

Article Influence of Anharmonic and Frustration Effects on Josephson Phase Qubit Characteristics

Iman N. Askerzade ^{1,2}

- ¹ Department of Computer Engineering and Center of Excellence of Superconductivity Research,
- Ankara University, Ankara TR06100, Turkey; imasker@eng.ankara.edu.tr; Tel.: +90-3122033300 (ext. 1750)
- ² Institute of Physics Azerbaijan National Academy of Sciences, H.Cavid 33., AZ1143 Baku, Azerbaijan

Abstract: This study is devoted to the investigation of the Josephson phase qubit spectrum considering the anharmonic current-phase relation of the junction. The change in energy difference in the spectrum of phase qubits based on single-band/multiband Josephson junctions is also analyzed. It was shown that the presence of the anharmonic term in the current-phase relation and frustration effects in the junction electrodes leads to changing effective plasma frequencies in the different cases and results in an energy spectrum.

Keywords: phase qubit; current-phase relation; frustration; anharmonism

1. Introduction

In contrast to classical computation, in quantum computation we have quantum mechanical operations on the input state to derive an output [1]. It is well known that a qubit is the basic element of a quantum computer. For the study of the properties of the qubits, it is necessary to solve the corresponding stationary Schrödinger equation with an appropriate boundary condition

$$H\Psi = E\Psi \tag{1}$$

where *H* is the Hamiltonian operator, Ψ is the wavefunction, and *E* is the eigenenergy. The quantum dynamical behavior of a single Josephson junction can be described using the periodical potential in the framework of the Mathieu-Bloch picture [2,3].

A phase qubit using a single Josephson junction is schematically presented in Figure 1. The Hamiltonian of this qubit has the form [4].

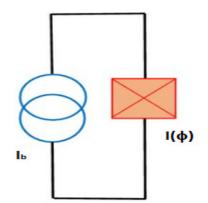


Figure 1. Schematic presentation of a phase qubit on the Josephson junction.

$$H = -E_C \frac{\partial^2}{\partial^2 \phi} - E_J \{\cos \phi + i_b \phi\}$$
(2)

In Equation (2): $i_b = \frac{I_b}{I_c}$ is the normalized bias current applied to the junction; I_c is the critical current of the Josephson junction; and *C* is the electrical capacity of the Josephson

Citation: Askerzade, I.N. Influence of Anharmonic and Frustration Effects on Josephson Phase Qubit Characteristics. *Condens. Matter* 2023, *8*, 20. https://doi.org/10.3390/ condmat8010020

Academic Editors: Ali Gencer, Annette Bussmann-Holder, J. Javier Campo Ruiz and Valerii Vinokur

Received: 16 November 2022 Revised: 4 February 2023 Accepted: 6 February 2023 Published: 9 February 2023

Copyright: © 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). junction. Notation $E_I = \frac{\hbar I_c}{2e}$ corresponds to Josephson coupling energy, $E_C = \frac{e^2}{2C}$ is the Coulomb energy, and ϕ means the phase difference at the Josephson junction. In the case of a small bias current and the conventional current-phase relation, $I = I_c \sin \phi$, the potential energy has a form $U(\phi) = -E_I \{\cos \phi + i_b \phi\}$ (Figure 2).

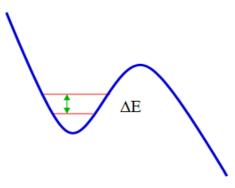


Figure 2. Profile of potential energy $U(\phi) = -E_J \{\cos \phi + i_b \phi\}$ of the Josephson phase qubit.

In this case, the energy spectrum of the phase qubit is identical to the spectrum of the harmonic oscillator [3,4]

$$E_n = \hbar \Omega_p (n + \frac{1}{2}) \tag{3a}$$

where Ω_p is the plasma frequency corresponding to phase oscillations near the minimum of potential $U(\phi)$ (Figure 2) and calculated as [2,4].

$$\Omega_p = \left(\frac{2eI_c}{\hbar C}\right)^{1/2} \left(1 - i_b^2\right)^{1/4} \tag{3b}$$

