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Abstract: Recent work on approximating ground states of Heisenberg spin clusters by projected
Hartree–Fock theory (PHF) is extended to a cluster-based ansatz (cPHF). Whereas PHF variationally
optimizes a site–spin product state for the restoration of spin- and point-group symmetry, cPHF
groups sites into discrete clusters and uses a cluster-product state as the broken-symmetry reference.
Intracluster correlation is thus already included at the mean-field level, and intercluster correlation
is introduced through symmetry projection. Variants of cPHF differing in the broken and restored
symmetries are evaluated for ground states and singlet-triplet gaps of antiferromagnetic spin rings
for various cluster sizes, where cPHF in general affords a significant improvement over ordinary
PHF, although the division into clusters lowers the cyclical symmetry. In contrast, certain two-
or three-dimensional spin arrangements permit cluster groupings compatible with the full spatial
symmetry. We accordingly demonstrate that cPHF yields approximate ground states with correct
spin- and point-group quantum numbers for honeycomb lattice fragments and symmetric polyhedra.

Keywords: molecular magnetism; spin hamiltonians; quantum-chemical methods; symmetry-projection

1. Introduction

The calculation of magnetic properties of exchange-coupled spin clusters, e.g., molecules
with multiple open-shell transition-metal centers bridged by diamagnetic ligands [1,2],
from the Heisenberg model, Ĥ = ∑i<j Jijŝi · ŝj, usually relies on approximations, because
exact diagonalization (ED) is only feasible for small systems. The ground state and perhaps
a few excited states are needed to interpret electron-paramagnetic resonance (EPR) or
inelastic neutron scattering (INS) spectra or to assess other low-temperature properties [3].
The density matrix renormalization group (DMRG [4]) is the most important variational
method for ground states of one-dimensional (1D) systems (rings or chains) but is less
suitable for 2D coupling topologies. The scarcity of computationally affordable and easily
applicable alternatives motivated our recent exploration of projected Hartree–Fock theory
(PHF [5]) for ground states of Heisenberg spin clusters [6]. PHF can be used in a black-
box manner and has a mean-field (HF) scaling, with a prefactor depending on the size
of the symmetry-projection grid. In finite spin systems, PHF restores spin (S) and point-
group (PG) symmetry from a general product state. For a collection of s = 1

2 sites, this
broken-symmetry reference state is simply a three-dimensional spin configuration [6]. PHF
yields rather accurate ground-state wave functions for symmetric rings with a moderate
number of sites N and large local spin s and predicts reasonably accurate singlet-triplet
gaps. Limitations become evident for larger rings, where the accuracy decreases [6]. PHF
indeed recovers zero correlation energy per site in the thermodynamic limit N → ∞ . In
other words, the method is not size extensive [7]. To ameliorate this problem and enable a
more accurate treatment of larger systems by variational symmetry-projection methods,
one could either adopt a multicomponent ansatz, where the broken-symmetry reference is
a linear combination of nonorthogonal mean-field states [8], or work with a cluster basis
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that grants more flexibility than ordinary PHF, while still optimizing just a single reference.
We pursue the latter option, which we call cPHF. Note, however, that both strategies could
be combined into a multicomponent cPHF ansatz, which may be pursued in future work.
For other correlated spin-cluster approaches (coupled-cluster and many-body perturbation
theory) and for further literature on related methods, see, e.g., [9]. Note that the cluster
mean-field is the same mean-field used in cluster extensions of dynamical mean-field
theory [10] (DMFT). In this work, however, rather than attempting to obtain the interacting
Green’s function, we use a variational ansatz to develop correlations in the ground state
wave function using symmetry breaking and restoration. While symmetry breaking and
restoration are somewhat limited in the flexibility they incorporate into the ansatz, it may
be enough to obtain high-quality ground state wavefunctions for small systems with high
symmetry, such as the ones considered in this work.

2. Theory and Computations

PHF optimizes a broken-symmetry mean-field state |Φ〉 for the application of a sym-
metry projector P̂ [5]. In cPHF, |Φ〉 is a product of individual cluster states |Φi〉:

|Φ〉 =
Q

∏
i=1
|Φi〉, (1)

where Q is the total number of clusters. As an example, for a cluster comprising two s = 1
2

sites, the structure of |Φi〉 is given in Equation (2).

|Φi〉 = ci,1|↓↓〉+ ci,2|↓↑〉+ ci,3|↑↓〉+ ci,4|↑↑〉 (2)

The |Φi〉 is independently optimized to minimize the variational energy, Equation (3),
of the projected state |Ψ〉 = P̂|Φ〉:

E =
〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 =

〈Φ|ĤP̂|Φ〉
〈Φ|P̂|Φ〉

. (3)

The site-permutation invariance [11] of spin Hamiltonians representing systems with
spatial symmetry (rings, symmetric polyhedra, etc.) is here referred to as point-group
(PG) symmetry. Each level is thus characterized by its total spin S and its PG-label Γ. To
recover a substantial fraction of the correlation energy for all but the smallest systems, it
is mandatory to combine S- with PG-projection in PHF [6,12]. In the PG-projector P̂Γ of
Equation (3) (we consider only one-dimensional irreducible representations Γ), h is the
order of the group, χΓ(g) is the character of group element g, and R̂g is the respective
symmetry operation [13].

P̂Γ =
1
h

h

∑
g=1

χ∗Γ(g)R̂g (4)

Multidimensional irreducible representations become relevant for projection onto
S > 0 sectors. The projector P̂S

m for spin S and magnetic quantum number m (the Ŝz
eigenvalue) is expanded in terms of transfer operators P̂S

mk,∣∣∣ΨS
m

〉
= P̂S

m|Φ〉 = ∑
k

fk P̂S
mk|Φ〉 , (5)

which are conveniently parameterized by Euler angles [14],

P̂S
mk =

2S + 1
8π2
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sis spanned by
{

P̂S
mk|Φ〉

}
, k = −S,−S + 1, ...,+S [12]. For combined S- and PG-projection,

the projector is a product, P̂ = P̂S
m P̂Γ (spin rotations commute with site permutations). In

the trivial case where the projector is the identity, P̂ = 1̂, that is, if no symmetry projection
is performed, cPHF is equivalent to cHF, also called cluster mean-field theory [9,15]. If each
cluster comprises just one site, cPHF becomes equivalent to PHF, specifically, the “single
fermion” variety of PHF presented in [6]. Finally, note that cPHF trivially yields the exact
ground state in the chosen symmetry sector (S, Γ) if all sites are contained in a single cluster
or if there are no couplings between clusters.

