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Magnetic Monopoles, Dyons and Confinement in
Quantum Matter
Carlo A. Trugenberger

SwissScientific Technologies SA, Rue de Rhone 59, CH-1204 Geneva, Switzerland; ca.trugenberger@bluewin.com

Abstract: We show that magnetic monopoles appear naturally in granular quantum matter. Their
condensation leads to a new state of matter, superinsulation, in which Cooper pairs are bound into
purely electric pions by strings of electric flux. These electric flux tubes, the dual of Abrikosov
vortices, prevent the separation of charge–hole pairs, thereby causing an infinite resistance, even at
finite temperatures, the dual behaviour of superconductors. We will discuss the electric Meissner
effect, asymptotic freedom and their measurements and describe the recent direct detection of a
linear, confining potential by dynamic relaxation experiments. Finally, we consider dyons, excitations
carrying both a magnetic and an electric charge, and show that a condensate of such dyons leads to a
possible solution of the mysteries of the pseudogap state of high-Tc cuprates.

Keywords: magnetic monopoles; superinsulation; confinement; pseudogap state

1. Magnetic Monopoles

There is nothing preventing magnetic monopoles (for a review, see, e.g., [1]) in classical
physics, where only the equations of motion matter. The Maxwell equations can be easily
modified to include a four-current mµ of magnetic charges g,

∂µFµν = qejν ,

∂µ F̃µν = gmν , (1)

where F̃µν = (1/2)εµναβFαβ is the dual electromagnetic field tensor (we use natural units
c = 1, h̄ = 1, ε0 = 1, Greek letters for space-time indices and Einstein summation over
equal Greek indices). The only reason they were not originally included is because they
were not observed.

Things change in quantum mechanics, where off-shell paths weighted by an action
become important. Most important, this action must have a local formulation in terms of
the fields. To formulate a local action for electromagnetic fields, one must introduce the
gauge potential Aµ, and here the problems begin, because magnetic monopoles would
seem to entail a singularity in the configuration of this gauge potential, the so-called Dirac
string [1], see Figure 1. This is an infinitely thin and long solenoid bringing in the magnetic
flux from infinity. Dirac realised, however, that this singularity is a coordinate singularity if
the product of electric and magnetic charges is quantised,

qeg = 2πn , n ∈ Z . (2)

Wherever the singularity lies, it can be displaced away by a gauge transformation
so that local physics does not depend on its presence. Because of the Dirac quantisation
condition, the string cannot be observed, even by non-local Aharonov–Bohm experiments.
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Figure 1. A magnetic monopole with its Dirac string, an infinitely thin and long solenoid bringing in
the magnetic flux from infinity. The Dirac string is a coordinate singularity and can be displaced to
another position by a gauge transformation.

Even if it can be placed along any desired line, the unavoidable presence of the Dirac
string requires that, to admit magnetic monopoles, the gauge group has to be the compact
group U(1) rather than the non-compact group R. The two are locally identical but not
globally, because U(1) is isomorphic to the circle S1. The remaining singularity at the
monopole location, the open end of the Dirac string, is the consequence of the compactness
of the gauge group. There are two ways to get rid of this point singularity: either one
considers U(1) as the lowest-energy surviving symmetry after the spontaneous symmetry
breaking of a larger compact group, such as the grand-unified groups (GUTs) SU(5) or
SO(10), or one hides the U(1) monopole singularities amidst the vertices of a lattice.
The former monopoles were proposed by ‘t Hooft and Polyakov as possible solitons in
GUTs [1]; they have energies of O(1016) Gev, so large that they could have been produced
only in the big bang. Despite 40 years of dedicated searching, however, they have never
been detected. The U(1) lattice monopoles were proposed by Polyakov [2,3] as examples of
how compact U(1) gauge theories change their character due to a proliferation of magnetic
monopoles. This, however, has led to a proposal that such purely U(1), much lighter
monopoles are concretely realised in granular, inhomogeneous quantum materials which,
after all, are microscopically akin to lattices [4].
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2. Effective Electromagnetic Action for Quantum Materials

We shall consider charged quantum matter coupled to electromagnetic fields. By ”quan-
tum” we mean here “very low temperatures”, where quantum effects become dominant.
Such a quantum material is described by a generic Euclidean action (for a review, see,
e.g., [5])

S = Smatter + i
∫

d4x Aµ jµ +
1

4(qe)2

∫
d4x FµνFµν . (3)

To incorporate a finite temperature T, one has to restrict the Euclidean time integra-
tion to a finite domain of length 1/kBT with periodic (for bosons) or antiperiodic (for
fermions) boundary conditions. For simplicity of presentation, here we shall only consider
zero temperature.

