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Abstract: We studied the spin-dependent behavior of the electronic properties of alternating periodic
potentials applied to finite and infinite graphene superlattices coupled with tunable electrostatic and
exchange fields. The band structures were evaluated using the transfer matrix approach. The results
of tuning the coupled electrostatic potential and exchange field showed that the spin-dependent
anisotropy of a Dirac cone depends on the difference between the amplitude of periodically mod-
ulated coupling. Spin-dependent collimation occurs when the modulations become zero-average
potentials with the ratio of both periodically modulated strengths equals one, in which one spin
can be moved freely, but the other one is highly collimated. In addition, we find that the number of
extra Dirac points in the infinite superlattice is spin-dependent. In terms of spin-ups, their number
increases with an increase in the strength of both modulated fields. To ensure this calculation, we
also compute the conductance of finite periodic modulation at zero energy. It is shown that the peaks
of the conductance occur when the extra Dirac point emerges. This result may be utilized to design
graphene-based devices with highly spin-polarized collimators.

Keywords: graphene; superlattice; band structure engineering; spintronics

1. Introduction

The unique properties of graphene derived from its honeycomb lattice, a one-atom-
thick carbon material, have received a great deal of attention in both the technological
and fundamental paradigms over the past decade. One of graphene’s most remarkable
properties is its electronic band structure. At low energy, the charge carriers in graphene
can be approximated as relativistic quasiparticles governed by the effective Dirac equation,
where their Fermi velocity and sublattices in graphene play the same roles as the speed
of light, v0 ≈ 106 m/s, and pseudospin, respectively [1,2]. As a result, several relativistic
quantum phenomena, such as Klein tunneling [3] and the room-temperature quantum Hall
effect [4], can be observed in graphene.

Spintronics, referring to devices that can use the spin quantum number, is used in
a variety of technological applications, including data storage devices, magnetic sensors,
and quantum information-processing devices. Due to its weak spin–orbit interaction, long-
distance diffusion of spin transport, excellent spin injection properties, and the longest
spin-relaxation length at room temperature, graphene is capable of hosting the spintronics
characteristic [5? ]. It was recently reported that graphene can enable spintronics via the
magnetic proximity effect. The interactions between the interface of the heterostructures
of graphene and ferromagnets, such as europium chalcogenides (EuS and EuO) [7–10], or
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ferrimagnets, such as yttrium ion garnet (YIG) and cobalt ferrite [11], have been proposed
to generate the proximity effect. The proximity effect produces an effective exchange field
that causes spin splitting in the band structure. An adjacent magnetic insulator of EuS has
also been experimentally reported to induce the proximity effect locally in graphene [12],
which sheds light on the modulation of spintronic features in graphene.

Meanwhile, the study of graphene superlattices, which are periodic patterns overlaid
on a graphene lattice, remains an active area of research for the purpose of modifying
electronic properties and exploring new states of matter. In recent years, various intriguing
phenomena have been discovered through the use of various superlattice modulations,
such as the emergence of superconducting, strange metal phases, and skew scattering of
chiral electrons [13–15]. One practical approach to utilizing superlattice modulation in
graphene is through 1D periodic modulation. Research has shown that the band structure
of graphene can be significantly altered, depending on the type and pattern of modula-
tion [16]. For example, the miniband of the superlattice becomes anisotropic in shape for
1D superlattices of periodic electrostatic potentials (PEPs) [17], which can lead to electron-
optic supercollimation in graphene [18–20]. Moreover, graphene superlattices can exhibit
multiple Dirac points in addition to the original ones, called extra Dirac points [21–28].
These extra Dirac points tend to be more robust against lattice disorder compared with the
original Dirac point [29]. The use of a periodic magnetic field can also lead to a reduction
in the group velocity of graphene, resulting in extra finite-energy Dirac points [30–32].
Furthermore, modulation of the periodic exchange potential (PExP) has been suggested
as a method to achieve perfect spin polarization and wave vector-based spin filtering in
graphene [33–35]. Although several studies have been proposed on graphene superlattices,
there have been no reports on the possibility of controlling the spin-dependent anisotropy
of the Dirac cone in modulated magnetic graphene superlattices.