The energy difference between 0 and 1 levels is determined by the plasma frequency of junctions

$$\Delta E = E_1 - E_0 = \hbar \Omega_p \tag{4}$$

For the study of the Josephson dynamics, the current-phase relation of the junction is usually considered as $I = I_c \sin \phi$ [2,4]. The Josephson junction-based low-temperature superconductor reveals the sinusoidal current-phase relation. However, in the case of junctions on high-T_c superconductors, the current-phase relation includes the second term [3,5,6],

$$I = I_c f_\alpha(\phi) = I_{c0}(\sin\phi + \alpha\sin 2\phi) \tag{5}$$

where the value of parameter α is determined by the technology. In general, the value of anharmonism α in the current-phase relation is associated with the d-wave character of the superconducting gap parameter in high-T_c superconductors and multiband behavior of the superconducting state in new iron-based compounds [3,7].

In the case of Josephson junctions, when one electrode is formed by a single- and another by the multiband superconducting compound, the phase dynamics are influenced by the frustration effects [6,7]. In particular, the inclusion of the frustrated ground state in multiband superconductors leads to the φ -junction peculiarity. The influence of frustration effects in multiband compounds and Josephson junctions on these bases is studied in Refs. [8–13]. The influence of frustration effects in multiband superconductors on the escape rate in a single junction was considered in papers [14,15]. Detailed calculations of the escape rate for the ac SQUID on the junction with a generalized current-phase relation were conducted in the study [16].

As follows from Equations (3b) and (4), when the bias current approaches the critical current, level broadening due to macroscopic quantum tunneling starts to play a role [2–4]. The macroscopic quantum tunneling rate for the lowest level is given by

$$\Gamma_{MQT} = \frac{52\Omega_p}{2\pi} \sqrt{\frac{U_{\text{max}}}{\hbar\Omega_p}} e^{-\frac{7.2U_{\text{max}}}{\hbar\Omega_p}}$$
(6)

where $U_{\text{max}} = \frac{\sqrt{2\hbar}}{e} (1 - \frac{I_e}{I_c})^{3/2}$ is the height of the potential barrier at a given bias current. This means that the relaxation and decoherence effects in phase qubits are sensitive to the intrinsic noise of the critical current of the junction [4]. The control of qubit characteristics can be tuned by the interlevel distance ΔE . From this point of view, the energy difference between levels of phase qubits ΔE on the Josephson junction based on single-/multiband superconductors and with an anharmonic current-phase relation seems interesting.

Thus, in this paper, we discuss the influence of anharmonic effects in the current-phase relation on the energy spectrum of phase qubits. We also calculate the plasma frequency and, as a result, the spectrum of phase qubits on the base of a single-/multiband Josephson junction, considering frustration effects in multiband superconductors.

2. Results

As shown in [17,18], the additional second harmonic in the current-phase relation causes the renormalization of critical current I_{c0} . For this purpose, it can be obtained by an analytical solution for the extremum point of the dependence $f_{\alpha}(\phi)$ (5) in a similar manner to paper [17]. The final result of the expression for the renormalized critical current at a small value α can be written as

$$\frac{I_{ceff}}{I_{c0}} = 1 + 2\alpha^2$$

As followed from the calculations, with the increased value of α , the effective critical current $\frac{I_{ceff}}{I_{c0}}$ also increased. At high values of the anharmonicity parameter α , expression (6) is converted to linear behavior. The experimental results related to the changing critical current as a function of anharmonicity parameter α are presented in Ref. [18].

For the junctions on single- and multiband junctions (in single-band/single-band case $I = I_c \sin \chi$), the Josephson current is the sum of different tunneling channel currents [14–16]

$$I = I_{c1} \sin \chi + I_{c2} \sin(\chi + \phi) + I_{c3} \sin(\chi + \theta) + \dots$$
(7)

where $I_{c1,2,3,...}$ critical currents in the different channel, $\phi, \theta, ...$ are the phase differences between order parameters in a frustrated state of multiband superconductor. In a singleband superconductor with the zeroes phase, we have $\Psi_0 = |\Psi_0| \exp(0)$. The multiband superconductor can be written as follows: $\Psi_1 = |\Psi_1| \exp(\chi), \Psi_2 = |\Psi_2| \exp(\chi + \phi),$ $\Psi_3 = |\Psi_3| \exp(\chi + \theta), ...$ The Ginzburg–Landau free energy functional with the multiband character of superconducting state [19–21] is true