One can now integrate out the matter degrees of freedom to obtain the electromagnetic
effective action for the material,

Seff
(

Aµ

)
=

1
4(qe)2

∫
d4x FµνFµν + Squantum

(
Aµ

)
. (4)

This can be performed exactly if the matter action is quadratic or loop-by-loop in per-
turbation theory in the more generic case of higher-order interactions. This expression is the
quantum equivalent of the familiar free energy of statistical mechanics, with the Maxwell
term playing the role of internal energy and the quantum corrections Squantum playing
the role of the entropy. When this is performed at finite temperatures, the so-obtained
expression takes into account both the corrections due to quantum and thermal fluctuations.
The electromagnetic response of the material is then encoded in the induced current

jµ
ind(x) = −i

δ

δAµ(x)
Seff . (5)

As a concrete example, let us mention the effective action for superconductors, whose
derivative expansion is dominated by a photon mass term,

Seff =
1

2λ2
London

∫
d3xAµ Aµ + . . . (6)

so that the electromagnetic response is given, after rotation back to Minkowski space-time,
by the induced current

jind =
−1

λ2
London

A (7)

which is the compact form of the familiar London equations

rot j =
−1

λ2
London

B

∂

∂t
j =

1
λ2

London
E (8)

3. Compact Effective Action of Granular Insulators

The long-distance effective action for generic insulators is the usual Maxwell term

Seff =
1

4e2
eff

∫
d4x FµνFµν , (9)

with an effective, renormalised coupling constant eeff and a velocity of light v = 1/
√

εµ < 1.
In this formulation, the action is formulated on an isotropic Euclidean space with “time"
coordinate x0 = vt and also, correspondingly, rescaled gauge potentials A0 → A0/v,
which is easier for computations. To recover the physical (Euclidean) space-time, one
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has to make all velocities v explicit. Things change, however, when we are dealing with
granular materials, with matter restricted to localised droplets of typical spacing ` (which
we henceforth set to ` = 1 for simplicity of presentation), the prototype being fabricated
Josephson junction arrays (for a review, see [6]). In this case, the effective action becomes a
discrete “lattice model” with a lattice spacing v`0 = ` = 1 in the Euclidean time direction.
There are two possible cases, the naïve non-compact discretisation of (9),

Seff =
1

4e2
eff

∑
x

FµνFµν , (10)

or the compact model [2,3]

Seff =
1

2e2
eff

∑
x,µν

(
1− cos

(
Fµν

))
, (11)

which, of course, coincide up to the second order in the fields but which have very different
global properties.

The compact model can also be formulated in the Villain representation by introducing
integer plaquette variables Mµν ∈ Z constituting new degrees of freedom over which one
has to sum in the partition function,

Seff =
1

4e2
eff

∑
x

(
Fµν − 2πMµν

)(
Fµν − 2πMµν

)
. (12)

Even if the naïve variables Fµν satisfy the Bianchi identity di F̃i0 = div eeffB = 0 (with
di lattice derivatives), there is nothing to guarantee that the same equation is obeyed by the
integer fields Mµν. Indeed, it can be easily shown that the overall compact magnetic field
admits magnetic monopoles [2,3],

1
eeff

di
(

F̃i0 − 2πM̃i0
)
=

2π

eeff
δx,x0 . (13)

Correspondingly, the entire compact effective action for granular insulators can be
formulated as

Seff =
1

4e2
eff

∑
x

FµνFµν +
π2

e2
eff

∑
x

mµ
1
−∇2

4
mµ , (14)

where
mµ = dν M̃µν =

1
2

εµναβdν Mαβ , (15)

is the topologically conserved four-current of magnetic monopoles and ∇2
4 is the (finite

difference) Laplacian in four Euclidean dimensions. The first is the naïve non-compact
action, and the second term describes the magnetic monopoles due to the compact nature
of the effective action in granular quantum insulators. It remains to be determined what is
the effect of such monopoles on the macroscopic properties of these materials. Before doing
so, however, let us focus on some specific examples where they appear.