In this work, motivated by the preceding literature, we investigate the electronic
structure of the alternatively aligned PEP/PExP superlattice pattern that PEPs alternate,
while zero-averaged, along the periodic modulation. This superlattice design could be used
to control spin dependence. This study aims to reveal interesting applications of graphene
band structure engineering for nanospintronic devices based on Dirac materials.

This paper is structured as follows. First, using a transfer matrix approach, we
investigate the spin-dependent anisotropic behavior of the miniband of the superlattice of
PExP coupled with PEP by visualizing its Fermi contour and computing its group velocity
in the low-energy regime. For the sake of simplicity, we assume that both modulated fields
are zero-averaged. Second, we calculate the spin-dependent extra Dirac points at zero
energy and the corresponding conductance of a finite periodic modulation resonance at
zero energy. Third, we consider the spin-splitting effect on the zero-average periodic field.
Finally, in the conclusion section, we summarize our findings.

2. Theoretical Framework

In this report, the electronic properties of graphene modulated by a one-dimensional
superlattice of PEP and PExP are considered. As shown in Figure 1, the graphene sheet
is modulated by a succession of electrostatic gates and a magnetic insulator stripe. To
apply the proximity of the exchange field on graphene, as reported in [36], graphene is
exfoliated on a YIG substrate. The electrostatic gate pattern can be modeled as a periodic
function U(x) aligned with graphene along the direction x, where its total fields along
this direction are zero. On the other hand, the magnetic insulator stripes can be modeled
as effective exchange fields M(x) that are coupled to U(x) in the same direction. For
simplicity, these periodic modulations are approximated as the Kronig–Penney model
superlattice, which are simplified as multiple rectangular barriers. For each supercell, the
profile of these external fields is divided into two different regions that are labeled as A
and B, where the external electrostatic (and the exchange fields) in region A (and B) are
assigned as U(x) = UA (and UB) and M(x) = MA (and MB). These can be defined as
x [(n− 1)L, wa + (n− 1)L] for U(x) (and ([wa + (n− 1)L, nL] for M(x)), where L is the



Condens. Matter 2023, 8, 28 3 of 15

superlattice constant, wa is the width of region, A and n indicates the number of periodic
barriers (n = 1, 2, 3 . . . ).

Gate voltages

Ferro
Magnetic
Insulators

Graphene
layer 

Figure 1. Schematic illustration of PEP-PExP graphene superlattice produced by a series of magnetic
insulator and electrostatic gates. Here, L is the superlattice constant separated into two regions,
labeled by A and B, where their widths are wA and wB, respectively. This periodic field profile is
approximated as a series of square barriers, in which each part contains the exchange field and the
electrostatic with barrier heights of uA(uB) and mA (mB) for region A (B), respectively.

In this paper, we reduce this problem to the low-energy limit, and thus the electronic
structure of our model can obey the effective Dirac Hamiltonian:

Ĥ(x, y) = −ih̄v0(τzσx∂x + σy∂y) + si M(x) + IU(x) (1)

where v0 ≈ 106 m/s is the Fermi velocity, σx and σy are the Pauli matrices on the sublattice
space (x, y), respectively, and si is the vectorial spin matrix that acts on the electronic
space (kx,ky). Note that Equation (1) is a 4× 4 operator due to the effective exchange field
term. For the sake of simplicity, in this paper, we reduce this problem to a 2× 2 problem
by setting si to be only in the z direction. Thus, Equation (1) can be decoupled into two
2× 2 Hamiltonians:

Ĥξ(x, y) = −ih̄v0(σx∂x + σy∂y) + ξM(x) + IU(x) (2)

where ξ is the spin index (ξ = 1 for spin up and ξ = −1 for spin down). Therefore, the
Dirac equation reads as follows:

