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Abstract: I review a new superconductivity mechanism in which the gap is opened through a
topological mechanism and not through the Landau mechanism of spontaneous symmetry breaking.
As a consequence, the low-energy effective theory which describes these new superconductors is not
the Landau–Ginzburg theory, formulated in terms of a local-order parameter, but a topological-field
theory formulated in terms of emerging gauge fields. This new mechanism is realized as global
superconductivty in Josephson junction arrays and in thin superconducting films with thicknesses
comparable to the superconducting coherence length, which exhibits emergent granularity.

Keywords: topological mass; superconductivity; topological field theory

1. Introduction

The Ginzburg–Landau (GL) approach [1] is generally used to describe superconduc-
tivity, one of most interesting phenomena in quantum physics. It unravels the fundamental
reasons for the very existence of superconductivity decoupled from specific material charac-
teristics. In the field-theory formulation of the GL theory, superconductivity arises because
the relevant gauge fields acquire a mass, representing the superconducting gap. The mass
arises via the so-called Anderson–Higgs mechanism. In this framework, the Coulomb
interaction is normally neglected, since it is considered a sub-dominant effect with respect
to the dominant magnetic forces. In two spatial dimensions (2D), however, fluctuations are
stronger [2]. Strictly speaking, the Mermin–Wagner theorem forbids long-range order at
finite temperatures. This effect, however, can be completely neglected, in practice, for all
reasonable sample sizes used in experiments [3].

Here, I review a Higgsless model of superconductivity first introduced in [4,5], in
which the gap is generated by a topological mechanism, and not through the Anderson–
Higgs mechanism. This topological mechanism is P- and T-invariant and can be formulated
in any space-time dimensions, contrary to anyon superconductivity. Its low- energy effec-
tive field theory in (2 + 1) dimensions is formulated in terms of two emergent compact
gauge fields. In (d + 1) dimensions, the dominant term in effective low-energy action is the
topological BF [6] term. It reduces to a mixed Chern–Simons (CS) [7] term in two spatial
dimensions. In these superconductors, the destruction of superconductivity is caused by a
proliferation of vortices and not by the breaking of Cooper pairs, as in traditional ones [8,9].
In 2D, this is the famed BKT transition [10]. Cooper pairs, in fact, have been detected above
the BKT thermal transition [11].

Materials in which Higssless superconductivity is realized are materials which exhibit
the superconductor-to-insulator transition (SIT) [12] and have, as relevant degrees of free-
dom, Cooper pairs and vortices [13]. They are characterised by a large-enough normal-state
dielectric constant ε, so that the Coulomb interaction is the 2D logarithmic interaction up to
a screening length εd, which typically exceeds the sample size [8,9] and cannot be neglected.
As a consequence, we have to couple the GL model to 2D electromagnetism, obtaining,
thus, scalar electrodynamics. The gauge fields, which couple to the charge fluctuations in
the condensate, become massive through the Anderson–Higgs mechanism [1] and remain
coupled to the charge fluctuations in the condensate. However, in thin films, the screening
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length, given by the inverse of the Anderson–Higgs mass, is the Pearl length λ⊥ = λ2
L/d.

The Pearl length is comparable or larger than the typical sample sizes in thin supercon-
ducting films with thicknesses d→ ξ (the Pearl length of TiN in the 2D limit is ≈ 0.1 mm,
the typical size of the platelets used in experiments). This means that, for all purposes,
gauge fields remain massless within the film. The limit d → ξ defines what I call planar
superconductors.

Inside the sample, the system is described by non-compact QED in (2 + 1) dimensions.
This theory has a coupling constant ∝ logR/a with a, an ultraviolet cutoff (UV), and R, the
infrared (IR) cutoff and is, thus, infrared divergent [14,15]. In superconducting films, the
UV cutoff is given by the coherence length ξ, and the IR cutoff by the size of the system.
For system with sizes ξ � R ≤ λ⊥, the theory that describes them is non-perturbative and
the Anderson–Higgs mechanism cannot screen the gauge fields.