4. Quantum Wires and Josephson Junction Chains

Although there can be no magnetic monopoles in 1D, let us focus, for a moment,
on the simplest example of granular quantum material, quantum wires, which can be
modelled as Josephson junction chains (for a review, see [7]), see Figure 2. Essentially,
these are materials made of superconducting islands arranged along a line (the vertices
of a 1D lattice), each characterised by a phase of their angles, with Josephson coupling EJ ,
while, in the limit C0 >> C, the dual charge dynamics are well approximated by point
interactions of the strength EC = 2e/C on the islands and possible quantum tunnelling
between the islands (the links of the 1D lattice) when the phases are aligned. For these
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materials, the matter action for the phases φ (after integrating out the charges) is the
compact global O(2) model [3] in two Euclidean dimensions,

Smatter =
κ

π ∑
x

(
dµφ + 2πnµ

)(
dµφ + 2πnµ

)
, (16)

where κ =
√

π2EJ/2EC and nµ ∈ Z are integers defined on the links of the lattice.

Figure 2. Sketch of a quantum wire with one quantum phase-slip instanton.

Upon minimally coupling the current dµφ to the gauge field Aµ, the non-compact
model (nµ = 0) leads to the effective electromagnetic action

Seff =
π

4κ ∑
x

Aµ Aµ , (17)

showing that the quantum wire is superconducting. The effective action for the full compact
model (16), however, is

Seff =
π

4κ ∑
x

Aµ Aµ + 4πκ ∑
x

s
1
−∇2

2
s ,

s = −εµνdµnν , (18)

where the integers sx on the 2D lattice represent instantons [3], i.e., solitons of the Euclidean
action, which correspond to quantum tunnelling events in Minkowski space-time (for a
review, see, e.g., [8]). These are events in which one of the phases makes a flip by a 2π
angle and are, correspondingly, called quantum phase slips [9], see Figure 2. Because the
potential for the quantum phase-slips instantons is logarithmic, they form a 2D Coulomb
gas (for a review, see [10]) and thus undergo the famed Berezinskii–Kosterlitz–Thouless
(BKT) transition [10]. Only for κ < 1, they can proliferate. In this case, when a current
is applied to the quantum wire, the balance between instantons of different chiralities
is broken, and this imbalance turns the originally superconducting wire into a metal by
creating a resistance [7].

5. The Superconductor-to-Superinsulator Transition in Quantum Films

Instantons due to the compactness of the effective action induce a superconductor-to-
metal transition in 1D. While this is very interesting, it is not yet a dramatic effect. Things
change in 2D, where the same type of instantons can induce an entire new state of matter.

Let us thus consider the 2D generalisation of quantum wires, granular films which,
correspondingly, can be modelled as Josephson junction arrays and we shall call “quantum
films”. The main difference with respect to the 1D case is the presence of a new type
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of excitation: when the phases make a non-trivial circulation of an integer multiple of
2π on neighbouring droplets, we have a vortex in between, as shown in Figure 3. These,
however, are not Abrikosov vortices; they have no normal state core and are thus Josephson-
type vortices, like the ones in the XY model [10]. As a consequence, their dissipation is
negligible, and they behave as dual excitations to charges. Moreover, they experience
Aharonov–Casher phases when they go around charges or Aharonov–Bohm phases in the
opposite case. These mutual statistics interactions, moreover, are the dominant ones at
long distances and, as shown by Wilczek [11], they can be represented in a local form by
introducing two fictitious gauge fields aµ and bµ with a mixed topological Chern–Simons
action [12].

Figure 3. A Josephson-type vortex on a 2D quantum film.

When the dynamical terms admitted by symmetry are also included, the matter action
for the charge currents Qµ and the vortex currents Mµ is given by [13–15]

Smatter = ∑
x

i
1

2π
aµεµαν∂αbν +

1
4e2

v
fµν fµν +

1
4e2

q
gµνgµν + iaµQµ + ibµ Mµ , (19)

where fµν and gµν are the field strengths of the two gauge fields aµ and bµ, respectively, and

e2
q = O

(
e2

2πd

)
= 8EC ,

e2
v = O

(
πd

e2λ2
L

)
= 4π2EJ , (20)

are the typical electric and magnetic energy scales, respectively, with d the film thickness
and λL the bulk London penetration depth. The second equalities refer to the exact results
for the modelling as Josephson junction arrays, as in the case of 1D chains [13,15].