Ĥξ(x, y)Ψξ(x, y) = EΨξ(x, y), (3)

where Ψξ(x, y) is the spinor wave function of an electron with a spin index ξ. Additionally,
we presume that the size of the graphene sheet in the y direction is very large. Accord-
ingly, the effect of the edge boundary can be neglected due to the translation symmetry.
Consequently, the wave function of Equation (3) reads Ψξ(x) = ψξ(x)eikyx, where ψξ is a
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two-component spinor for an electron with a spin index ξ. Here, we reform Equation (3) to
be a linear differential equation that reads

i
∂xψξ(x)

∂x
= ĥξ(x)ψξ(x) (4)

where ĥ is the linear operator:

ĥξ(x) =

(
iky

U(x)+ξM(x)−E
h̄v0

U(x)+ξM(x)−E
h̄v0

−iky

)
. (5)

The general solution to Equation (4) is

ψξ(x) = P̂x exp
(
−i
∫ x

x0

ĥξ(x1)dx1

)
ψξ(x0), (6)

where P̂x is the spatial ordering operator [37]. In our model, U(x) and M(x) in ĥξ(x)
depend on x as mentioned above, and ĥξ(x), corresponding to regions A and B, becomes
ĥA(ξ) and ĥB(ξ), respectively. In each region, this operator is constant, and they communi-
cate with each other. Subsequently, Equation (6) can be reduced to

ψξ(x) = M̂ψ(x0) = exp
(
−i[x− x0]ĥ(ξ)

)
. (7)

For the j cell in the modulation cell, we have

Mj(ξ) =

 cos(qj∆x−θj)

cos θj

sin(qj∆x)
cos θj

sin(qj∆x)
cos θj

cos(qj∆x+θj)

cos θj

, (8)

where qj is the wave vector for the jth barrier, θj is the injection angle for each qj, and ∆x is
the spatial width of each cell.

In this work, we separated our calculation of the electronic properties of graphene
modulated with PExP and PEP into infinite and finite superlattice approach models. For an
infinite superlattice, we estimated the electronic behavior by setting n→ ∞. In this case,
we could then utilize Bloch’s theorem to assign the periodic condition ψ(L) = exp iκxL.
(Here, κx is the Bloch wave vector of the 1D superlattice.) Consequently, with Equation (7),
the dispersion relation becomes 2 cos(κxL) = Tr(M̂AB). For simplicity, we introduced
dimensionless units of energy ε0 = h̄v0/L. Therefore, E → εε0, U(x) → u(x)ε0 and
M(x)→ m(x)ε0. Thus, the dispersion of this superlattice in dimensionless formulation is

cos(κxL) = cos(qAa) cos(qB(L− a)) +
Q

qAqB
sin(qAa) sin(qB(L− a)) (9)

where qA =
√
−ε + ξmA + uA − k2

x, qB =
√

ε + ξmB + uB − k2
x and Q = −ε2 + (ξm +

u)2 + k2
x.

For a finite superlattice, we assume that the wave function propagates from region A
to region B with n periods. Therefore, Equation (7) becomes

ψξ(NL) =
N

∏
n=1
M̂B · M̂Aψξ(0) (10)

Here, we rewrite the product term in matrix form:

N

∏
n=1
M̂B · M̂A =

(
X11 X12
X21 X22

)
, (11)
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where Xij is the value of the element in the matrix. According to the transfer matrix method,
the transmission coefficient can be numerically calculated as follows:

tξ =
2 cos θ0

(X22e−iθ0 + X11eiθN )− X12ei(θN−θ0) − X21
. (12)

For both the infinite and finite model, the conductance along the modulation direction
(x-axis) can be calculated in the zero temperature limit using the Landauer–Büttiker formula
approach [38]:

σ = σ0

∫ +∞

−∞
dkyT(ky, ε), (13)

where T(ky, ε) is the transmission probability of ky, while T(ky, ε) = t∗ζ tζ and σ0 = 2e2ε/h̄.