How can planar superconductors cure their infrared divergences? There are two
possibilities: the first one is via instantons, which represent tunneling events between
differnt vacua, and which generate a mass for gauge fields when they are in a plasma phase
[15]. The second one is via the Chern–Simons (CS) topological mass generation [14,16].
When only one gauge fields is present, this second mechanism breaks the discrete P (parity)
and T (time-reversal) symmetries. However, when two gauge fields are present in the
theory, as in the case of planar supercpnductors, the mixed topological term that enters the
action preserves these symmetries [7]. Depending on the value of d (and the bulk London
penetration depth λL), the system will choose one of these two possibilities. The first leads
to superinsulators [17], the second to superconductors, which are the focus of the present
review (actually, there is a third possibility, that of completely eliminating any condensate,
leading to Bose metals [7,18,19]). As I will show, the thickness of film d does not enter the
topological CS mass, which is given only by the product of the two characteristic magnetic
and electric length scales that charactrize the system. For planar superconductors, the
screening length is, thus, the bulk London penetration depth and not the Pearl length:

λtop = O(λL) . (1)

The topological gauge theory of superconductivity replaces the GL model for planar
superconductors [4,5]. In this model, there is no Higgs field and and no Abrikosov vortices,
which are replaced by Josephson vortices [8,9].

Section 2, will show how the BF theory describes Higgsless superconductivity in any
dimensions. The BF term is the wedge product of a (d-p)-form b and the curvature d of
a p-form a [6]. For the applications of BF theory to superconductivity, I will consider the
special case where a1 is a 1 form and, correspondingly, bd−1 is a ( d− 1) form. In the special
case of (3 + 1) dimensions, b is the well-known Kalb–Ramond tensor field bµν [20]. In (2 + 1)
dimensions, both a and b are 1 forms. Section 3 will show how the BF term, or mixed CS
term, arises in (2 + 1) dimensions and how global superconductivity emerges. I will also
show that this is the only possible superconductivity mechanism in (2 + 1) dimensions and
that, to regularize the infrared divergences, the system decomposes into superconducting
droplets with the typical size of the order of the superconducting coherence length. The
superconducting films have, thus, a granular structure [8].

2. BF Theory

In (d + 1) dimensions, the BF term I will consider is [4]:

SBF =
k

2π

∫
Md+1

bd−1 ∧ da1 =
k

2π

∫
Md+1

a1 ∧ dbd−1 , (2)

where k = k1
k2

, with k1 and k2 integers, is a dimensionless coupling constant and
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Md+1 = Md × R1 with R1 as the time direction. The action in Equation (2) has a gen-
eralized Abelian gauge symmetry under the transformations:

b→ b + η ,

a→ a + λ ,

where η and λ are closed (d − 1)- and d-form, respectively. The gauge transformations for
the a form change the action by a surface term. I will, however, ignore this term, since I will
consider only compact spatial manifolds without boundaries and require that the fields go
to pure gauge configuration at infinity in the time direction.

In order to describe superconductivity, the Bf term must be P- and T-invariant. I will,
thus, consider the bd−1 form as a pseudo-tensor, with the conserved current j1 = ∗dbd−1
describing charge fluctuations [4,7]. The form a1 will be considered as a vector and the con-
served current jd−1 = ∗da1 as describing the conserved fluctuations in (d-2)-dimensional
vortex lines [4,7].

Following [7], the the low-energy effective theory that describes these type of super-
conductors can be expressed in terms of a1 and bd−1 only. The BF term is the term that
dominates at large distances since it contains only one derivative. Introducing the two
coupling constants e2

q and e2
v with dimension m−d+3 and md−1, respectively, and including

the two kinetic terms for the generalized gauge fields, the low-energy effective theory is
given by:

STM =
∫

Md+1

−1
2e2

q
da1 ∧ ∗da1 +

k
2π a1 ∧ dbd−1

+ (−1)d−1

2e2
v

dbd−1 ∧ ∗dbd−1 , (3)

where, for simplicity, I used relativistic notation.
Equation (3) describes two massive gauge fields. The mass is generated trough the BF

term, which generalizes to any number of dimensions the Chern–Simons mechanism for
the topological mass [16]. This topological mass plays the role of the gap that characterise
the ground state of superconductors. Starting from the equation of motion for a and b:

