubbard model), D(1) has only diagonal elements in ρ and κ, which in

the following, we denote by Greek letters, i.e., D(1)
αβ refers to a non-zero element of the

matrix D(1). The case of intersite interactions, as, e.g., relevant for the description of d-wave
superconductivity, requires a corresponding modification of the following discussion.

However, in the present case, the elements D(1)
αβ are related to the diagonal elements of

the density matrix, which we obtain by back-transforming Equation (17):

R(1)
αβ = Tαnχ̃

(0)
nm(ω)ṼnmT−1

mβ f (ω)− |U|Tαnχ̃
(0)
nm(ω)D̃(1)

nmT−1
mβ

≡ −τ
y
ανD(1),†

νµ τ
y
µβ = −τ

y
βνD(1)

νµ τ
y
µα (18)

where we used the following identity for the diagonal elements of the density matrix:

R(1)
D = −τyD(1),†τy (19)

with

τy =

(
0 −i1
i1 0 .

)
(20)
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Equation (18) can be solved for D(1)
νµ as

D(1)
νµ = −τ

y
µαTαnχ̃

(0)
nm(ω)ṼnmT−1

mβ τ
y
βν f (ω) + |U|τy

µαTαnχ̃
(0)
nm(ω)D̃(1)

nmT−1
mβ τ

y
βν

= −τ
y
µαTαnχ̃

(0)
nm(ω)ṼnmT−1

mβ τ
y
βν f (ω) + |U|τy

µαTαnχ̃
(0)
nm(ω)T−1

nρ D(1)
ρσ TσmT−1

mβ τ
y
βν

where, in the last step, we transformed D̃(1) back into the original site representation.
We now define

Kνµ = −τ
y
µαTαnχ̃

(0)
nm(ω)ṼnmT−1

mβ τ
y
βν (21)

Wνµ,ρσ = τ
y
µαTαnχ̃

(0)
nm(ω)T−1

nρ TσmT−1
mβ τ

y
βν (22)

so that the equation for D(1) is given by

D(1)
νµ = Kνµ(ω) f (ω) + |U|Wνµ,ρσD(1)

ρσ (23)

or [
δνµ,ρσ − |U|Wνµ,ρσ

]︸ ︷︷ ︸
Mνµ,ρσ

D(1)
ρσ = Kνµ(ω) f (ω) (24)

and therefore,

D(1)(ω) = M−1(ω)K(ω) f (ω) . (25)

Inserting the transformed solution of Equation (25) into Equation (17) yields the
transformed solution for the density matrix.

Figure 1 shows the magnitude of the first harmonic response for a particular disorder
configuration (V/t = 1) on a 8× 8 square lattice. We compared the current, obtained from
the direct time integration of Equation (6), with the result from Equation (17). For the BCS
result, we neglected the time evolution of local charge densities and anomalous correlations
in the BdG Hamiltonian Equation (4). This amounts to neglecting the contribution of D̃ in
Equation (17), which instead is relevant for the inclusion of collective modes within the
RPA. In particular, the phase modes are responsible for the excitations (peaky structures in
Figure 1b,d) below the optical gap 2∆; cf. [19]. Note that Figure 1 reports the magnitude of
the first-order current response so that the finite BCS response below 2∆ is due to the real
part of the current–current correlations. Obviously, the energy resolution in the direct time
integration (blue dotted lines) depends on the time interval over which the time integration
is performed. In the expansion approach, Equation (17), this resolution can be mimicked by
using different values for the parameter ε, which shifts the energy into the complex plane.
However, a finite ε describes an exponential damping of the time-dependent density matrix
over a time scale ∼1/ε. On the other hand, there is no damping in the time integration
method, but the integration is simply performed over a fixed time interval. In Figure 1, we
use 10 (Panels a, b) and 50 (Panels c, d) periods of the applied vector potential as the time
interval for the integration. Note that, for each frequency point, a separate time integration
is required.
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ω  [t]
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1

1.5

2
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(a) BCS

(b) RPA

(c) BCS

(d) RPA

Figure 1. Magnitude of the first harmonic response for BCS (a,c) and RPA (b,d). The paramagnetic
current obtained from the direct time integration Equation (6) is shown by the blue dotted line,
and integration was performed over 10 (a,b) and 50 (c,d) periods of the applied vector potential.
The current evaluated from the expansion Equations (17) and (25) is shown in red. Here, we used
ε = 0.03t (a,b) and ε = 0.005t (c,d) in order to shift the energy into the complex plane, ω → ω + iε.
The vertical dashed line marks the optical gap 2∆. Further parameters: 8× 8 lattice with 56 electrons.
t′/t = 0; V0/t = 1.