3. Results and Discussion

In this section, we discuss the electronic properties of graphene modulation by 1D
PExP and PEP, which are illustrated in Figure 1. The corresponding superlattice was
modeled as the Kronig–Penney model with a superlattice constant of L. Each supercell
was divided into two equal regions labeled A and B, which were assigned as wA and wB,
respectively, where wA = wB = L/2. Here, the corresponding heights of the electrostatic
and exchange fields in region A(B) are uA(uB) and mA(mB). Recently, it has been reported
that graphene on SiO2/Si can have an exceptionally long-distance spin transport capability
of 45 µm and a spin diffusion length of 13.6 µm at room temperature [? ]. Furthermore,
gate-controlled graphene superlattices capable of creating a graphene superlattice with a
scale of periodicities as low as 35–150 nm can also be fabricated [40,41]. For these reasons,
it is possible to fabricate a multi-periodic modulation of PEP/PExP on graphene that can
preserve the spin properties with ballistic transport.

3.1. Spin-Dependent Anisotropy Miniband

Let us consider the spin-dependent anisotropic behavior of the superlattice miniband
using the group velocity near the zero-energy Dirac point. To simplify the following
analysis, we introduce a periodic pattern with a fixed superlattice Dirac point for both
spin-up and spin-down at the zero-energy point, which can be divided into two categories:
in-phase and out-of-phase combinations, as shown in Figure 2a,b, respectively. In this
step, we initialize both PExP and PEP, oscillating between −π and π in the supercell. For
example, uA = −uB and mA = −mB, in which wA = wB = L/2. Here, we restrict our
study to the ky axis only because spatial modulation strongly affects the ky = 0 axis, and
electron propagation along the kx axis does not change due to Klein tunneling. Then, we
numerically calculate Equation (9) to serve such conditions for the in-phase and out-of-
phase categories as shown in Figure 2c,d. According to Figure 2c, the spin-up electron is
strongly periodically modulated for the in-phase modulation pattern, but the spin-down
electron is weak. As we can see, the miniband broadens significantly in the ky direction
due to the combination of electrostatic and exchange interaction. As shown in Figure 2a,b,
the summation of PExP and PEP vanishes for spin-down (spin-up) modulation patterns
but increases for spin-up modulation patterns. This extremely spin-dependent condition
can result in the miniband’s highly anisotropic behavior. Furthermore, we believe that
this spin-dependent anisotropic behavior can be switched between spin indexes by simply
switching between in-phase and out-of-phase configurations.
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(a) (b)

(c) (d)

Figure 2. Model of PEP-PExP graphene superlattice that can locate original miniband Dirac point at
(kx, ky) = (0, 0). (a) In-phase and (b) out-of-phase coupling patterns between PEP and PExP, where
the PEP pattern of each region is uA = −uB = 0.5π, and the PExP of the in-phase (out-of-phase)
pattern is mA = −mB = 1π (−mA = mB = 1π). The corresponding miniband structures for (c) the
in-phase and (d) out-of-phase patterns are shown for each spin index as a function of ky.

To understand the impact of PEP on the preceding discussion, we only examined the
in-phase modulation configuration, which has mirror symmetry with the out-of-phase
one. To accomplish this, we set uA = −uB = u and mA = −mB = m, where u and m are
positive values. This miniband configuration is evaluated using Equation (9), as depicted
in Figure 3a,c, for spin-up and spin-down, respectively. As m increased, the miniband
broadened significantly for spin-up but barely deformed for spin-down.

We quantified this spin-dependent reshaping of the miniband by taking its group
velocity into account. For the sake of simplicity, we only considered the low-energy regime.
As a result, we could approximate Equation (9)’s dispersion relation with the parameter
introduced via second-order Taylor expansion regarding the zero-energy point (ε = 0,
ky = 0, and kx = 0). Next, we solved this expansion for the dispersion relation to achieve
the approximated linear dispersion relation:

ε(ξ) = v0

√
k2

x +

[
4

(u + ξm)2 sin2
(

u + ξm
2

)]2
k2

y, (14)

The numerical calculation of Equation (14) is shown in Figure 3b,d for spin-up and spin-
down, respectively. Here, the approximated group velocity v is defined as ∂ε/∂k, where
v = (vx, vy). As mentioned before, there was no band deformation in the kx direction.
Hence, we could focus on the anisotropic behavior using ky only. Therefore, the group
velocity in the ky direction can be written as

vy(ξ) =
4

(u + ξm)2 sin2
(

u + ξm
2

)
v0. (15)