In quantum-chemical terminology, |Φ〉 is of generalized HF type (GHF [16]) if it
completely breaks spin symmetry. An unrestricted HF (UHF) state also breaks total spin
symmetry (that is, |Φ〉 is not an eigenfunction of Ŝ2) but conserves Ŝz. In a UHF-type
reference, each cluster has a defined z-projection mi. Different clusters may have different
mi, which add up to the total Ŝz eigenvalue, m = ∑i mi. Compared to complete spin-
symmetry breaking in GHF, the number of variational parameters is reduced in UHF. As
an example, a general mi = 0 state of an s = 1

2 dimer is a superposition of only two basis
states, as shown in Equation (7):

|Φi〉 = ci,1|↓↑〉+ ci,2|↑↓〉 . (7)

PHF variants that restore S- or PG-symmetry from a GHF- or UHF-type reference are
called SGHF, PGSUHF, etc. In cPHF, the cluster size q may be appended, e.g., SGHF(2)
denotes a cluster-based SGHF calculation with dimers. For a given grouping, the lowest
variational energy is obtained when working with the largest symmetry group (PGSGHF).
We do not include complex-conjugation symmetry [5,17] in the cPHF scheme, because this
involves a more complicated formalism [6,18,19] and has comparatively small effects for
Heisenberg systems [6].

Self-consistent field (SCF, [5,6,19,20]) and gradient-based optimization ([12,21] and
references cited therein) are two different strategies for the optimization of |Φ〉. In the SCF
approach, the local cluster states |Φi〉 result from successively building and diagonalizing
an effective Fock matrix for each cluster. We found that reaching SCF convergence is often
challenging in cPHF and therefore prefer gradient-based optimization, where each |Φi〉
is parameterized in terms of a Thouless rotation from an initial guess

∣∣Φ0
i
〉
. Details are

provided in Appendix A. With q sites of spin s, the number of real variational parameters
that define a general Thouless rotation for a single cluster is Nvar = 2[(2s + 1)q− 1], leading
to a total of Nvar = 2Q · [(2s + 1)q − 1] for Q clusters (not counting the fk coefficients for
S > 0, cf. Equation (5)). Note, however, that the Thouless parameterization, though
convenient, is slightly redundant [6] with respect to S-projection from a GHF-type reference
|Φ〉, because global spin rotations as well as certain gauge transformations of |Φ〉 leave the
spin-projected state unchanged [22].

The local cluster basis of dimension (2s + 1)q would have to be truncated for large clus-
ters, e.g., by considering a limited number of lowest levels of the intracluster Hamiltonian.
As an example, such a scheme could make a treatment of the Mn70 or Mn84 single-molecule
magnets (with N = 70 or N = 84 s = 2 sites) feasible in terms of a q = 7 division [23] but is
beyond the scope of this work.

As recommended previously [20], we discretized transfer operators, Equation (6), with
a combined Lebedev-Laikov [24] and Trapezoid integration grid. For S-projection from a
UHF-type reference, the evaluation of integrals over Euler angles α and γ is trivial [25],
and integration over β employs a Gauss–Legendre grid. A computational parallelization of
the summation over the grid is trivial [20]. The quality of S-projection can be checked by
computing 〈Ψ|Ŝ2|Ψ〉 from a sum of spin-pair correlation functions (SPCFs), as shown in
Equation (8): 〈

Ŝ2
〉
= Ns(s + 1) + 2∑

i<j

〈
ŝi · ŝj

〉
. (8)
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We ensured that
〈

Ŝ2
〉

deviates by < 10−6 from the ideal value of S(S + 1). Details on
the calculation of SPCFs are provided in Appendix B.

Figure 1 illustrates that cluster formations are in general not fully compatible with
spatial symmetry, meaning that working with the cyclic CN group (or the dihedral group
DN that additionally includes vertical C2 axes) of spin rings with N sites would involve
complicated transformations between different cluster bases; on a similar note, complicated
transformations between different coupling schemes prevent the combined use of the full
spin- and point-group symmetry in ED [26]. A division in terms of q neighbors thus reduces
the cyclical symmetry of rings according to CN → CN/q or DN → DN/q . For example,
for q = 2, sectors k and (k + N

2 )modN of group CN (the crystal momentum k indicates
the eigenvalue exp(−i2πk/N) of the cyclic permutation ĈN) belong to the same sector of
group CN/2. Thus, a k = 0 state in CN/2 is generally a mixture of k = 0 (Mulliken label
Γ = A) and k = N

2 (Γ = B) in CN . This, however, does not imply that cPHF wave functions
will significantly break symmetry with respect to the full point group (see Results section).
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From the perspective of molecular magnetism, symmetry reduction through cluster
formation may not be a major concern, because the cyclic-symmetry order of existing ring-
like molecules is often lower than the number of open-shell ions. For example, the mere
six-fold rotational symmetry of an Fe18 ring (studied by INS in [27]) suggests a treatment in
terms of six equivalent clusters, each hosting three neighboring s = 5

2 sites, which represent
three chemically inequivalent FeIII ions. Furthermore, Mn70 and Mn84 tori, the largest
single-molecule magnets known to date, have repeat units of 14 MnIII ions (s = 2), but the
pattern of isotropic couplings in the Heisenberg model suggests a partitioning into two
inequivalent types of clusters with seven sites each [23].

In contrast, it is straightforward to use all spatial symmetries in cPHF that keep clusters
intact, meaning that a given operation transforms all sites of one cluster into sites of a
specific second cluster. Operations associated with internal site permutations do not pose
a problem. For example, vertical Ĉ2 rotations in the dihedral group of rings involve such
internal permutations; see Appendix A for details. The Results section additionally presents
selected systems (honeycomb lattice fragments and symmetric polyhedra) permitting
cluster groupings that are fully symmetry-compatible if operations associated with internal
permutations are considered.