3.2. Second Order

We proceed by evaluating the diamagnetic contribution to the third harmonic current
A0 jx,(2)

dia ; cf. Equation (9). Collecting all terms ∼A2
0, we find for the correction to the density

matrix in second order:

iṘ(2)
(t) =

[
R(2)(t), H(0)

]
+
[

R(1)(t), V
]

f (t) +
1
2

[
R(0), C

]
f 2(t) (26)

− |U|
[

R(1), D(1)
]
− |U|

[
R(0), D(2)

]
where we defined the matrix:

C =

(
c 0
0 −c

)
(27)

and

cnm = t[δm,n+x + δm,n−x] + t′
[
δm,n+x+y + δm,n−x−y

]
+ t′

[
δm,n+x−y + δm,n−x+y

]
.

The Fourier transformation yields

ωR(2)(ω) =
[

R(2)(ω), H(0)
]
+
∫

dν
[

R(1)(ν), V
]

f (ω− ν)

+
1
2

[
R(0), C

] ∫
dν f (ν) f (ω− ν)− |U|

∫
dν
[

R(1)(ν), D(1)(ω− ν)
]

− |U|
[

R(0), D(2)(ω)
]

(28)

which, upon applying the transformation to diagonal states, can be written as

R̃(2)
nm(ω) =

1
2

χ̃
(0)
nm(ω)C̃nm

∫
dν f (ν) f (ω− ν)− |U|χ̃(0)

nm(ω)D̃(2)
nm(ω)

+
1

ω + Enn − Emm

∫
dν
[
r̃(1)(ν), ϑ̃(ω− ν)

]
nm

f (ν) f (ω− ν) . (29)
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Here, we defined

R̃(1)
nm(ω) ≡ r̃(1)nm(ω) f (ω) = χ̃

(0)
nm(ω)ϑnm(ω) f (ω)

ϑnm(ω) ≡ Ṽnm − |U|
[
d̃(1)(ω)

]
nm

D̃(1)
nm(ω) ≡ d̃(1)nm(ω) f (ω) .

We can now follow the same procedure as in the case of the first-order RPA calculation.
By transforming to the real space representation, where D(2)

nm is again diagonal (similar to
Equation (15)), one obtains

D(2)
ρσ (ω) = M−1

ρσ,νµ(ω)Gνµ(ω)
∫

dν f (ν) f (ω− ν)

− M−1
ρσ,νµ(ω)τ

y
µαTα,n

1
ω + Enn − Emm

∫
dν
[
r̃(1)(ν), ϑ̃(ω− ν)

]
nm

T−1
mβ τ

y
βν f (ν) f (ω− ν) (30)

where the matrix M is the same as in Equation (24), and we defined

Gνµ = −1
2

τ
y
µαTαnχ̃

(0)
nm(ω)C̃nmT−1

mβ τ
y
βν . (31)

Then, by solving Equation (30) and plugging the transformed result into Equation (29),
one obtains the second-order frequency-dependent contribution to the density matrix in
response to an external field f (ω).

We exemplify the result for a harmonic external field with f (ω) = δ(ω−Ω) + δ(ω +

Ω). Then, from Equation (9) it turns out that the diamagnetic contribution to j(3)x (t) is
given by f (t)jx,(2)

dia (t), which, upon Fourier transformation, implies that j(3)x (ω) is given by

jx,(2)
dia (ω − Ω). Thus, the diamagnetic response at ω = 3Ω is determined by the density

matrix R̃(2)
nm(ω−Ω). From Equations (29) and (30), one finds

R̃(2)
nm(ω−Ω) =

1
2

χ̃
(0)
nm(2Ω)C̃nmδ(ω− 3Ω)− |U|χ̃(0)

nm(2Ω)D̃(2)
nm(ω−Ω)

+
1

2Ω + Enn − Emm

[
r̃(1)(Ω), ϑ̃(Ω)

]
nm

δ(ω− 3Ω) , (32)

with

D(2)
ρσ (ω−Ω) = M−1

ρσ,νµ(2Ω)Gνµ(2Ω)δ(ω− 3Ω) (33)

− M−1
ρσ,νµ(2Ω)τ

y
µαTα,n

1
2Ω + Enn − Emm

×
[
r̃(1)(Ω), ϑ̃(Ω)

]
nm

T−1
mβ τ

y
βνδ(ω− 3Ω) .