Three phases can arise in the above model as a consequence of the competition between
the charge and vortex orders. The first is the usual global superconducting order. The other
two phases are a Bose metal phase [13], when both the charges and vortices are frozen by
statistical interactions in the bulk and only 1D edge channels conduct, in which quantum
phase slips induce a resistance as explained above, and a superinsulating phase, when
vortices proliferate [13,16,17]. The effective electromagnetic action for the superinsulating
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phase is obtained by coupling to the electromagnetic gauge field Aµ, setting Qµ = 0 and
integrating out the two fictitious gauge fields and is exactly the 2D version of (12) with

e2
eff ≈

1
κ

, (21)

with κ = ev/eq.
Actually, there is one important point to stress. The physics of thin films remains 2D

only up to a screening length O(dε), where ε is the relative dielectric permittivity of the
insulating normal state (for a derivation, see [18]); at larger scales, the electric field lines
“exit" the plane. The quantum transition to a superinsulating state thus corresponds to
the limit d→ 0, ε→ ∞ with a fixed screening length. In this limit, the effective Coulomb
interaction coupling e2

eff = e2λL/d becomes very large. Because v→ 0 in the limit ε→ ∞,
it is only the electric components of the effective action that matter

Seff =
1

2e2
eff

∑
x,i
(Fi + 2πMi)

2 =
1

2e2
eff

∑
x,i

E2
i +

2π2

e2
eff

∑
x,i

mx
1
−∇2

2
mx , (22)

where Fµ = (1/2)εµαβFαβ is the dual electromagnetic tensor in 2D, Ei denote the com-
ponents of the electric field and m = di Mi represent again the instantons due to the
compactness of the model. When modelling quantum films as Josephson junction arrays, it
is directly this purely electric action that is obtained [15].

From the point of view of a 3D Euclidean space, the vector Fµ is simply the magnetic
field, the component F0 being its component in the “z-direction”, identified with the
Euclidean time. The integers M0 represent, correspondingly, the vortices. Because of the
gauge invariance of the bµ fictitious gauge field in (19), we have dµ Mµ = 0 and, thus,
in Minkowski space-time coordinates,

m = di Mi = −dt M0 . (23)

i.e., the instantons are non-relativistic magnetic monopoles that interpolate between the one-
vortex and zero-vortex sector (or the other way around when M0 is negative), as shown in
Figure 4. These magnetic monopole instantons are the 2D generalisation of quantum phase
slips. Because their interaction, due to their non-relativistic nature, is again logarithmic, they
proliferate only for a large effective coupling, i.e., for κ < 1, when Coulomb interactions
dominate magnetic ones.
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Figure 4. A (non-relativistic) magnetic monopole instanton tunnelling between the one-vortex sector
and the zero-vortex sector in a 2D quantum film.
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6. Confinement and Superinsulation

Granularity, intrinsic or emergent, is not confined to lower dimensions. The same
type of granular structure has been recently detected in bulk superconductors [19]. In 3D,
the core-less vortices sketched in Figure 3 become 1D extended objects, and there is nothing
preventing these core-less vortices ending in magnetic monopole–antimonopole pairs. Two
situations are possible: either the vortices have tension, as sketched in Figure 5, panel
(a), and then we have only short magnetic dipoles, or they are tensionless, as sketched
in Figure 5, panel (b), in which case there is no energy price in extending them from one
monopole to infinity and then back to its antimonopole, i.e., they become Dirac strings and
the system contains free magnetic monopoles.
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Figure 5. Short magnetic dipoles when the vortices have tension, panel (a); free magnetic monopoles
when the vortices become tensionless Dirac strings, panel (b).