Unless noted otherwise, all clusters (total number Q = N/q) are equivalent by symme-
try and contain the same number of sites q with a uniform local spin s, although these are
not requirements for the application of cPHF. It is usually reasonable to construct clusters
from neighboring (interacting) sites to recover a substantial amount of correlation energy
already at the mean-field level. In the absence of intracluster interactions, cHF recovers
the ordinary HF (classical spin, q = 1) solution. With respect to variational symmetry
projection in cPHF, the cluster ansatz offers more flexibility than q = 1 (ordinary PHF),
even when there are no intracluster interactions (see Results section).

The relative correlation energy, 0 ≤ p ≤ 1, defined in Equation (9),

p =
EcPHF − EHF

E0 − EHF
, (9)
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is an accuracy measure of cPHF for ground states, where E0 is the exact result (ED), and
EHF refers to the classical solution, e.g., EHF = −NJs2 for the Néel configuration in a
ring. All benchmark systems treated here have a nondegenerate S = 0 ground state.
Energies are reported in units of the uniform nearest-neighbor coupling constant J = 1
(antiferromagnetic coupling).

In cases where the system size prohibits a comparison with exact energies, we compare
cPHF against a cluster-variant of second-order perturbation theory (cPT2). The (nonvaria-
tional) cPT2 corrected energy is given by Equation (10),

EcPT2 = EcHF +

∑
ab

∣∣〈ΦcHF|Ĥ|Φab〉
∣∣2

EcHF − Eab
, (10)

where EcHF = 〈ΦcHF|Ĥ|ΦcHF〉, Eab = 〈Φab|Ĥ|Φab〉, and |Φab〉 is obtained from |ΦcHF〉
through excitations a and b in two neighboring (directly interacting) clusters. In other
words, |Φab〉 is a doubly excited cluster mean-field state. The denominator in the second
term of Equation (10) is of Epstein–Nesbet type [28]. For cluster size q = 1 and s = 1

2 , such
PT2 corrections were considered for the truncated icosahedron in [29]. Alternatively, one
could apply Rayleigh–Schrödinger perturbation theory in a cluster basis, using differences
of Fock-like orbital energies in the denominator, as seen in [9] (for the s = 1

2 square lattice)
and [30] (for the single-band Hubbard model).

3. Results and Discussion

For antiferromagnetic s = 1
2 spin rings, honeycomb lattice fragments, and four tetrahe-

dral or icosahedral polyhedra, we compare ground-state energies and SPCFs from different
variants of cPHF against exact results (where available). In addition, we briefly consider
singlet-triplet gaps in spin rings and larger local spin (up to s = 2) in polyhedra and explore
how the quality of predictions depends on the cluster size or shape. Rather than deriving
specific new insights on any of these systems, our aim is to investigate the potential of
cPHF as a variational black-box method with a cluster mean-field scaling.

3.1. Symmetric Rings

As in our previous work [6], we choose rings with N = 6, 12, 18, 24, 30 sites as bench-
mark systems to compare against ED but restrict attention to the least classical case s = 1

2 ,
which had proven to be most problematic for ordinary PHF (q = 1) [6].

We note in passing that, in contrast to dimers formed from neighboring sites (see
Theory section), clusters composed of diametrically opposite sites are indeed compatible
with the full DN symmetry. Figure 2 illustrates that the cyclic ĈN operation leaves all
clusters intact and exchanges sites in one dimer. For N = 12, CNSGHF(2) with such a
partitioning yields the exact S = 0 ground state (exact within numerical double precision)
in each k sector (k = 0, 1, . . . , N − 1), whereas CNSGHF(1) turned out to be exact in sectors
k = 1, 3, 5, 7, 9, 11 only [6]. This shows that the cluster ansatz is somewhat more flexible
with respect to variational symmetry projection, even though HF(2) is equivalent to HF(1)
due to the lack of intracluster interactions. For larger rings, the described pairing of the
most distant sites does not provide a sizable improvement over PHF(1) and shall not be
discussed further.
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Figure 2. Dimers of diametrically opposite sites conserve the symmetry of rings (group D6 in this
example). A cyclic permutation interchanges sites in the last cluster (cluster 3, yellow box).

We construct clusters comprising q = 2, 3, 6 neighbors (Figure 3), corresponding to the
common divisors of N, thus reducing the point group accessible to cPHF, that is, DN → DQ ,
where Q = N/q. Rings with even N lack frustration and adopt UHF-type solutions in cHF.
In contrast, for odd N (not studied here), frustration gives rise to genuine GHF solutions
breaking Ŝz symmetry.

Condens. Matter 2023, 8, x FOR PEER REVIEW 7 of 31 
 

 

 
Figure 3. Clusters of size 2,3,6q =  in an 12N =  ring. 

It is simple to show that HF(2) produces a product of singlets, = 0is . We observed 
that local singlets are also formed in HF(6). Consequently, HFE  is a sum of the ground-
state energies of the individual clusters: = − 3

HF(2) 4E Q , and = −HF(6) 2.4936E Q  (for 

1).Q > In contrast, for = 3q , all clusters assume z-projections = 1
2im  with alternating 

signs, leading to a Néel-like spin-density pattern and nonvanishing interactions between 
clusters, = −HF(3) 1.1284E Q . We note in passing that for = 1s  and even q, all clusters have 

the same = 0im  state in HF, but 0is ≠ , and the intercluster interaction is nonzero; for 
odd q, states alternate between = +1im  and = −1im . 

Relative correlation energies p for cluster variants of UHF, SUHF, SGHF, and 
QSGHFD  are plotted in Figure 4. Relative singlet-triplet gaps from SUHF, SGHF, 

QSGHF,D  and ED are plotted in Figure 5. Numerical energy values are given for refer-
ence in Appendix C. The QD  labels Γ  for the ground states in sectors S = 0 and S = 1 
depend on q, S, and N, as detailed in Table 1. (This information can be derived straight-
forwardly from the respective labels in ND , which were given in Table III of [6].) 

 
Figure 4. Relative correlation energies p (Equation Error! Reference source not found.) from cluster 
variants of UHF, SUHF, SGHF and SGHFQD  ( / )Q N q=  in antiferromagnetic spin rings with 

6,12,18,24,30N =  sites. Data points are connected by dotted (q = 2), dashed (q = 3) or solid lines 
(q = 6). 