Figure 2 compares the second harmonic response from the direct time integration
of Equation (6) with the expansion from Equations (32) and (33) for a particular disorder
realisation. As discussed in [19], disorder washes out the resonance at ω = ∆, and collective
modes only slightly increase the intensity of the diamagnetic response. One can also observe
that a single parameter ε allows adjusting the response, evaluated from the expansion (red
line) to the time-integrated result (blue dotted line) at low energy; however, the agreement
in intensity is lost at larger values of ω. For larger time integration intervals (cf., Panels c, d),
the agreement is pushed to higher energies.
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Figure 2. Magnitude of the second harmonic response (Fourier transform of f ( f )j2dia(t)) for BCS
(a,c) and RPA (b,d). The diamagnetic current obtained from the direct time integration Equation (6)
is shown by the blue dotted line, and integration was performed over 10 (a,b) and 50 (c,d) periods
of the applied vector potential. The current evaluated from the expansion Equations (32) and (33)
is shown in red. Here, we used ε = 0.01t (a,b) and ε = 0.004t (c,d) in order to shift the energy into
the complex plane, ω → ω + iε. The vertical dashed line marks the energy at ∆. Further parameters:
8× 8 lattice with 56 electrons. t′/t = 0; V0/t = 1.

3.3. Third Order

Finally, we evaluated the paramagnetic contribution to the third harmonic current jx,(3)
para .

Collecting all terms ∼A3
0 in the equation of motion, Equation (6), results in the following

equation for the third-order correction to the density matrix

iṘ(3)
(t) =

[
R(3)(t), H(0)

]
+
[

R(2)(t), V
]

f (t) +
1
2

[
R(1), C

]
f 2(t)

− 1
6

[
R(0)(t), V

]
f 3(t)− |U|

[
R(0), D(3)

]
− |U|

[
R(1), D(2)

]
− |U|

[
R(2), D(1)

]
. (34)

The Fourier transformation yields

ωR3(ω) =
[

R(3)(ω), H(0)
]
+
∫

dω1

[
R(2)(ω1), V

]
f (ω−ω1)

+
1
2

∫
dω1

∫
dω2

[
R(1)(ω1), C

]
f (ω2) f (ω−ω1 −ω2)

− 1
6

[
R(0), V

] ∫
dω1

∫
dω2 f (ω1) f (ω2) f (ω−ω1 −ω2)

− |U|
[

R(0), D(3)(ω)
]
− |U|

∫
dω1

[
R(1)(ω1), D(2)(ω−ω1)

]
− |U|

∫
dω1

[
R(2)(ω1), D(1)(ω−ω1)

]
. (35)

Defining

D(2)(ω) ≡
∫

dνd(2)(ω, ν) f (ν) f (ω− ν) (36)

R(2)(ω) ≡
∫

dνr(2)(ω, ν) f (ν) f (ω− ν) (37)
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and transforming to diagonal states, Equation (35) becomes

R̃(3)
nm(ω) = −1

6
χ̃(0)(ω)Ṽnm

∫
dω1

∫
dω2 f (ω1) f (ω2) f (ω−ω1 −ω2)

+
1

ω + Enn − Emm

∫
dω1

∫
dω2

r̃(2)(ω1 + ω2, ω2), Ṽ − |U|d̃(1)(ω−ω1 −ω2)︸ ︷︷ ︸
=ϑ̃(ω−ω1−ω2)


nm

× f (ω1) f (ω2) f (ω−ω1 −ω2)

+
1

ω + Enn − Emm

∫
dω1

∫
dω2

[
r̃(1)(ω1),

1
2

C̃− |U|d̃(2)(ω−ω1, ω2)

]
nm

× f (ω1) f (ω2) f (ω−ω1 −ω2)− |U|χ̃
(0)
nm(ω)D̃(3)

nm(ω) . (38)

Now, we follow the usual procedure and write Equation (38) in terms of the diagonal
elements, i.e., D(3)

νρ , which yields

D(3)
ρσ (ω) = −1

6
M−1

ρσ,νρKνρ(ω)
∫

dω1

∫
dω2 f (ω1) f (ω2) f (ω−ω1 −ω2)

− M−1
ρσ,νρ(ω)τ

y
µαTα,n

1
ω + Enn − Emm

∫
dω1

∫
dω2

[
r̃(2)(ω1 + ω2, ω2), ϑ̃(ω−ω1 −ω2)

]
nm

× T−1
mβ τ

y
βν f (ω1) f (ω2) f (ω−ω1 −ω2)

− M−1
ρσ,νρ(ω)τ

y
µαTα,n

1
ω + Enn − Emm

∫
dω1

∫
dω2

[
r̃(1)(ω1),

1
2

C̃− |U|d̃(2)(ω−ω1, ω2)

]
nm

× T−1
mβ τ

y
βν f (ω1) f (ω2) f (ω−ω1 −ω2) . (39)

which, upon inserting into Equation (38), yields the third-order correction to the density matrix.
We considered again a harmonic external field with f (ω) = δ(ω −Ω) + δ(ω + Ω).