$$F = \int d^3 r (\sum_{ij} (F_{ii} - F_{ij} + \frac{H^2}{8\pi})$$
(8)

where

$$F_{ii} = \frac{\hbar^2}{4m_i} \left| \left(\nabla - \frac{2\pi i \overrightarrow{A}}{\Phi_0} \right) \Psi_i \right|^2 + \alpha_i(T) |\Psi_i|^2 + \beta_i |\Psi_i|^4 / 2$$
(9)

$$F_{ij} = \varepsilon_{ij}(\Psi_i^*\Psi_j + c.c.) + \varepsilon_1^{ij} \left\{ \left(\nabla + \frac{2\pi i \overrightarrow{A}}{\Phi_0} \right) \Psi_i^* \left(\nabla - \frac{2\pi i \overrightarrow{A}}{\Phi_0} \right) \Psi_j + c.c. \right\}$$
(10)

 m_i are the masses of the carriers in different bands, (i = 1-3); $\alpha_i = \gamma_i(T - T_{ci})$ which are linearly dependent on temperature T; β_i and γ_i are constants; $\varepsilon_{ij} = \varepsilon_{ji}$ and $\varepsilon_1{}^{ij} = \varepsilon_1{}^{ji}$ mean the interaction between superconducting gaps and their gradients, respectively; H is the external magnetic field applied to example; and Φ_0 is the magnetic flux quantum. In the case of single- and two-band junctions, for the phase differences ϕ of gap parameters, we have the effective critical current, as presented in Ref. [14].

$$I_{ceff} = (I_{c1} + I_{c2}) \text{ for } \phi = 0$$
 (11a)

$$I_{ceff} = (I_{c1} - I_{c2}) \text{ for } \phi = \pi$$
(11b)

In [15], for single-/three-band junctions, in the case of identical and positive interband interaction term $\varepsilon_{ij} = \varepsilon_{ji} = \varepsilon > 0$, the phase differences in frustration states are given as $\begin{pmatrix} \phi \\ \theta \end{pmatrix} = \begin{pmatrix} 2\pi/3 \\ -2\pi/3 \end{pmatrix}$ and $\begin{pmatrix} \phi \\ \theta \end{pmatrix} = \begin{pmatrix} -2\pi/3 \\ 2\pi/3 \end{pmatrix}$ [15]. In other possible frustration states, we have $\begin{pmatrix} \phi \\ \theta \end{pmatrix} = \begin{pmatrix} 0 \\ \pi \end{pmatrix}; \begin{pmatrix} \pi \\ 0 \end{pmatrix}$ and $\begin{pmatrix} \phi \\ \theta \end{pmatrix} = \begin{pmatrix} \pi \\ \pi \end{pmatrix}$. From the expression for the potential energy of single-/three-band junctions $U(\phi)$, we can get effective critical current

$$I_{ceff} = I_{c1} \left(\left(1 - \frac{I_{c2}}{2I_{c1}} - \frac{I_{c3}}{2I_{c1}} \right)^2 + \left(\frac{I_{c3}}{I_{c1}} - \frac{I_{c2}}{I_{c1}} \right)^2 \right)^{1/2}$$
(12)

In the derivation of the last equation, it was found that the Josephson junction reveals the φ -junction peculiarity $I = I_{ceff} \sin(\varphi - \varphi)$, with $\varphi = \arctan \frac{I_{c3} - I_{c2}}{I_{c1} - \frac{I_{c2}}{2} - \frac{I_{c3}}{2}}$. In the other frustration state $\begin{pmatrix} \varphi \\ \theta \end{pmatrix} = \begin{pmatrix} -2\pi/3 \\ 2\pi/3 \end{pmatrix}$, the terms I_{c2} and I_{c3} in Equation (12) were replaced by the places. The frustration case $\begin{pmatrix} \varphi \\ \theta \end{pmatrix} = \begin{pmatrix} 0 \\ \pi \end{pmatrix}$ corresponds to the effective critical current

$$I_{ceff} = (I_{c1} + I_{c2} - I_{c3})$$
(13)