Figure 3. Clusters of size q = 2, 3, 6 in an N = 12 ring.

It is simple to show that HF(2) produces a product of singlets, si = 0. We observed
that local singlets are also formed in HF(6). Consequently, EHF is a sum of the ground-state
energies of the individual clusters: EHF(2) = − 3

4 Q, and EHF(6) = −2.4936Q (for Q > 1).
In contrast, for q = 3, all clusters assume z-projections |mi| = 1

2 with alternating signs,
leading to a Néel-like spin-density pattern and nonvanishing interactions between clusters,
EHF(3) = −1.1284Q. We note in passing that for s = 1 and even q, all clusters have the same
mi = 0 state in HF, but si 6= 0, and the intercluster interaction is nonzero; for odd q, states
alternate between mi = +1 and mi = −1.

Relative correlation energies p for cluster variants of UHF, SUHF, SGHF, and DQSGHF
are plotted in Figure 4. Relative singlet-triplet gaps from SUHF, SGHF, DQSGHF, and ED
are plotted in Figure 5. Numerical energy values are given for reference in Appendix C.
The DQ labels Γ for the ground states in sectors S = 0 and S = 1 depend on q, S, and N, as
detailed in Table 1. (This information can be derived straightforwardly from the respective
labels in DN , which were given in Table III of [6]).

Table 1. Mulliken labels a of ground states in sectors S = 0 and S = 1 of even N antiferromagnetic
s = 1

2 rings in the reduced dihedral group DQ (Q = N/q).

N = 4n + 2 N = 4n

S = 0 S = 1 S = 0 S = 1

q even q odd q even q odd q even q odd q even q odd

A2 B1 A1 A1 A1 A1 A2 B1

a Label A(B) and subscript 1(2) respectively denote symmetry(antisymmetry) under the cyclic permutation ĈQ or
the vertical Ĉ2 operation that exchanges all sites pairwise.
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Figure 4. Relative correlation energies p (Equation (9)) from cluster variants of UHF, SUHF, SGHF
and DQSGHF (Q = N/q) in antiferromagnetic spin rings with N = 6, 12, 18, 24, 30 sites. Data points
are connected by dotted (q = 2), dashed (q = 3) or solid lines (q = 6).
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Figure 5. Relative singlet-triplet gaps from cluster variants of SUHF, SGHF and DQSGHF (Q = N/q)
in antiferromagnetic spin rings with N = 6, 12, 18, 24, 30 sites. Data points are connected by dotted
(cluster size q = 2), dashed (q = 3) or solid lines (q = 6).

For q = 2 or q = 6, all clusters are mi = 0 in the SUHF references for S = 0 or S = 1
projection. The fact that S = 0 energies are lower than UHF shows that SUHF does not yield
a singlet-product. For a given state, system, and q, the ordering EUHF ≥ ESUHF ≥ ESGHF ≥



Condens. Matter 2023, 8, 18 8 of 29

EPGSGHF reflects the breaking and restoration of additional symmetries. (In contrast, in the
absence of a group/subgroup relation between cPHF variants, such as in the set SGHF,
PGGHF, or PGSUHF, it is not possible to determine the ordering a priori.) The equality
holds only when the lower-level method is exact. This applies to q = 6, N = 6, where UHF
(and any PHF variant) is trivially exact, as well as in a few other cases, e.g., SGHF(2) yields
the numerically exact S = 0 and S = 1 ground states for N = 6.

For q = 2 or q = 3, an SUHF or SGHF wave function can be trivially expressed in the
q = 6 basis. Thus, q = 6 will yield the best variational energy. In contrast, if DQ-projection
is included or if the larger cluster size is not a multiple of the smaller size we cannot
rigorously predict if a larger q is advantageous. However, Figure 4 shows that this is indeed
true in all studied cases. Excluding the exact q = 6, N = 6 point, the relative correlation p
captured by UHF increases with N because rings with even N approach the Bethe–Hulthén
limit lim

N→∞
E/N = 1

4 − ln 2 from below [31]. With EHF/N = − 1
4 , the limits for cHF in

Equations (11)–(13),

lim
N→∞

pUHF(2) = (
1
4
− 3/4

2
)/(

1
2
− ln 2) ≈ 64.7% (11)

lim
N→∞

pUHF(3) ≈ (
1
4
− 1.1284

3
)/(

1
2
− ln 2) ≈ 65.3% (12)

lim
N→∞

pUHF(6) ≈ (
1
4
− 2.4936

6
)/(

1
2
− ln 2) ≈ 85.7% (13)

also hold for cPHF due to the lack of size extensivity (see Introduction). This limitation of
cPHF is clearly apparent from the fact that p decreases with increasing N (Figure 4), but
the improvement over ordinary PHF (where lim

N→∞
p = 0 for q = 1) is still significant. For

example, for N = 30, D30SGHF(1) (Nvar = 60) yields E = −11.814 [6] versus E = −13.276
with D5SGHF(6) (Nvar = 630). Finally, E = −13.320 from D3SGHF(10) (Nvar = 6138; not
included in Figure 1) is very close to E0 = −13.322 [32].

Triplet energies improve along the same hierarchy as singlet energies, but this does
not guarantee an improvement in the gap ∆EST. Somewhat unfortunately, ∆EST is severely
overestimated, except for small N and large q. The cluster approach can still afford better
results than ordinary PHF. For example, for N = 30, D30SGHF(1) yields ∆EST = 0.212 [6],
compared to ∆EST = 0.189 from D5SGHF(6) and an exact value of ∆EST = 0.147 [32].

3.2. Honeycomb Lattice Fragments

Systems with the connectivity of polycyclic aromatic hydrocarbons—triphenylene
(N = 18), coronene (N = 24), hexabenzocoronene (N = 42), hexa-cata-hexabenzocoronene
(N = 48), and kekulene (N = 48)—allow us to briefly explore options for cluster formation
(the chemical nomenclature for these systems is not meant to imply that the Heisenberg
model describes properties of the respective organic molecules). The lattices are bipar-
tite [33] and thus have S = 0 ground states. For s = 1

2 and up to eight different groupings
(Figures 6–10; in some cases, the clusters are obviously not all equivalent), Table 2 compares
energies from cUHF, cPHF, and cPT2 to exact results (available only for N = 18, 24).
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Table 2. Ground-state energy estimates for honeycomb-lattice fragments from cluster variants of
UHF, SGHF, PGSGHF, and PT2. The lowest energy for each grouping/method is given in bold type.