The contribution of R̃(3)
nm(ω) ∼ δ(ω− 3Ω) is then given by

R̃(3)
nm(ω) = −1

6
χ̃(0)(3Ω)Ṽnmδ(ω− 3Ω) +

1
3Ω + Enn − Emm

[
r̃(2)(2Ω, Ω), ϑ(Ω)

]
nm

δ(ω− 3Ω)

+
1

3Ω + Enn − Emm

[
r̃(1)(Ω1),

1
2

C̃− |U|d̃(2)(2Ω, Ω)

]
nm

δ(ω− 3Ω)

− |U|χ̃(0)
nm(3Ω)d̃(3)nm(3Ω)δ(ω− 3Ω) . (40)

with

r̃(2)nm(2Ω, Ω) =
1
2

χ̃
(0)
nm(2Ω)C̃nm +

1
2Ω + Enn − Emm

[
r̃(1)(Ω), ϑ̃(Ω)

]
nm

− |U|χ̃(0)
nm(2Ω)d̃(2)nm(2Ω, Ω) . (41)

d̃(2)nm(2Ω, Ω) = M−1
ρσ,νµ(2Ω)Gνµ(2Ω)

− M−1
ρσ,νµ(2Ω)τ

y
µαTα,n

1
2Ω + Enn − Emm

[
r̃(1)(Ω), ϑ̃(Ω)

]
nm

T−1
mβ τ

y
βν (42)

d̃(3)nm(3Ω) = −1
6

M−1
ρσ,νρ(3Ω)Kνρ(3Ω)

− M−1
ρσ,νρ(3Ω)τ

y
µαTα,n

1
3Ω + Enn − Emm

[
r̃(2)(2Ω, Ω), ϑ̃(Ω)

]
nm

T−1
mβ τ

y
βν

− M−1
ρσ,νρ(3Ω)τ

y
µαTα,n

1
3Ω + Enn − Emm

[
r̃(1)(Ω),

1
2

C̃− |U|d̃(2)(2Ω, Ω)

]
nm

T−1
mβ τ

y
βν . (43)
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For the same disorder configuration as was used for Figures 1 and 2, we show in
Figure 3 the third harmonic response from Equations (17) and (25) as compared to the direct
time integration of Equation (6). Consistent with our previous results [19], the strongly
disordered ordered sample displays a low paramagnetic energy response at ω = ∆, both
in the BCS and RPA, where the latter is enhanced by the contribution from the collective
modes. As in case of the diamagnetic contribution (cf. Figure 2), the “expansion result”
(red) for a fixed ε parameter can be adjusted to the time-integrated spectrum (blue dotted
line) at low energies, but with a decreasing number of periods in the time integration, the
agreement in intensity is lost at higher energies. This is particularly visible in Figure 3d,
where the contribution from band excitations leads to significantly larger intensities for
the small ε = 0.004 as compared to the time integration over 50 periods of the applied
vector potential.
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Figure 3. Magnitude of the third harmonic response (Fourier transform of j3para(t)) for BCS (a,c) and
RPA (b,d). The diamagnetic current obtained from the direct time integration Equation (6) is shown
by the blue dotted line, and integration was performed over 10 (a,b) and 50 (c,d) periods of the
applied vector potential. The current evaluated from the expansion Equations (17) and (25) is shown
in red. Here, we used ε = 0.01t (a,b) and ε = 0.004t (c,d) in order to shift the energy into the complex
plane, ω → ω + iε. The vertical dashed line marks the gap ∆. Further parameters: 8× 8 lattice with
56 electrons. t′/t = 0; V0/t = 1.

4. Conclusions

We presented a detailed comparison of two approaches to evaluate the higher-harmonic-
current response to an applied electromagnetic field for disordered and superconducting
systems on a lattice. The first method is based on the direct time integration of the equation
of motion, Equation (6), as was used in [19] for the investigation of the influence of collec-
tive modes in disordered s-wave superconductors. Since, in this case, the higher harmonic
contribution has to be extracted numerically from the total response, the calculation has
to be performed for at least three different magnitudes of the vector potential for each
frequency. Together with the fact that, in order to obtain a reasonable frequency resolution,
the integration has to be performed over a significant number of periods of the applied
vector potential, this method is limited to a small number of lattice sites. On the other hand,
it is rather flexible with regard to the simulation of different pump–probe protocols, which
can be easily implemented in the formalism.

Alternatively, one can compute the THG from an expansion of the density matrix
in powers of the applied vector potential. As we demonstrated in the present paper, the
equations of motion for the individual components can be directly solved in the frequency
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space from which the currents in the various orders are obtained. In [26], this approach
was applied to the evaluation of the third harmonic response in d-wave superconductors,
where, at least in the BCS limit, one could treat much larger systems than via the direct
time integration of the density matrix. In this paper, we showed how RPA corrections can
be included in the formalism. An open issue is the problem of how these RPA corrections
can be separated into contributions from the amplitude, phase, and charge modes, which,
on the other hand, can be easily accomplished within the time integration method.
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