Under certain conditions, these magnetic monopoles can Bose condense [20]. When
this happens, applied electric fields are shielded by dissipationless magnetic monopole
currents and can penetrate only in thin electric flux tubes, the dual of Abrikosov vortices.
The crucial difference with respect to vortices, however, lies in the fact that electric flux tubes
can end on charge–hole pairs inside the sample. These excitations are the purely electric
equivalent of strong interaction pions, with Cooper pairs playing the role of quarks; the elec-
tric flux tubes joining the charge–hole pairs go under the name of confining strings [21,22].
They induce an attractive linear potential V(r) = σr between charges and holes at a separa-
tion r, where σ is the string tension. Strings have a typical width w = λel given by the range
of the screened Coulomb interaction and a typical length scale ds = 1/

√
σ determined by

the string tension. Electric ± charges cannot be separated on distances larger than this scale
for temperatures and applied voltages below critical values Tc and Vc1, respectively, which
is the phenomenon of confinement known from the strong interaction. As a consequence,
the resistance is strictly infinite for T < Tc and V < Vc1. This new state of matter, induced
by the condensation of magnetic monopoles, is called superinsulation, the dual mirror
of superconductivity. It was originally predicted in [13] and rediscovered independently
12 years later in [16]. Superinsulation has by now been experimentally detected in TiN,
NbTiN, InO and NbSi films. Figure 6 shows the logarithmic plot of the sheet resistance
of a NbTiN film as a function of 1/T. The dashed straight line corresponds to the usual
activated behaviour of an insulator. The data show an hyperactivated behaviour fitting the
divergent BKT behaviour [10], with Tc = 0.062 ◦K without an applied magnetic field and
with Tc = 0.175 ◦K at B = 0.3 T.
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Figure 6. Logarithmic plot of the sheet resistance of a NbTiN film as a function of 1/T. The dashed
straight line corresponds to the usual activated behaviour of an insulator. The data show a hyperacti-
vated behaviour fitting the divergent BKT behaviour [10], with Tc = 0.062 ◦K without an applied
magnetic field and with Tc = 0.175 ◦K at B = 0.3 T. From [17], ©Elsevier (2013).

The superinsulating state is characterised by the electric London equations [18] (in
Minkowski space-time)

∂tm =
v2Λ2

2πeeff
B ,

∇∧m =
Λ2

2πeeff
E , (24)

where Λ is the inverse length scale determined by the magnetic condensate density. Com-
bined with the (static) dual Ampère law

∇∧ E = − 2π

eeff
m , (25)

one obtains the Meissner screening of electric fields,(
∇2 − 1

λ2
el

)
E = 0 ,

λel =
eeff
Λ

. (26)

The low-energy excitations of superinsulators are neutral pions, open strings with
a charge–hole pair at the ends. If the applied voltage is smaller than the critical voltage
Vc1 = (σL/2e), with L the sample length, the effective string tension

σeff = (σ− 2eV/L) , (27)

remains positive and the pion size is smaller than the sample size, i.e., no electric field
penetrates the sample and no current passes: this is the Meissner state of superinsulators.
When the applied voltage exceeds the lower critical value Vc1 but is still smaller than
the upper critical value Vc2, the pion size exceeds the sample size, and electric fields and
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currents penetrate in the form of flux tubes reaching from one end to the other of the
sample: this is the mixed state of superinsulators. Finally, if the applied voltage is above
the upper critical value Vc2, the superinsulation is dynamically destroyed in favour of
normal insulating behaviour. The two critical electric fields Ec1 and Ec2 corresponding to
the voltages Vc1 and Vc2 are independent of the system size and are dual to the two critical
magnetic fields of type II superconductors (for a review, see [23]). A consequence of the two
critical voltages is that two kinks appear in the I(V) curves of superinsulators, separating
the three possible regimes. These are clearly seen in experiments [24], as shown in Figure 7.
When the sample size L→ ∞, these curves vanish identically in the whole region V < Vc1.

1 

Figure 7. The I(V) curves of a superinsulating NbTiN quantum film at 50 mK, clearly showing the
two kinks and three regimes corresponding to the electric Meissner state, the mixed state and the
normal insulating state. From [24], Creative Commons Attribution 4.0.

Strong interaction pions are very small and tightly bound, and their interior has never
been observed directly, only via high-energy collision experiments. The electromagnetic
interaction, however, is much weaker and thus we expect much larger electric pions. As we
have seen above, the pion size can be increased by “stretching” the string with an external
voltage. However, alternatively, we could try to measure the interior of the electric pions
simply by performing experiments on samples so small that an entire pion does not fit
on them. In this case, we expect an asymptotic freedom regime in which the string is
“loose” but the Coulomb interaction is still screened on much smaller scales. In this regime,
the Cooper pairs and holes in the pion interior are essentially free and, thus, we expect a
metallic saturation of the resistance on such small samples. This is exactly what is seen
in experiments [24], as shown in Figure 8. When the sample size is sufficiently decreased,
the hyperactivated resistance behaviour goes over directly to a metallic saturation, showing
that charges become free on such small samples. Note that this asymptotic freedom
behaviour has nothing to do with the corresponding one of non-Abelian gauge theories,
which describes their ultraviolet behaviour. This asymptotic freedom behaviour arises
technically in a sine-Gordon model and describes the infrared fixed point of the theory.
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2 