System Grouping
(q, Bonds) a UHF SGHF PGSGHF (Γ) PT2 Exact

Triphenylene

a (3, 12) −7.2753 −8.2062 −8.6556 (A2) −8.6445

−8.7697

b (6, 15) −7.5804 −8.4865 −8.7342 (A2) −7.8205

c (6, 18) −8.4083 −8.7556 −8.7696 (A2) −8.6640

d (2, 9) −7.0229 −8.0255 −8.5364 (A2) −8.2068

e (2, 9) −6.9584 −7.8672 −8.4093 (A2) −8.1914

Coronene

a (4, 24) −10.2764 −11.2733 −11.7966 (A) −11.4628

−11.9755

b (4, 18) −9.7660 −10.7447 −11.6399 (A1) −11.3781

c (6, 21) −10.5736 −11.3457 −11.8103 (A1) −11.3740

d (8, 24) −10.8304 −11.6961 −11.9459 (A1) −11.4992

e (2, 12) −9.5702 −10.6676 −11.2997 (A1) −11.3109

f (2, 12) −9.6055 −10.7084 −11.6190 (A1) −11.3968

g (6, 18) −9.9867 −10.9182 −11.6693 (A1) −11.1837

h (6, 12) −9.4117 −11.1230 −11.8635 (A1) −11.1287

Hexabenzo-coronene
a (6, 42) −19.8044 −20.4297 −21.0044 (B1) −20.7082

– b

b (7, 42) −19.6337 −20.4824 −21.0786 (B1) −20.7724

Hexa-cata-hexabenzo-coronene

a (6, 42) −21.5999 −23.0983 −23.8296 (A1) −23.1753

– bb (8, 48) −22.4271 −23.3169 −23.7980 (A) −23.4848

c (8, 42) −21.1057 −21.9885 −23.0109 (A1) −23.0836

Kekulene

a (6, 48) −21.4983 −22.2249 −22.7387 (A1) −22.9403

– b
b (6, 36) −19.8349 −20.9791 −22.4499 (A1) −22.2943

c (8, 48) −21.4735 −22.2083 −23.0747 (A1) −22.9187

d (8, 48) −22.1306 −22.7459 −23.3603 (A) −23.2404

a Labels refer to Figures 6–10; cluster size q and the number of intracluster bonds are given in parentheses.
b System size exceeds our ED capabilities.

In triphenylene, grouping (b) is obtained from (a) by merging clusters, while conserv-
ing the full PG-symmetry, and (b) is thus guaranteed to yield lower cPHF energies than (a).
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The same is true for (c) with respect to the two complementary dimer formations (d) and
(e). In fact, D3SGHF(6) based on (c) with three benzene units, each hosting a Clar sextet in
the most favorable resonance structure [34], is very close to the exact ground state.

In coronene, grouping (d), including 24 of 30 bonds in the clusters, is obtained from
(b) by merging neighboring clusters pairwise and recovers 99.75% of E0 with D3SGHF(8).
For cluster types (a)–(d), Table 3 collects all distinct nearest-neighbor (NN) and a few
next-nearest neighbor (NNN) SPCFs. Their magnitude is generally somewhat over- or
underestimated (with minor exceptions), depending on whether sites reside in the same
(bold type in Table 3) or in different clusters, respectively. It thus appears generally
advantageous to include pairs of strongly antiferromagnetically correlated sites in a cluster.
The SPCFs evidence a moderate degree of spatial-symmetry breaking, D6 → C6 in (a),
D6 → D3 in (c), and D6 → D3 in (d), but not in (b), because this grouping allows full
D6-projection.

Table 3. SPCFs
〈

ŝi · ŝj

〉
in coronene from PGSGHF, compared against exact results. Letters (a, b, c, d)

identifying cluster groupings, and the site numbers (first column) are defined in Figure 7 a.

i–j C6SGHF(4) (a) D6SGHF(4 )(b) D3SGHF(6) (c) D3SGHF(8) (d) Exact

1–2 −0.33729 −0.35059 −0.39063 −0.36850 −0.35875

2–3 −0.33729 −0.35059 −0.38706 −0.33627 −0.35875

1–4 −0.40404 −0.35322 −0.30621 −0.37926 −0.37507

4–5 −0.37034 −0.40476 −0.37196 −0.37095 −0.36665

5–6 −0.54911 −0.42665 −0.52422 −0.52685 −0.52881

6–7 −0.30533 −0.40476 −0.37196 −0.37095 −0.36665

7–8 −0.37034 −0.40476 −0.41287 −0.36483 −0.36665

8–9 −0.54911 −0.42665 −0.45278 −0.52027 −0.52881

(1–3) 0.17744 0.19472 0.19503 0.16792 0.16641

(1–5) 0.18265 0.20098 0.16410 0.17971 0.17661

(2–6) 0.18009 0.20098 0.16410 0.17971 0.17661

(4–6) 0.20777 0.18967 0.19643 0.19440 0.19291

(5–7) 0.17515 0.18967 0.19643 0.19440 0.19291
a SPCFs for all distinct NN pairs i–j (first column) are given, including pairs that are equivalent in the full
symmetry group but inequivalent in some of the PGSGHF wave functions. The NNN set (pairs i–j in parentheses)
is not complete, except for (b), which maintains the full D6 symmetry. Bold type is used for SPCFs of pairs that
belong to the same cluster.

Due to computational limitations, we cannot carry out ED on the N = 42 and N = 48
lattices, but a comparison with cPT2 suggests that cPHF is still fairly accurate in these larger
systems. In hexabenzocoronene, both options include a fraction of 42/54 bonds in the
clusters. Although q = 6 (Figure 8a) has seven intact rings, and thus loosely corresponds to
the most favorable resonance structure with seven Clar sextets [34], q = 7 (Figure 8b) with
six sextets is energetically very slightly favored in D6SGHF, though not in UHF (Table 2).
In hexa-cata-hexabenzocoronene, D6SGHF(6) with 42/60 bonds in seven rings (Figure 9a)
yields a significantly lower energy than D6SGHF(8) with the same number of intracluster
bonds but no intact rings (Figure 9c) and is even slightly better than C6SGHF(8) with
48 intracluster bonds but only six rings (Figure 9b). Finally, in kekulene, grouping (d)
predicts the lowest energy, despite D6 → C6 symmetry breaking. In contrast to (a), (c), and
(d), the six Clar sextets are broken up in (b), which features only 36/60 bonds and yields
higher energies in cHF, cPHF, and cPT2.