1
e2

q
d ∗ dbd−1 =

k
2π

da1 , (4)

and
1
e2

v
d ∗ da1 =

k
2π

dbd−1 , (5)

and, applying d∗ on both sides of Equations (4) and (5), I obtain:

dδda1 − ke2

2π d ∗ dbd−1 = 0 ,

d ∗ δdbd−1 −
kg2

2π d ∗ da1 = 0 , (6)

where δ = ∗d∗ is the adjoint of the exterior derivative [21]. Introducing ∆ = dδ (when
acting on an exact form) and substituing d ∗ dbd−1 and d ∗ da1 in Equation (6) with the
expression obtained from Equations (4) and (5), I can rewrite the equation of motions as:(

∆ + m2)da1 = 0 ,(
∆ + m2)dbd−1 = 0 , (7)

The quantity m in Equation (7) is the topological mass m =
keveq
2π .

As can be derived from Equations (4) and (5), the coupling between charges and
vortices, due to the BF term, makes the charges act as sources for the vortex line currents
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encircling them and viceversa. This mechanism is the origin of the gap, not a local-order
parameter which acquires a vacuum expectation value.

Since both the gauge fields are compact, the model described by Equation (3) admits
topological defects, both electric and magnetic. In the effective field theory, they represent
localized charges and vortices, while the currents j1 and jd−1 represent fluctuations in charge
and vortex density. Electric topological defects are closed string-like objects, described by a
singular closed 1-form Q1, which couple to the form a1. They represent the singular parts of
the field strength da1, allowed by the compactness of the gauge symmetries [22]. Magnetic
topological defects are closed (d−1) branes described by a singular (d−1)-dimensional
form Ωd−1. They couple to the form bd−1 and the singular parts of the field strength dbd−1,
again allowed by the compactness of the gauge symmetries [22].

The condensation (or lack of) of the topological defects determines the phase diagram
of the models. To compact gauge theory, an ultraviolet regularization [23] is necessary. In
what follows, I will present a formal derivation implying the ultraviolet regularization and
show that, in any dimensions, the phase of electric condensation describes a superconductor,
without discussing the conditions for the condensation of topological defects. I will consider
the phase in which magnetic topological defects are dilute, while the electric ones form a
condensate and introduce a non-local-order parameter, the ’t Hooft operator, 〈LH〉, which
represents the amplitude for creating and separating a pair of vortices with fluxes ±φ. The
computation of 〈LH〉 in this phase will show that all flux strengths φ 6= 2nπ/(k1/k2) with
n an integer, are confined: this is nothing more than the Meissner effect.

The formal sum over the electric topological defects Q1 in the partition function, with
magnetic topological defects dilute, gives:

Z =
∫
DaDbDQ

exp
[
i k

2π

∫
Md+1

(a1 ∧ dbd−1 + a1 ∧ ∗Q1)
]

. (8)

Using the partition function Equation (8), I can compute the expectation value of the ’t
Hooft operator:

〈LH〉 = 1
Z
∫
DaDbDQ

exp
[
i k

2π

∫
Md+1

(a1 ∧ dbd−1 + a1 ∧ ∗Q1)

+ i k
2π φ

∫
Sd−1

bd−1

]
. (9)

Using Stokes’ theorem and integrating over a1, I can rewrite 〈LH〉 as:

〈LH〉 ∝
∫
DbDQ δ(dbd−1 + ∗Q1)

exp
[
i k

2π φ
∫

Sd
dbd−1

]
, (10)

where the surface Sd represents a compact orientable surface on Md and it is such that
∂Sd ≡ Sd−1.