In the $\begin{pmatrix} \phi \\ \theta \end{pmatrix} = \begin{pmatrix} \pi \\ \pi \end{pmatrix}$ state, we have the following expression for the effective critical current:

$$I_{ceff} = (I_{c1} - I_{c2} - I_{c3}) \tag{14}$$

3. Discussion

Quantum computation for using Josephson phase qubits needs to use a working temperature at the level mK [1–3]. The low-temperature anharmonic character of the current-phase relation becomes important and, as a result, this effect must be considered in the realization to phase qubits [3–5]. Using numerical calculations for the effective critical current in Equation (5) leads to the results for the energy differences between 0 and 1 levels in phase qubits, which are presented in Figure 3 $\alpha < 0.5$. The $\alpha > 0.5$ second term in Equation (5) becomes dominant and the effective critical current is determined by this term. The increase of $\Delta E / \Delta E_0$ (ΔE_0 is the energy difference in the harmonic case) results in the increase of anharmonicity parameter α .

The numerical results for the normalized ratio $\Delta E / \Delta E_0$ (ΔE_0 is the energy distance of single-/single-band junction) in a single-/two-band junction-based qubit versus I_{c2}/I_{c1} is presented in Figure 4. As can be seen, the ΔE_0 (I_{c2}/I_{c1}) dependence reveals the increasing character at $\phi = 0$. The calculations of ΔE_0 (I_{c2}/I_{c1}) in the limit $\phi = \pi$ are also plotted in Figure 4 and reveal the opposite character to the case $\phi = 0$.

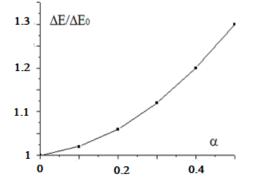


Figure 3. Changing the energy difference between levels $\Delta E / \Delta E_0$ versus anharmonicity.

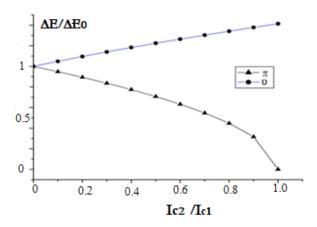


Figure 4. Changing the energy difference between levels $\Delta E / \Delta E_0$ in qubit based on the single-/twoband junction versus I_{c2}/I_{c1} .

The variations of the ratio $\Delta E / \Delta E_0$ versus I_{c3} / I_{c1} in the case of single-band/three-band junction-based qubits are plotted in Figure 5 in the frustration state $\begin{pmatrix} \phi \\ \theta \end{pmatrix} = \begin{pmatrix} -2\pi/3 \\ 2\pi/3 \end{pmatrix}$ for different values of $I_{c2} / I_{c1} = 0$, 0.5, 1 (from top to bottom). The changing character of the ratio $\Delta E / \Delta E_0$ results in increasing the ratio I_{c3}/I_{c1} . At high values of $I_{c2}/I_{c1} = 1$, we have the behavior similar to the single-band/two-band case with the opposite phase difference $\phi = \pi$. The ratio $\Delta E / \Delta E_0$ reveals a minimum in the case of low values of the ratio $I_{c2}/I_c = 0$, 0.5. In the frustration case, $\begin{pmatrix} \phi \\ \theta \end{pmatrix} = \begin{pmatrix} 0 \\ \pi \end{pmatrix}$ and $\begin{pmatrix} \phi \\ \theta \end{pmatrix} = \begin{pmatrix} \pi \\ \pi \end{pmatrix}$, using the effective critical current (see Equations (13) and (14)), has a form similar to Figure 4 in the case of a single-/two-band structure.

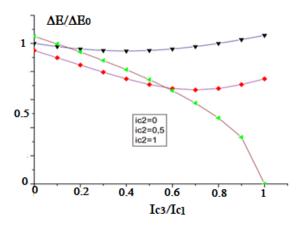


Figure 5. Changing the energy difference between levels in qubit based on single-/three-band junction $\Delta E / \Delta E_0$ versus I_{c3} / I_{c1} for $I_{c2} / I_{c1} = 0$, 0.5, 1 (from top to bottom).