3.3. Polyhedra

We lastly consider four polyhedra (Figure 11) with Td or Ih symmetry, which allow
cluster groupings that fully respect spatial symmetry.
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(a) Icosahedron

Dimers of the sites related by spatial inversion Ci conserve Ih symmetry (Figure 12a),
while nearest-neighbor pairs break symmetry (D2h, Figure 12b), as do hexamers (D5d,
Figure 12c). For s > 1

2 , the antiferromagnetic spin-pair correlation 〈ŝ1 · ŝ4〉 between the
most distant sites (numbers defined in Figure 12a) exceeds the NN correlation 〈ŝ1 · ŝ2〉 in
the exact wave functions, see Table 4.
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Figure 12. Three cluster groupings in the icosahedron conserve Ih ((a), q = 2), D2h ((b), q = 2), or D5d
symmetry ((c), q = 6). In the planar projections (Schlegel diagrams), interacting sites belonging to
the same or to different clusters are connected by blue or pink lines, respectively. In (a), the color of
sites assigns them to one of six clusters. Sites forming symmetry-inequivalent pairs with site 1 are
numbered in (a).
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Table 4. Comparison of IhSGHF(2) predictions of SPCFs in the ground state of the icosahedron with
1
2 ≤ s ≤ 2 against exact values. Site numbers are defined in Figure 12a.

s 〈ŝ1·ŝ2〉 〈ŝ1·ŝ3〉 〈ŝ1·ŝ4〉

1/2
Exact −0.2063 0.0841 −0.1397

PHF −0.2063 0.0841 −0.1397

1
Exact −0.6187 0.3680 −0.7463

PHF −0.6187 0.3680 −0.7464

3/2
Exact −1.2580 0.9060 −1.9899

PHF −1.2580 0.9062 −1.9910

2
Exact −2.1237 1.6616 −3.6897

PHF −2.1236 1.6621 −3.6926

Interestingly, the Ih grouping (a) is advantageous over D2h (b), see Table 5, except
for GHF, where (a) yields the classical solution [35], while (b) profits energetically from
correlation in the dimers. For s = 1

2 , GHF yields local singlets in (b), which are broken
up in the SGHF reference, as apparent from the energy lowering, ESGHF < EGHF. For
s = 1

2 , 1, 3
2 , 2, IhSGHF(2) yields 100%, 99.999%, 99.996%, and 99.995%, respectively, of the

exact ground-state energy and thereby recovers most of the correlation energy missing
from IhSGHF(1) [6]. Not surprisingly, SPCFs are very close to the exact results (Table 4),
corroborating the high quality of the IhSGHF(2) wave functions.

Table 5. GHF and PHF estimates of ground-state energies of the antiferromagnetic icosahedron with
1
2 ≤ s ≤ 2 for two different q = 2 groupings (Figure 12a,b) with Ih or D2h symmetry.

s Grouping GHF SGHF PGSGHF Exact (Γ)

1/2
D2h −4.5000 −5.3224 −6.1717 −6.1879

(Au)Ih −3.3541 −5.7644 −6.1879 a

1
D2h −14.3025 −17.4565 −18.1678 −18.5611

(Ag)Ih −13.4164 −18.2225 −18.5609

3/2
D2h −31.4256 −36.2633 −37.3073 −37.7412

(Au)Ih −30.1869 −37.3842 −37.7396

2
D2h −55.2658 −61.7751 −63.1481 −63.7104

(Ag)Ih −53.6656 −63.2529 −63.7075
a Exact ground-state energy within numerical double precision.

Incidentally, IhGHF(2) (without explicit S-projection) converges onto the exact ground
state of the s = 1

2 system (the numerical deviation from E0 is ≈ 10−15). In contrast, in
IhKGHF(1), the additional use of complex-conjugation symmetry (K) was required to reach
the exact solution [6]. The fact that the exact ground state for s = 1

2 is also obtained with
D5dSGHF(6) (Figure 12c) shows that a cluster grouping that breaks symmetry does not
necessarily lead to a symmetry-broken cPHF wave function. SGHF(2) wave functions
are totally symmetric in group I but have mixed symmetry under spatial inversion Ci
(Ih = I ⊗ Ci). For s = 1

2 , the respective weights in the SGHF(2) wave function are
wAg ≈ 0.418 and wAu ≈ 0.582 (wAg + wAu = 1).

(b) Truncated Tetrahedron

The classical solution for the truncated tetrahedron [36] minimizes frustration on the
four triangles (with angles of 120 between spins) and aligns spins on the bonds between
triangles antiparallel. Two complementary cluster groupings defined by either six classically
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unfrustrated bonds (u-bonds, q = 2, Figure 13a) or twelve frustrated bonds (f-bonds, q = 3,
Figure 13b) maintain tetrahedral Td symmetry.
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Table 6 shows that u-bonds (q = 2) yield lower GHF and SGHF energies than f-bonds
(q = 3), despite a smaller number of variational parameters, e.g., for s = 2, Nvar = 288
for q = 2, and Nvar = 992 for q = 3. However, the larger variational freedom provided
by f-bonds leads to slightly better energies for TdSGHF(3) compared to TdSGHF(2). The
somewhat larger deviations between PGSGHF and exact results than in the icosahedron
may be attributed to the lower order of the group (h = 24 in Td versus h = 120 in Ih),
although a direct comparison between these two polyhedra is not meaningful. For q = 1 [6]
and q = 2, though not for q = 3, and for all tested values of s, the SGHF reference
|Φ〉 can be revealed to have the classical spin-density structure by appropriate gauge
transformations [22]. (For additional comments on this issue, see the following section on
the truncated icosahedron.) SGHF(1) [6] and SGHF(2) wave functions transform like the
exact ground state (A2 or A1 for half-integer or integer s, respectively).