Figure 8. The transition from hyperactivated to metallic behaviour of superinsulators as the sample
size is decreased, showing asymptotic freedom in the electric pion interior. From [24], Creative
Commons Attribution 4.0.

The potential binding ± charges in the superinsulating state can be measured directly
by dynamic relaxation experiments [25], in which a voltage pulse is suddenly applied to
the material. Figure 9 shows the result of such experiments for a NbTiN quantum film.
In Panel (a), one can see the different responses of the normal insulator at 300 mK and
the superinsulator at 20 mK. In the normal insulator, the current immediately starts to
smoothly increase to its steady-state value. In the superinsulator, instead, there is a delay
tsh before the current jumps to its steady state. In panel (b), the scaling of this delay is
shown as a function of the reduced voltage (V −Vc1) (with Vc1 denoted Vp here).
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Figure 9. Dynamic response of a NbTiN quantum film. Panel (a): the difference between the normal
insulator at 300 mK and the superinsulator at 20 mK. Panel (b): the scaling of the shift time tsh as a
function of the reduced voltage (V −Vc1) (with Vc1 denoted by Vp here). The two different critical
exponents correspond to jumps from the Meissner state to the mixed state and from the Meissner
state to the normal insulator, respectively. From [25], Creative Commons Attribution 4.0.
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The two kinks in the I(V) curves are clearly reflected in two different critical exponents
µ in the scaling

tsh ∝ (V −Vc1)
−µ . (28)

The value µ = 1/2 corresponds to a jump from the Meissner state to the mixed state,
and the value µ = 3/4 to a jump from the Meissner state to the normal insulating state. Let
us consider the former. For such jumps, the effective tension (27) becomes negative and
corresponds to a constant total repulsive force F = (2eV/L− 2eVc1/L), where we have
used the value Vc1 = (σL/2e) of the lower critical voltage. This corresponds to a constant
centre of mass acceleration a = (4e/mL)(V − Vc1) for a charge–hole pair that is pulled
apart by the applied voltage, where m is the mass of a Cooper pair. The equation of motion
for the relative coordinate has the solution

r(t) =
2e
mL

(V −Vc1)t2 . (29)

The current starts to pass when this relative coordinate reaches the value L, i.e., after a
shift time

tsh =

√
mL2

2e
(V −Vc1)

−1/2 . (30)

This shows that the observed value µ = 1/2 of the dynamic critical exponent (28) is a
direct confirmation of the confining linear potential in the superinsulating state.

7. Dyons, Oblique Confinement and the Pseudogap State

In 3D, the effective electromagnetic action may also contain a topological contribution,
the so-called θ term of axion electrodynamics [26],

Sθ =
iθ

16π2

∫
d4x F̃µνFµν =

iθ
32π2

∫
d4x FµεµναβFαβ =

iθ
4π2

∫
d4x E · B , (31)

where θ is an angle with periodicity 2π for fermionic systems and 4π for bosonic ones [27].
In the presence of the θ-term, magnetic monopoles also acquire an electric charge θ/2π [28],
and the effective electromagnetic action (12) is modified to

Seff =
1

4e2
eff

∑
x

(
Fµν − 2πMµν

)(
Fµν − 2πMµν

)
+ i

θ

2π
Aµmµ . (32)

Such charged magnetic monopoles are called “dyons”. A dyon condensate realises
oblique confinement, [29] a state of matter in which the condensate carries both electric
and magnetic quantum numbers and all excitations with quantum numbers not in the
condensate are confined by strings [30]. This state is characterised by the oblique London
equations [18] (in Minkowski space-time)

∂tm =
v2Λ2

2πeeff

(
B +

e2
eff

2πv
θ

2π
E

)
,

∇∧m =
Λ2

2πeeff

(
E−

ve2
eff

2π

θ

2π
B

)
. (33)