It is useful to note that no direct observation of the change in $\Delta E / \Delta E_0$ phase qubits is based on single-/multiband junctions. However, there is experimental evidence of a decreasing critical current in the case of single-/two-band junctions with positive interband interaction parameters. In Ref. [22], single-/three-band junction was investigated, and it described the effects of the asymmetric critical current, Shapiro steps. The effect of the asymmetrical critical current has been observed in the edge-type junction between PbIn and many-band Co-doped BaFe₂As₂ thin film, as presented in Ref. [23]. In such junctions, a critical voltage $I_c R_N$ of about 12 μ V. In Ref. [24], the junction between *PbIn* and the $Ba_{1-x}K_x(FeAs)_2 x = 0.29$ and 0.49 was realized. In this study, it was studied experimentally as a PbIn/BaK(FeAs)₂ point-contact junction. It was also theoretically shown that the three-band superconducting state scenario provides better results for the treatment of the observed data. In papers [25,26], Nb/BaNa(FeAs)₂ junctions were reported with very a small critical voltage $I_c R_N$, approximately 3 μ V. This fact can be explained by the cancellation of the opposite supercurrents in the frustrated state of multiband iron-based superconductors. The reduction of the Josephson plasma frequency in such three-band structures was also obtained by the theoretical investigation in paper [27]. We hope that the obtained theoretical results for changing $\Delta E / \Delta E_0$ phase qubits will be observed experimentally.

4. Conclusions

In this study, the energy difference between the levels of phase qubits on the Josephson junction, based on single-/multiband superconductors, was calculated. It was shown that, in all cases, the frustration effects in multiband superconductors lead to a change in energy difference between levels $\Delta E / \Delta E_0$. The change $\Delta E / \Delta E_0$ is determined by the value of the critical currents in different channels. The phase qubit on the junction with anharmonic current-phase relation $\Delta E / \Delta E_0$ increases with an increase in the amplitude of the second term.

Funding: This study is partially supported by the TÜBİTAK grant No. 118F093.

Data Availability Statement: Not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References

- 1. Nielsen, M.; Chiang, I. Quantum Computation, Quantum Information; Cambridge University Press: Cambridge, UK, 2000; 676p.
- 2. Likharev, K. Introduction into Dynamics of Josephson Junctions and Circuits; Gordon Breach: New York, NY, USA, 1986; 586p.
- 3. Askerzade, I.; Bozbey, A.; Canturk, M. Modern Aspects of Josephson Dynamics and Superconductivity Electronics; Springer: Berlin, Germany, 2017; 211p. [CrossRef]
- 4. Wendin, G.; Shumeiko, V. Quantum bits with Josephson junctions. Low Temp. Phys. 2007, 33, 724–757. [CrossRef]
- Il'ichev, V.; Zakosarenko, I.; Fritzsch, L.; Stolz, R.; Hoenig, H.E.; Meyer, H.-G. Radio-frequency based monitoring of small supercurrents. *Rev. Sci. Instrum.* 2001, 72, 1882–1922. [CrossRef]
- 6. Yerin, Y.; Omelyanchouk, A.N. Frustration phenomena in Josephson point contacts between single-band and three-band superconductors. *Low Temp. Phys.* 2014, 40, 943–949. [CrossRef]
- 7. Askerzade, I. Unconventional Superconductors: Anisotropy and Multiband Effects; Springer: Berlin, Germany, 2012; 177p.
- 8. Yerin, Y.; Omelyanchouk, A.N.; Il'Ichev, E. DC SQUID based on a three-band superconductor with broken time-reversal symmetry. *Supercond. Sci. Technol.* **2015**, *28*, 095006. [CrossRef]
- 9. Ng, T.; Nagaosa, N. Broken time-reversal symmetry in Josephson junction involving two-band superconductors. *EPL* 2009, *87*, 17003. [CrossRef]
- 10. Stanev, V.; Tešanović, Z. Three-band superconductivity and the order parameter that breaks time-reversal symmetry. *Phys. Rev. B* **2010**, *81*, 134522. [CrossRef]
- 11. Dias, R.; Marques, A. Frustrated multiband superconductivity. Supercond. Sci. Technol. 2011, 24, 085009. [CrossRef]
- 12. Lin, S.-Z. Josephson effect between a two-band superconductor with s++ or s± pairing symmetry and a conventional s-wave superconductor. *Phys. Rev. B* 2012, *86*, 014510. [CrossRef]
- 13. Bojesen, T.; Babaev, E.; Sudbø, A. Time reversal symmetry breakdown in normal and superconducting states in frustrated three-band systems. *Phys. Rev. B* 2013, *88*, 220511. [CrossRef]
- 14. Askerzade, I.N. Escape rate in Josephson junctions between single -band and two -band superconductors. *Physical C* 2020, 374, 1353647. [CrossRef]