Integrating over b I, thus, obtain for the ’t Hooft operator the expression:

〈LH〉 =∝
∫
DQ exp

[
−i

k
2π

φ
∫

Sd

∗Q1

]
. (11)

Using the Poisson summation formula, it is easy to see that all fluxes that are differ-
ent from

φ

k2
=

2π

k1
n n ∈ N , (12)

are confined, since 〈LH〉 vanishes, giving the the Meissner effect, which characterizes the
superconducting phase. Note that 2π/(k1/k2) is the fundamental fluxon since the electric
condensate carries k1 fundamental charges of unit 1/k2, as is evident from Equation (8). In
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this purely topological long-distance theory the confining force is infinite, which is why
〈LH〉 vanishes; the area law will be recovered including the higher order kinetic terms
Equation (3) and the UV cutoff.

The London equation in the purely topological long-distance theory (zero penetration
depth limit) can be obtained by coupling the system to an external electromagnetic field A
and computing the induced current:∫

Md+1

A ∧ (∗j1 + ∗Q1) ∝
∫

Md+1

A ∧ (dbd−1 + ∗Q1) . (13)

In this limit, the induced current is identically zero:

jind = 0 . (14)

This can be easily seen by noticing that A can be entirely reabsorbed in a redefinition
of the gauge field a1. As for the Meissner effect, the standard form of the London equation
would be obtained considering the higher order kinetic terms for the gauge fields and the
UV cutoff.

3. (2 + 1)-Dimensional Case

In the superconducting phase, in (2 + 1) dimensions, the system cures its infrared
divergencies by breaking up the condensate into “perturbative” droplets of the size O(ξ)
and characterized by independent phases. These independent phases can form configu-
rations in which their circulation over neighboring droplets is a multiple of 2π, thereby
forming Josephson vortices [1]. Josephson vortices have a nontrivial gauge structure but
no dissipative core; they are ballistic [24,25] and can Bose condensate near enough to the
SIT where the parameter window in which their motion is ballistic becomes wide. On
the contrary, Abrikosov vortices have a normal core, dissipative motion and cannot Bose
condensate. The granular structure formed by the droplets has been observed in thin
superconducting films [26].

A fundamental point in thin superconducting films is that the relevant degrees of free-
dom are charges and vortices subject to topological Aharonov–Bohm [27] and Aharonov–
Casher [28] interactions. Being infrared-dominant, these interactions are the most relevant
in the low-energy effective action for the films. Describing the films only in terms of the
phases via the XY model, neglecting charges degrees of freedom and, thus, the topological
interactions, is not correct.

Following [7,18,19], I will use a continuum space-time notation with coordinates x = (x0, x),
with the droplet size taken as the scale that identifies the necessary ultraviolet cutoff, and
introduce the fields:

Qµ = QI

∫
ds

dxµ
I

ds
δ3(x− xI(s)) ,

Mµ = MJ

∫
dt

dxµ
J

dt
δ3(x− xJ(t)

)
, (15)

which describe point-like condensate droplets of Cooper pairs and the vortices between
them. In Equation (15), xI(s) and xJ(t) parametrize the closed or infinitely long world line
of Cooper pairs and vortices. The fields Qµ and Mµ satisfiy, thus, the conditions: ∂µQµ = 0,
∂µ Mµ = 0, and describe the integer charges and vortices that constitute the main dynamical
degrees of freedom of the system. The topological Aharonov–Bohm–Casher interaction in
the Euclidean partition function is given by the term (in natural units c = 1, h̄ = 1, ε0 = 1):

Stop = i 2π
∫

d3x Qµεµαν
∂α

∇2 Mν , (16)
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where εµαν is the totally antisymmetric tensor. Using the relation:

1
−∇2 δ3(x) =

1
4π

1
|x| , (17)

in three Euclidean dimensions, Equation (16) can be rewritten as:

Stop
(
QI , MJ

)
= i2πQI MJΦ

(
CI , CJ

)
,

Φ
(
CI , CJ

)
=

1
4π

∫ 1

0
ds
∫ 1

0
dt

dxµ
I

ds
εµαν

(xI − xJ)
α

|xI − xJ |3
dxν

J

dt
. (18)

When CI and CJ are closed Euclidean trajectories, Φ
(
CI , CJ

)
is the integer Gauss

linking number [29] between the curves, and it becomes trivial when the quantization
condition QI MJ = integer for all I, J, is satisfied. An example of this trivial case is closed
trajectories describing a Minkowski space-time fluctuation creating a charge and a hole
which annihilate after having encircled a vortex. This is not, however, the general case and
the Aharonov–Bohm–Casher (ABC) phases in the Euclidean partition function cannot, in
general, be neglected, since they give rise to non-trivial quantum interference effects.