We calculated Equation (15) on a contour of u and m for spin-up and spin-down as
shown in Figure 4a,b. As m and u grew, the spin-up velocity gradually decreased. The
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spin-down velocity, on the other hand, was slightly suppressed when u ≈ m (shown in the
red area of Figure 4b, except the line u = m, which shows that the group velocity was at its
maximum), but it was successively suppressed when u < m or u > m. Figure 4c depicts
a cross-section of these contours. The plot depicts the spin-dependent group velocity
behavior vy as a function of u with a constant value of m. According to Equation (15), vy is
highly suppressed when u + ξm = 2nπ, where n = 1, 2, 3, . . . . On the other hand, vy can
reach the maximum value (vy/v0 = 1) when u and m satisfy sin[(u+ ξm)/2] = (u+ ξm)/2,
which can occur only if u + ξm ≈ 0 for instance.

0.2 0.0 0.2
kyL/

0.2

0.1

0.0

0.1

0.2

/

f)

no fields

u=0.0
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/
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u=1.5
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kyL/

1.00
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0.25

0.00

0.25
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1.00
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0.50

0.25
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0.25

0.50
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1.00

(a)

(c)

(b)

(d)

spin-up miniband with m=1.0π 

spin-down miniband with m=1.0π spin-down approx. miniband

spin-up approx. miniband

/

Figure 3. Miniband structure of zero-averaged PEP-PExP graphene superlattice as a function of
ky with m = 1π when varying magnitude of u for (a) spin-up (and (c) spin-down) and (b) its
corresponding approximation with the superlattice Dirac point for (b) spin-up (and (d) spin-down).

These assumptions show that we can tune u or m in this model to change the
anisotropic miniband for each spin. When u = m = nπ, the difference between vy
for spin-up and spin-down is at its maximum, as shown by the black dots in Figure 4d.
As a result, under this condition, one of the spin index bands is broadened to zero energy
(parallel to the kx direction), while the other remains unchanged (vy ≈ v0). Compared
with the work in [17], PExP was added in our model, which was alternatively aligned
to the PEP modulation. Even though they also reported anisotropic behavior with major
differences in superlattice patterns, the spin-dependent features were taken into account
in our results and could be tuned without spin-splitting despite an exchange field being
applied. As reported in [18], the superlattice modulation in graphene can refer to the
supercollimation effect, which is an electron beam with a long travel distance, referred to as
an optical collimation. According to our findings, this spin-dependent anisotropic behavior
can also result in the spin-dependent supercollimation effect.
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Figure 4. Contour plot of group velocity of the electron in zero-averaged PEP-PExP graphene
superlattice versus u and m for (a) spin-up and (b) spin-down. (c) The corresponding line plot
of the group velocity with varying of u with m = 1.0π, 3.0π, and 5.0π. (d) Contour plot of the
group velocity difference between spin-up and spin-down with spots (black dots) that indicate max
difference points of the group velocity difference on (u, m).

Figure 5 shows the energy surfaces obtained from Equation (9). The dispersion of
this supercell configuration is near the zero-energy point. Depending on the values of m
and u, the shape of the energy surfaces can take the form of a circle, an ellipse, or a series
of straight lines. The approximation of the velocity mentioned above can indicate critical
shapes, such as circles and straight lines (Equation (15)). Under m = u = nπ, the energy
surfaces of both spin structures differed greatly from each other (see Figure 5a). Because the
miniband was critically broadened on the ky axis, which corresponded to vy = 0, the energy
surface exhibited straight lines parallel to the kx axis during spin-up. On the contrary,
for spin-down, circles were observed, as in the pristine graphene, which corresponded to
vy = v0, and there were no restrictions on electron motion. The velocity results of both spin
indexes were zero, and the energy surfaces of both spin indexes are shown as straight lines
in Figure 4c (see Figure 5c). As a result of this superlattice model, the spin-up electron can
beam as electron-optic collimation, but the spin-down electron cannot, and vice versa. This
feature can be realized as an electric controllable-spin supercollimator that can regulate
each spin-index electron wave. For instance, one spin is highly collimated but not the
opposite one.