Table 6. GHF and PHF estimates of ground-state energies of the antiferromagnetic 1
2 ≤ s ≤ 2

truncated tetrahedron for two different groupings (Figure 13).

s q GHF SGHF TdSGHF Exact (Γ)

1/2
2 −4.5000 −5.2700 −5.7009 a −5.7009

(A2)3 −3.8881 −4.8147 −5.7009 a

1
2 −14.0173 −16.0342 −17.1649 −17.1955

(A1)3 −13.8696 −15.7195 −17.1775

3/2
2 −29.7756 −32.8938 −34.4456 −34.6402

(A2)3 −29.6977 −32.5614 −34.4796

2
2 −51.5616 −55.7815 −57.7827 −58.1140

(A1)3 −51.5327 −55.3924 −57.8181
a Exact ground-state energy within numerical double precision.

(c) Truncated Icosahedron

In contrast to icosidodecahedral arrangements of spin centers in Keplerate molecules
{Mo72V30} [37,38], {W72V30} [39], {Mo72Cr30} [40], and {Mo72Fe30} [41,42], with s = 1

2 , 3
2 , 5

2
for V3+, Cr3+, Fe3+, truncated icosahedra were not yet synthetically realized as mag-
netic molecules. The respective Heisenberg model was nevertheless addressed in a few
works [29,43–49], some of which were motivated by gaining an understanding of the prop-
erties of buckminsterfullerene C60. However, electronic-structure calculations have shown
that the Heisenberg model is at best of qualitative value for C60 because this molecule
possesses � 60 unpaired electrons [50] (but note that there is no unique measure for
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this number). It was eventually concluded that C60 displays no significant strong correla-
tion [51]. Ab initio GHF calculations [50] on C60 still reproduce the exotic three-dimensional
spin-density pattern of the classical Heisenberg ground state [29]. Geometry optimization
on the GHF level-of-theory yields a perfect Ih structure for C60 [50], but the spatial inversion
Ci is the only obvious self-consistent symmetry of the GHF solution. We specify the hidden
icosahedral symmetry I in Figure 14, where classical spin vectors are plotted in a Schlegel di-
agram. A uniform rotation was applied such that spins in the central pentagon in Figure 14
lie in the geometrical plane of that pentagon, with the spin on the first site pointing in the
negative x-direction. This spin configuration is left unchanged by a combined spin rotation
(R) by 144◦ and a five-fold site permutation (P). In the electronic-structure problem, the site
permutation corresponds to a spatial rotation. These operations are performed about an
axis through the coordinate origin (the center of the truncated icosahedron) and the center
of the central pentagon (marked 5PR in Figure 14).
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Figure 14. Classical three-dimensional spin configuration of the truncated icosahedron. Green spin
vectors lie in the xy-plane (paper plane); red/blue vectors point in the negative/positive z-direction.
The first vector on the central pentagon points in the (horizontal) negative x-direction. Symmetry
elements (3P × 3R = 3PR, and 5PR, see main text for details) are defined with respect to an axis
through the coordinate origin and the center of the respective pentagon or hexagon.

A spin rotation by 120 about an axis through the midpoint of a hexagon (3R, Figure 14),
combined with a threefold site permutation about another hexagon (3P) is a second sym-
metry (3P × 3R = 3PR), and 5PR and 3PR are generators of a group isomorphic to group
I. The full symmetry group of the classical (or GHF) solution is Ih = I ⊗ Ci. This overall
explains why GHF orbitals of C60 are up to six-fold degenerate: molecular orbitals span
irreducible representations [52] of the double group I∗h .

Two complementary cluster formations preserve spatial Ih symmetry by including
either the 30 u-bonds between pentagons (q = 2, Figure 15a) or the 60 f-bonds in the
pentagons (q = 5, Figure 15b). Classical spins are antiparallel on u-bonds (see Figure 15a)
and span angles of 144◦ on the f-bonds. We additionally consider fused hexagons (q = 10,
Figure 15c), thereby including 36 f-bonds and all 30 u-bonds in the clusters and reducing
symmetry, Ih → D2h .
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Figure 15. Interpentagon bonds ((a), q = 2) or pentagon clusters ((b), q = 5) maintain the Ih symmetry
of the truncated icosahedron. Fused hexagons ((c), q = 10) reduce symmetry to D2h. The numbering
(a) of centers forming inequivalent pairs with site 1 follows Figure 3 in [43].

Interestingly, GHF(2) can be solved analytically for s = 1
2 . Starting from the classical

solution [29], EHF = − 15
4 (3 +

√
5) ≈ −19.6353, we define a u-bond wave function |Φi〉 in

Equation (14),

|Φi〉 =
1√

1 + α2
(|↑↓〉+ α|↓↑〉) (14)

that depends on a real parameter α. The local quantization axis for projections ↑ and ↓ in a
cluster i are given by the classical solution, that is, α = 0 recovers GHF(1). Thus, all spins
retain their classical orientation in GHF(2), but Equation (14) allows the local singlet to
acquire a higher weight than the triplet. Each dimer contributes an energy λ, as shown in
Equation (15):

λ = 〈Φi|ŝ1 · ŝ2|Φi〉 =
1

1 + α2

(
−α2

4
+ α− 1

4

)
. (15)

Compared to GHF(1), the local magnetization |〈ŝm〉| is reduced by a factor κ,
Equation (16), in the GHF(2) wave function.