- 15. Askerzade, I.N.; Aydın, A. Frustration effect on escape rate in Josephson junctions between single-band and three-band superconductors in the macroscopic quantum tunneling regime. *Low Temp. Phys.* **2021**, *47*, 282–286. [CrossRef]
- Askerzade, I.N.; Askerbeyli, R.; Ulku, I. Effect of unconventional current-phase relation of Josephson junction on escape rate in ac SQUID. *Physical C* 2022, 598, 1354068. [CrossRef]
- Goldobin, E.; Koelle, D.; Kleiner, R.; Buzdin, A. Josephson junctions with second harmonic in the current-phase relation: Properties of φ- junctions. *Phys. Rev. B* 2007, *76*, 224523. [CrossRef]
- 18. Bauch, T.; Lombardi, F.; Tafuri, F.; Barone, A.; Rotoli, G.; Delsing, P.; Claeson, T. Macroscopic quantum tunneling in d-wave YBCO Josephson junctions. *Phys. Rev. Lett.* **2005**, *94*, 087003. [CrossRef]
- Askerzade, I.; Gencer, A.; Guclu, N. On the Ginsburg-Landau analysis of the upper critical field H-c2 in MgB2, Supercond. *Sci. Technol.* 2002, 15, L13–L16. [CrossRef]
- Askerzade, I.; Gencer, A.; Guclu, N.; Kılıc, A. Two-band Ginzburg-Landau theory for the lower critical field H-c1 in MgB2, Supercond. Sci. Technol. 2002, 15, L17–L20. [CrossRef]
- 21. Askerzade, I. Study of layered superconductors in the theory of an electron-phonon coupling mechanism. *Phys. Uspekhi* 2006, *49*, 977–988. [CrossRef]
- 22. Döring, S.; Schmidt, S.; Schmidl, F.; Tympel, V.; Haindl, S.; Kurth, F.; Iida, K.; Mönch, I.; Holzapfel, B.; Seidel, P. Edge-type Josephson junctions with Co-doped Ba-122 thin filmsSuper. *Sci. Technol.* **2012**, *25*, 084020. [CrossRef]
- Zhang, X.H.; Oh, Y.S.; Liu, Y.; Yan, L.; Kim, K.H.; Greene, R.L.; Takeuchi, I. Observation of the Josephson Effect in Pb/BaKaFeAs Single Crystal Junctions. *Phys. Rev. Lett.* 2009, 102, 147002. [CrossRef]
- Burmistrova, A.V.; Devyatov, I.A.; Golubov, A.A.; Yada, K.; Tanaka, Y.; Tortello, M.; Gonnelli, R.S.; Stepanov, V.A.; Ding, X.; Wen, H.-H.; et al. Josephson current in Fe-based superconducting junctions: Theory and experiment. *Phys. Rev. B* 2015, *91*, 214501. [CrossRef]
- 25. Kalenyuk, A.A.; Pagliero, A.; Borodianskyi, E.A.; Kordyuk, A.A.; Krasnov, V.M. Phase-Sensitive Evidence for the Sign-Reversal s± Symmetry of the Order Parameter in an Iron-Pnictide Superconductor Using Nb/Ba_{1-x}Na_xFe₂As₂ Josephson Junctions. *Phys. Rev. Lett.* **2018**, *120*, 067001. [CrossRef] [PubMed]
- Kalenyuk, A.A.; Borodianski, A.; Kordyuk, A.A.; Krasnov, V.M. Influence of the Fermi surface geometry on the Josephson effect between iron-pnictide and conventional superconductors. *Phys. Rev. B* 2021, 103, 214507. [CrossRef]
- 27. Ota, Y.; Machida, M.; Koyama, T.; Aoki, H. Collective modes in multiband superfluids and superconductors: Multiple dynamical classes. *Phys. Rev. B* 2011, *83*, 060507. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.