Condens. Matter 2023, 8, 28 9 of 15

c)
(d)

x

y

incident wave
spin-up 

scattered wave
spin-down 

scattered wave0.2 0.0 0.2
kyL/

0.2

0.1

0.0

0.1

0.2

k x
L/

(c)
spin up

0.2 0.0 0.2
kyL/

spin down

m = 1.0 , u = 3.0

0.2 0.0 0.2
kyL/

0.2

0.1

0.0

0.1

0.2

k x
L/

(b)
spin up

0.2 0.0 0.2
kyL/

spin down

m = 1.0 , u = 2.0

0.2 0.0 0.2
kyL/

0.2

0.1

0.0

0.1

0.2

k x
L/

(a)
spin up

0.2 0.0 0.2
kyL/

spin down

m = 1.0 , u = 1.0

Figure 5. Energy contour of PEP-PExP graphene superlattice miniband structure with fixed m = 1.0π

for spin-up (left) and spin-down (right) for (a) u = 1.0π, (b) u = 2.0π, and (c) u = 3.0π. (d) The
demonstration of the electron trajectory propagates across the PEP-PExP graphene superlattice of
spin-up (red line) and spin-down (dashed blue line).

3.2. Spin-Polarized Transport and Extra Dirac Points

According to Figure 3a, when u and m reach certain critical values, the line u = 1.5π
(u = 2π) with m = π and ξ = 1 (spin-up) exposes two additional touching points at zero
energy: the so-called extra Dirac points. As previously stated, the number of these extra
Dirac points is proportional to the modulation pattern’s field strength, which corresponds
to the result of the work in [40]. However, each spin index is affected by a different total
modulated field. The spin-up miniband experience is more modulated than the spin-down
one, and the spin-up experience generates more Dirac points than the opposite one. As a
result, the number of extra Dirac points in this model is spin-dependent. To investigate the
emergence of extra Dirac points in depth, we first computed the possible locations of these
extra Dirac points on the ky axis by reformulating Equation (9) with ε = 0 and ky = 0. As a
result, we obtained cos((u + ξm)2 − k2

y) = 0 , which can be rewritten as

kexDPN (ξ) = ±
√
(u + ξm)2 − 4n2π2, (16)

where n = 1, 2, 3, . . . . As shown in Figure 3a, for spin-up, there were two additional
Dirac points located at ky = ±1.50π for u = 1.50π (ky = ±2.87π for u = 2.0π), and for
spin-down, there were no such additional points. This mark was asserted by Equation (16),
showing that the extra Dirac point locates kexDPN only if (u + ξm)2 > 4n2π2, which is a real
value. Then, the number of these extra Dirac points for the spin index ξ can be written as

N(ξ) =
u + ξm

2π
. (17)

The contours of Equation (17) vs. u and m for spin-up and spin-down are plotted in
Figure 6a,b, respectively.
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Figure 6. Contour plot of extra Dirac point number at zero energy of zero-averaged PEP-PExP
graphene superlattice with variations of u and m for (a) spin-up, (b) spin-down, and (c) different
numbers of the extra Dirac points of spin-up and spin-down.