Wilczek [30] showed that the non-local topological interactions, Equation (16), admit a
local formulation obtained at the price of introducing to emergent gauge fields aµ and bµ,
which couple to the charge and vortex trajectories and interact via a mixed CS interaction [7]:

Z = ∑
{Qµ ,Mµ}

∫
DaµDbµe−S ,

S =
∫

d3x
i

2π
aµεµαν∂αbν + iaµQµ + ibµ Mµ . (19)

This is the reason why the effective field theory of planar superconductors must be
formulated in terms of gauge fields. Also in Equation (19), the emergent gauge fields are
compact so the continuous notation is a short-hand for a model which is formally defined
on a lattice.

At the classical level, the equation of motion for the dual gauge field strengths:

f µ =
1
2

εµαν fαν = εµαν∂αbν = 2πQµ ,

gµ =
1
2

εµανgαν = εµαν∂αaν = 2πMµ , (20)

show that they can be seen as the conserved charge and vortex currents, respectively. In
what follows, I will consider charges and vortices quantized in integer multiples of 2e and
2π/2e and I will ignore single-electron fluctuations, assuming that their gap is sufficiently
large to be neglected.

To construct the long-distance effective field theory describing the system, I start by
noticing that it possesses U(1)⊗U(1) gauge symmetry. I have, thus, to add all power-
counting relevant and marginal terms consistent with this symmetry. The possible next-
order terms are the Maxwell terms for the two gauge fields, which involve two derivatives
and are U(1) gauge invariant:

S =
∫

d3x
i

2π
aµεµαν∂αbν +

1
2e2

v
fµ fµ +

1
2e2

q
gµgµ + iaµQµ + ibµ Mµ . (21)

The two equations, (19) and (21), are nothing more that the (2 + 1)-dimensional limit of
Equations (2) and (3), respectively, with the topological excitations due to the compactness
of the gauge symmetry included and the parameter k = 1.

The two coupling constants e2
q and e2

v represent the two typical energy scales in the
problem, giving the orders of magnitude of the electric energy of a charge 2e, having
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the spatial scale d and magnetic energy of an elementary flux quantum Φ0 = π/e, and
possessing the spatial scale λ⊥,

e2
q = O

(
4e2

d

)
,

e2
v = O

(
Φ2

0
λ⊥

)
= O

(
π2

e2λ⊥

)
= O

(
π2d

e2λL2

)
. (22)

Their ratio g = ev/eq = O(d/(αλL)) ( α = e2/4π is the fine structure constant)
represents the relative strength of magnetic and electric forces and it is the quantum
parameter that determines which of the two infrared-catastrophe-avoiding models [7,18] is
realized by the system. It plays the role of a dimensionless conductivity.

In terms of e2
q and e2

v, the topological CS mass [14,16] can be written as: m = eqev/2πv,
and it is the mass that appears in the dispersion relation of both charges and vortices,

E =
√

m2v4 + v2 p2 , (23)

with v as the velocity of the propagation in the medium once non-relativistic effects are
taken into account.

The two kinetic terms in Equation (21) are naively infrared-irrelevant since the corre-
sponding coupling constant e2

q and e2
v have the canonical dimension [1/length]. However,

considering only the infrared-dominant mixed CS term will lead to wrong results because
the limit m→ ∞, which gives the pure topological theory, does not commute with quantiza-
tion because it involves a phase-space reduction [31]. To study physical systems, described
by normalizable states, one must consider the m → ∞ limit of the topologically massive
gauge theory [16]. This is not true for the purely mathematical applications that lead to the
knot theory. When two gauge fields are present, in order to correctly define the topological
limit e2

q → ∞ and e2
v → ∞, one has to specify the value of g in this limit. The parameter

g is the one that determines the behavior of charges and vortices and, by varying it, one
obtains very different ground states and phases for the system [7,18].