Combining these with the (static) Ampère laws

∇∧ B =
eeffθ

2πv
m ,

∇∧ E = − 2π

eeff
m , (34)
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one obtains the oblique screening length [30]

λtheta =
4π

eeffΛ
1√(

4π
e2

eff

)2
+
(

θ
π

)2
. (35)

In the strong coupling limit e2
eff � 1, the screening length becomes

λθ →
4π2

θeeff

1
Λ

. (36)

Correspondingly, the gap ∆ = v/λθ becomes dominated by the topological term and
diverges. Indeed, in the strong coupling limit, the dyon condensate becomes a topological
ground state [31] in which the only surviving gapless excitations are the boundary modes
of a magnetic charge 2π/qe, an electric charge (θ/2π)qe and fractional statistics [32] θ/2π.
This has subsequently led the authors of [33] to confuse a dyon condensate with a topologi-
cal insulator. It is not an insulator though. Below a critical temperature, the bulk excitations
are not gapped charges, as in an insulator, but neutral strings [30]. As a consequence, the
dyon condensate has not the activated bulk resistance typical of topological insulators, but
its resistance is infinite in an entire finite-temperature regime, i.e., it is a superinsulator,
an oblique superinsulator.

We have seen how magnetic monopoles emerge naturally in granular, inhomogeneous
quantum materials. One prominent example of a class of such materials is high-Tc cuprates
(particularly in the underdoped regime), in which inhomogeneities play a crucial role [34,35]
and in which superconductivity has been established to arise in exactly such a percolation
network as we have described above [36]. Various models were proposed for the origin of
such local condensates [37,38]. This has led us to propose that the mysterious pseudogap
state [39] of these high-Tc materials is a dyon condensate with θ = 2π [31]. This solves
easily and simultaneously the puzzles of this mysterious ground state.

The presence of the θ-term, of course, explains the observed magnetoelectric Kerr
effect [40]. For θ = 2π, the boundary dyons have an electric charge 2e (for q = 2) and
fermionic statistics. This explains two more phenomena: first of all, the observed charge
2e of the carriers in the pseudogap state [41], and secondly, the T2-resistance of these
carriers [42]. Indeed, the charge carriers are boundary fermions living on a Chalker–
Coddington network [43] where they are protected from scattering and localisation by
symmetry and thus form a perfect Fermi liquid. Nematicity [44] is also an immediate
consequence of a magnetic charge. The parent insulator phase of cuprates at extremely
low doping is a 2D square spin Heisenberg antiferromagnet. If the mobile excitations
carry only an electric charge, the corresponding symmetry is thus C4. If, however, they
carry a magnetic charge too, then the symmetry is broken down to diagonal C2. Finally,
the T-linear resistance of the field-exposed normal state in the overdoped regime [45] is
easily obtained if the superconducting dome is posited as a coexistence phase of a normal
charge condensate with the dyon condensate. When a sufficiently strong magnetic field
destroys the charge condensate, the resulting bulk Cooper pairs are turned into fermions
by statistical transmutation induced by the magnetic monopoles in the dyon condensate
(for a review, see [18]). These fermions scatter with the collective fluctuations of the dyon
condensate (playing a role analogous to phonons), inducing a T-linear resistance down
to a Bloch–Grüneisen temperature which is much lower than typical Debye temperatures.
Recently, an experiment was devised to confirm or disprove this topological model of the
pseudogap state [46].

8. The Role of Disorder

The superconductor-to-superinsulator transition (with a possible Bose metal phase
in between) is due to the competition of two quantum orders, a magnetic one and an
electric one, and is driven by the effective strength of Coulomb interactions with respect
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to magnetic ones. This can be tuned by the film thickness, magnetic field, gate voltages
or, indeed, disorder [47]. Contrary to what is sometimes suggested in the literature [48,49],
however, disorder is irrelevant in the renormalisation sense; it has no influence on the
nature of the quantum phases around the superconductor-to-superinsulator transition.
From a theoretical point of view, the ground states of these phases can be obtained exactly
in the absence of disorder [50]. The recent experiment [25] finally proves that the loss of
carrier mobility is due to the linear potential induced by magnetic monopole instantons
and not by localisation by disorder. Note that many phenomena typically associated with
disorder, such as the breaking of thermalisation and ergodicity, are known to arise as a
consequence of linear confining potentials in the complete absence of disorder [51,52].
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