The patterns of extra Dirac points emerging from two spin indexes were completely
different. In spin-up (spin-down), the extra Dirac points increased while either m or u
increased (decreased). In particular, the conditions resembled its group velocity reaching
critical values vy = 0 in the transition condition between different numbers of extra Dirac
points (see Figure 4a,b). The group velocity reached zero when a new pair of extra Dirac
points emerged at the original Dirac point. This situation occurred repeatedly during spin-
up when |u + m| mod 2π = 0. In contrast, for spin-down, |u−m| mod 2π = 0. With
each recursive emergence, the distance between the original Dirac point and the extra point
(|kexDPN |) of the previously emerged extra Dirac point grew. To calculate the conductance
in zero mode, we calculated Equation (13) with ε = 0 along the finite periodic modulation
direction to identify this phenomenon. The conductance of spin-up and spin-down is
plotted as a function of u with different m and several periodic modulations N in Figure 7.
There are resonance peaks of conductance at specific values for each fixed m plot, and
these peaks become sharper as N increases. When we compare the spin-up and spin-down
curves for each m, we can see that their resonance peaks were in different locations. As is
known, these peaks occur when the new extra Dirac points emerge at the original Dirac
point. When comparing Figure 7a,b, it can be seen that these peaks occurred around the
critical value at which new extra Dirac points appeared. As a result, we could use this
conductance change to practically ensure the phenomena discussed above, namely the
strong collimation.
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Figure 7. Conductance of spin-up (red line) and spin-down (dashed blue line) electron in x direction
of finite zero-sum fields of PEP-PExP graphene superlattice at zero energy with variation of u and
N = 10, 50 and 100 with (a) m = 1.0π, (b) m = 1.0π, and (c) m = 5.0π.

3.3. Electrical Controllable Spin-Dependent Band Structure

To explore more details of the influence of the exchange interaction potentials on the
superlattice miniband that was correlated with the zero-average height of PEP [42], we
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initialized uA = −uB = u (or ū = 0), which were zero-averaged along the modulation
direction and coupled with non-zero-averaged exchange fields, where mA 6= −mB (or
m̄ 6= 0). Consequently, we illustrate the model in Figure 8a.
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Figure 8. (a) Configuration of supercell profiles in PEP-PExP graphene superlattice, where uA =

−uB = 1π coupled with mA = 1π and mB = 0. (b) Its corresponding miniband structure at kx = 0.

As shown in Figure 8b, the numerical result revealed a miniband shifting upward for
spin-up and downward for spin-down. To unveil this miniband splitting, analytically, we
utilized the implicit function theorem on Equation (9) to locate its vertex points, which were
the miniband touching points. In doing so, we set ∂ f (ky, ε)/∂ky = ∂ f (ky, ε)/∂ε = 0 [43],
where f (ky, ε) is a zero function of Equation (9) with κx = 0. This relation is satisfied only
if cos(qAwA) = cos(qBwB) = 1 and sin(qAwA) = sin(qBwB) = 0, so we obtained

qAwA =

√ (ε− [uA + mA])2

h̄v0
− k2

y

wA = mπ, (18)

and

qBwB =

√ (ε− [uB + mB])2

h̄v0
− k2

y

wB = nπ. (19)

Here, we assume that the original Dirac point splitting occurs in the energy axis only
so that we can consider Equation (18) with (kx, ky) = (0, 0). Here, the first valid energy near
the zero-energy point for this miniband is located at

Ek=0 =
[uA + mA]wA + [uB + mB]wB

wA + wB
. (20)

With our preset, Equation (20) (with uA = −uB = u) becomes (mA + mB)/2. Ac-
cordingly, the spin-splitting behavior does not correlate with the electrostatic modu-
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lation; instead, it relates to the exchange field modulation only corresponding to the
miniband displacing.

Furthermore, we noticed that the anisotropic behavior of each spin miniband varied.
The result of the effective period potential was different for each spin when u = m, as
shown in Figure 8a. The modulation for each spin was enhanced for spin-up but suppressed
for spin-down in region A. In this model, this phenomenon can be used to control the
behavior of the miniband. To understand how to control this spin-dependent behavior, we
tuned only the PEP profile by varying the magnitude of u = −uA = uB, while mA and
mB remained fixed at π. As shown in Figure 9a, the periodic potential result for u ≥ m
depends on the spin index of a charge carrier. In this case, the spin-up carrier was subjected
to a modulated field that was stronger than that of the spin-down carrier. The spin-up
minibands (see Figure 9b) strongly broadened on the ky axis. On the contrary, as illustrated
in Figure 9c, the spin-down miniband was reshaped less. Extra band touching points can
emerge in the miniband faster during spin-up than during spin-down, while the magnitude
of u increases. With this configuration, the extra Dirac point can emerge in spin-up but not
in spin-down, resulting in highly spin-dependent behavior. Modulation of the effective
periodic potential was lower for the condition u ≤ m, as shown in Figure 9d. Spin-up was
still periodically modulated, but spin-down was not, and the effective potential for each
region varied marginally. As a result, the anisotropy of the miniband for the spin-down
electron was nearly nullified, as shown in Figure 9f, while the anisotropy of the spin-up
electron remained the same.