To investigate the nature of the different phases obtained by varying g, I will add to
the action a term which couples the charge current jµ to the real electromagnetic field Aµ:

S→ S +
i

2π

∫
d3x Aµ f µ , (24)

and I will compute the effective action Seff
(

Aµ, Qµ, Mµ

)
, obtained by integrating over the

fictitious gauge fields aµ and bµ:

Seff =
∫

d3x

[
e2

q

2
Qµ

δµν

−∆ + m2v2 Qν

+i2πm2v2Qµ
εµαν∂α

∆(−∆ + m2v2)

(
Mν +

1
2π

Fν

)
+

+
e2

v
2

(
Mµ +

1
2π

Fµ

)
δµν

−∆ + m2v2

(
Mν +

1
2π

Fν

)]
, (25)

where Fµ=εµνα∂ν Aα is the dual electromagnetic field strength. For the kernel in Equation (25),
as standard in lattice gauge theories [32], I will retain only the self-interaction term:

G(x− y) =
1

m2v2 − ∆
δ3(x− y)→ `2G(mv`) δ3(x− y) , (26)
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where ` is the UV cutoff given, for the films, by the droplet size. At first order in the deriva-
tive expansions, the screened potential becomes a delta-function of a strength depending on
the ratio of the two length scales ` and 1/mv. In this approximation, Equation (25) becomes:

Seff =
∫

d3x

[
1
2

2π`η

g
Q2

µ +
1
2

2π`ηg
(

Mµ +
1

2π
Fµ

)2
+

+i2π(mv`)ηQµ
εµνα∂ν

∆

(
Mα +

1
2π

Fα

)]
. (27)

The numerical parameter η = (mv`)G(mv`), which appears in Equation (27), is of
order O(1) and depends on the dimensionless quantity mv`. With g, η determines the
quantum-phase structure of the model [7,18].

The superconducting phase is a phase in which vortices are suppressed, Mµ = 0 in (27),
and global phase coherence is established. In this phase, there are no more integer-valued
charges, droplet charges form a global condensate, and they are connected by quantum
tunnelling percolation. Tunnelling percolation on the droplets and the formation of a global
condensate has been experimentally observed in high-temperature superconductors [33].
An experimental realization of an artificial superlattice of quantum wells with tunnelling
between superconducting units with a separation of the order of coherence length is
discussed in [34].

Since there are no more integer-valued charges, the sum over the integer-valued field
Qµ in the partition function becomes an integral over a real-valued field Hµ, which satisfies
the constraint ∂µHµ = 0. I, thus, represent the field Hµ in terms of a new gauge field nµ as
Hµ = εµαν∂αnν. In terms of the field nµ, the effective action for the electromagnetic field Aµ

can be written as:

Seff =
∫

d3x
1
2

2π`η

g
H2

µ +
1
2
`ηg
2π

F2
µ − i(mv`)η nµεµαν∂α Aν , (28)

In Equation (28), the electromagnetic field is coupled to the nµ field through a mixed
CS term and it acquires a mass via the topological mechanism [14,16]. The topological mass
is given by the expression:

m = eqev/2π , (29)

and the screening length is, thus, λtop = 1/mv. This screening length corresponds to the
bulk London penetration depth, Equation (1). In fact, by integrating also over the gauge
field nµ representing the global condensate fluctuations, I obtain an effective action for
Aµ alone,

Seff
(

Aµ

)
=
∫

d3x
1

2λtop
Aµ

(
δµν −

∂µ∂ν

∆

)
Aν + . . . , (30)

with the dots denoting higher order terms in the derivative expansion and λtop given by
Equation (1). This is the quantity entering the London equations and representing, thus,
the effective London penetration depth of planar superconductivity.

From Equation (28), using Equation (22), we see that the effective coupling constant
of the Maxwell term for the electromagnetic field is O(d`/e2λtop). The Coulomb coupling
constant is, thus, renormalized to e2λtop/`. Varying `, one can see that for ` ≈ λtop, the
coupling constant tends towards the bare value given by the electron charge while, when `
becomes small, the effective Coulomb interaction increases.

The dual phase is a phase in which the vortices form a condensate. I, thus, integrate
the vortex degrees of freedom Mµ and set Qµ = 0 to compute the effective electromagnetic
action Seff

(
Mµ, Aµ

)
. Since I am considering materials with a very high dielectric constants,
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in the effective action I can neglect the magnetic components with respect to the electric
ones, since v� 1. I, thus, obtain:

Seff
(

Mµ, Aµ

)
=
∫

d3x
e2

v`
2G

v28π2 (Fi + 2πMi)
2 , (31)

with latin indices “i” denoting purely spatial coordinates. This is the non-relativistic
version [17,35,36] of Polyakov’s compact QED [22], in which magnetic monopole instantons
create the confining linear potential between the probe charges and generate the photon
mass. This dual phase is a superinsulator [7,17].

4. Conclusions

In this paper, I reviewed a superconductivity mechanism which is not based on the
Anderson–Higgs mechanism but on a topological mechanism to generate the mass for the
gauge fields. The simplest example (k = 1) of this type of Higgsless superconductivity
is concretely realized as the global superconductivity mechanism in planar Josephson
junction arrays and granular superconducting films [7,8]. This Higgsless, topological
superconductivty is the only possibility in 2D [8], but may also be realized in 3D bulk
materials [35–37]. Indeed, 3D bulk materials with the emergent granularity typical of planar
superconductors have been recently found [38].

Funding: This research received no external funding

Conflicts of Interest: The author declare no conflict of interest.

References
1. Tinkham, M. Introduction to Superconductivity; Dover Publications: New York, NY, USA, 1996.
2. Larkin, A.; Varlamov, A. Theory of Fluctuations in Superconductors; Clarendon Press: Oxford, UK, 2005.
3. Palle, G.; Sunko, D.K. Physical limitations of the Hohenberg-Mermin-Wagner theorem. J. Phys. A Math. Theor. 2021, 54, 315001.

[CrossRef]
4. Diamantini, M.C.; Sodano, P.; Trugenberger, C.A. Superconductors with topological order. Eur. Phys. J. B-Condens. Matter Complex

Syst. 2006, 53, 19–22. [CrossRef]
5. Diamantini, M.C.; Trugenberger, C.A. Higgsless superconductivity from topological defects in compact BF terms. Nucl. Phys.

2015, 891, 401–419. [CrossRef]
6. Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G. Topological field theory. Phys. Rep. 1991, 209, 129. [CrossRef]
7. Diamantini, M.C.; Sodano, P.; Trugenberger, C.A. Gauge theories of Josephson junction arrays. Nucl. Phys. B 1996, 474, 641–677.

[CrossRef]
8. Diamantini, M.C.; Trugenberger, C.A.; Vinokour, V.M. How planar superconductors cure their infrared divergences. JHEP 2022,

10, 100. [CrossRef]
9. Diamantini, M. C., Trugenberger, C.A.; Chen, S.Z.; Lu, Y.J.; Liang, C.T.; Vinokur, V.M. Type-III Superconductivity. Adv. Sci.

2023, 2206523. [CrossRef] [PubMed]
10. Minnhagen, P. The two-dimensional Coulomb gas, vortex unbinding and superfluid-superconducting films. Rev. Mod. Phys.

1987, 59, 1001–1066. [CrossRef]
11. Zhou, P.; Chen, L.; Liu, Y.; Sochnikov, I.; Bollinger, A.T.; Han, M.-G.; Zhu, Y.; He, X.; Božović, I.; Natelson, D. Electron pairing in
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