  

(a)

(b)

(c)

(d)

(e)

(f)

Figure 9. Supercell profiles and its corresponding miniband structure of the PEP-PExP graphene
superlattice that fixed mA = 1π and mB = 0π. (a) Pattern (1): superlattice profile in which |uA,B| =
u ≥ mA (u = 1), and corresponding (b) spin-up and (c) spin-down minibands with varying u such
that u ≥ mA. (d) Pattern (2): superlattice profile where |uA,B| = u ≤ mA (u = 1) and corresponding
(e) spin-up and (f) spin-down minibands with varying of u such that u ≤ mA.
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The anisotropic behavior of the spin-up miniband was enhanced as u increased for
these two conditions. The combination patterns between zero-averaged PEP and non-zero-
averaged PExP are important in spin-dependent anisotropic minibands. As a result, we
can tune the amplitude of the electrostatic modulation amplitude in the coupling pattern
to control this spin-dependent behavior, because one spin band behaves as an anisotropic
band, while the other spin does not.

To retrieve the real values of U and M in the discussion, we applied the unit of
energy ε0 = h̄v0/L to restore U and M. In doing so, U = uε0 = u(h̄v0/L) and M =
mε0 = m(h̄v0/L). Notice that U (and M) is inversely related to L, in which U ∝ 1/L
(and M ∝ 1/L). Consequently, if U or M is increased, to maintain the feasibility of the
experiment result at a state of u or m, the size of L should be reduced. For example, if we
set an appropriate value of L at 10 nm and u = m = 1.0π, then U = M = 1.0πε0 = 0.21 eV.

4. Conclusions

In summary, we investigated the anisotropic spin-dependent behavior of the electronic
properties in graphene with the alternating zero-averaged PEP/PExP superlattice using
the transfer matrix method. Here, we introduced a PEP/PExP modulation pattern that is
aligned as in-phase and out-of-phase with a zero-average field. This modulation model can
provide a superlattice miniband of both spin-up and spin-down electrons whose original
Dirac points are located at the same location in k-space. We investigated the influence
of the combined field of PEP/PExP as an effective total field to control spin-dependent
anisotropic behavior. As a result, for the in-phase modulation, the miniband of spin-up
was highly deformed, while the spin-down one was not, and vice versa. Furthermore, the
behavior of the spins can be manipulated by adjusting the strength of PEP and PExP. We
also examined the anisotropic behavior of PExP and PEP that were zero-averaged along
the modulation direction using the group velocity around zero energy. We found that the
anisotropic velocity was spin-dependent, and the velocity of one spin index miniband
was strongly suppressed by a stronger periodic modulation than the opposite one. For
instance, in the in-phase modulation, at u = m and u mod π = 0 (m mod π = 0),
spin-up was strongly collimated, but the same effect on spin-down vanished. For the out-
of-phase modulation, the behavior of spin-up and spin-down were switched. In addition,
to extend our analysis on the above result, we also determined the location and number of
minibands for each spin index. As a result, the spin dependence of the superlattice extra
Dirac cone at zero energy caused additional Dirac points to emerge differently. We also
clarified the spin-dependent anisotropic behavior on a finite superlattice by computing the
zero-mode conductance of this model. Furthermore, we also found, upon controlling the
spin-dependence of the alternating patterns of PEP/PExP, that PEP was zero-averaged,
but PExP was not. We found that, with different total effective fields, it could enable
spin-splitting features, including tuning the anisotropy of the miniband, as we introduced.
This study sheds light on the possibility of building an electron spin-dependent collimator
in a graphene-based nanodevice.
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