κ =
1− α2

1 + α2 (16)

Interactions along the intercluster bonds (f-bonds) are evaluated classically,

〈ŝm · ŝn〉 = 〈ŝm〉 · 〈ŝn〉 =
(κ

2

)2
cos φ , (17)

with φ = 4π
5 (144◦). Minimization of the total GHF(2) energy E, Equation (18),

E = 30λ + 60
(κ

2

)2
cos
(

4π

5

)
, (18)

with respect to α, affords αopt in Equation (19),

αopt = −
1
4

[(
1 +
√

5
)(

2 +
√

2
√√

5− 1
)]

, (19)
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corresponding to κopt in Equation (20),

κopt =

∣∣∣∣∣1− α2
opt

1 + α2
opt

∣∣∣∣∣ =
√√

5− 1
2

, (20)

and overall results in Equation (21),

EGHF(2) = −
15
2

(
1 +
√

5
)
≈ −24.2705 . (21)

Numerical calculations indeed converge onto this solution. (An analogous analysis
for the s = 1

2 truncated tetrahedron yields αopt = 1, that is, singlets are formed on the six
u-bonds.) GHF(2) significantly improves over GHF(1) but still falls short of an accurate
description. Other works derived the following variational estimates for the S = 0 ground
state: E = −29.97 [45] (resonating valence-bond, RVB), E = −30.83 [44], or E = −30.69 [43]
(Variational Monte Carlo with a Gutzwiller projector, VMC), and E = −31.13 [47] (DMRG).
The latter most recent result (DMRG) may be regarded as a quasiexact benchmark value.
The GHF and PHF energies (q = 2, 5, 10) are collected in Table 7. Our best estimate
of E = −29.98, obtained with D2hSGHF(10), is very close to the RVB result [45] and
corresponds to p = 90%. In view of the Hilbert-space dimension of N = 260 ≈ 1018, which
is presently still infeasible for ED, even if symmetries were employed to reduce the matrix
size, we would like to emphasize the very significant state-space reduction afforded by
cPHF in terms of Nvar = 180 for q = 2, Nvar = 744 for q = 5, and Nvar = 12276 for q = 10.

Table 7. cGHF and cPHF estimates of ground-state energies of the s = 1
2 truncated icosahedron.

q GHF SGHF PGSGHF a

2 −24.2705 −25.5486 −27.8429

5 −25.8525 −26.6072 −28.5653

10 −28.6199 b −29.2195 −29.9842
a Projection onto S = 0, Γ = Ag. b All clusters assume their local singlet ground state.

As explained, GHF(2) spin densities (local magnetizations) maintain the classical
structure. Our numerical calculations showed that this also holds true for GHF(5). Although
SGHF(2) or SGHF(5) will generally converge onto a reference |Φ〉 that does not display
the classical spin-density pattern, we found that the latter can be restituted by gauge
rotations on |Φ〉 that leave the S-projected state P̂0

0 |Φ〉 unchanged (redundancies in the
definition of |Φ〉 with respect to gauge transformations related to spin symmetry were
discussed in [22]): |Φ〉 assumes the classical magnetization pattern when it is ensured
through appropriate gauge transformations that the expectation value of the total-spin
vector vanishes, 〈Φ|Ŝ|Φ〉 = 0. Irrespective of whether such transformations are applied to
|Φ〉, SGHF(2) and SGHF(5) wave functions (S = 0) have pure Ag symmetry in Ih. For q = 1,
|ΦHF〉 is the optimal reference for S = 0 projection in SGHF (ESGHF(1) = −21.6515), which
appears to be a rather general feature of highly symmetric polyhedra [6] but is not true for
spin rings [6] or for the presently studied polyhedra if q > 1. In other words, for q > 1,
the variation-after-projection (VAP) approach of SGHF is not equivalent to a far simpler
projection-after-variation (PAV) “single-shot” S-projection of |ΦHF〉.

In Table 8, PHF predictions for SPCFs from SGHF and IhSGHF (q = 2, 5) are compared
to VMC [43]. Note that the energy of a variational trial function that respects icosahedral
symmetry is E = 30〈ŝ1 · ŝ2〉+ 60〈ŝ1 · ŝ3〉. The magnitude of the antiferromagnetic u-bond
correlation 〈ŝ1 · ŝ2〉 is underestimated by IhSGHF(5), while the magnitude of 〈ŝ1 · ŝ3〉 in
the f-bonds is overestimated. The reverse is true for IhSGHF(2), which yields 〈ŝ1 · ŝ2〉 and
〈ŝ1 · ŝ3〉 values that match the VMC estimates more closely. This further illustrates the
trend observed in the hexagonal lattices of over- or underestimating correlations in intra-
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or intercluster bonds, respectively. Except for IhSGHF(2), cPHF overestimates long-range
correlation rather dramatically.

Table 8. SPCFs,
〈

ŝ1 · ŝj

〉
, for all distinct pair types (numbering defined in Figure 15) in the ground

state of the truncated icosahedron. VMC results were taken from Table II in [43].

q = 2 q = 5

E −25.5486 −27.8429 −26.6072 −28.5653 −30.69

j SGHF IhSGHF SGHF IhSGHF VMC

2 −0.562 −0.610 −0.186 −0.277 −0.529

3 −0.145 −0.159 −0.351 −0.337 −0.247

4 0.051 0.051 0.076 0.073 0.030

5 0.136 0.137 0.142 0.154 0.141

6 −0.145 −0.154 −0.151 −0.154 −0.142

7 −0.056 −0.054 −0.059 −0.061 −0.023

8 −0.090 −0.080 −0.094 −0.093 −0.038

9 0.084 0.070 0.087 0.083 0.031

10 −0.002 0.001 −0.003 −0.001 0.001

11 0.051 0.049 0.052 0.051 0.027

12 −0.090 −0.072 −0.094 −0.088 −0.026

13 −0.090 −0.042 −0.094 −0.084 −0.002

14 0.051 0.017 0.052 0.046 −0.001

15 −0.002 −0.002 −0.003 −0.003 −0.004

16 0.084 0.037 0.087 0.078 0.001

17 −0.090 −0.036 −0.094 −0.081 0.002

18 −0.056 −0.018 −0.059 −0.051 0.013

19 −0.145 −0.042 −0.151 −0.129 0.000

20 0.136 0.039 0.142 0.124 −0.002

21 0.051 0.016 0.053 0.046 −0.030

22 −0.145 −0.040 −0.150 −0.128 0.007

23 −0.179 −0.046 −0.186 −0.158 0.016

24 0.168 0.044 0.176 0.152 −0.008

We are not aware of any previous works addressing ground states in the truncated
icosahedron with s > 1

2 . For 1
2 ≤ s ≤ 2, energies from GHF, SGHF, and IhSGHF (q = 2)

are collected in Table 9, where they are compared with local singlets on fused benzene
rings (q = 10) and with PT2(1) and PT2(2). Except for s = 1

2 , where the singlet-product
represents the GHF(10) solution, IhSGHF yields the best variational energy. For the s = 1

2
system, the PT2(1) energy, E = −31.05 [29], is incidentally rather close to the DMRG result,
E = −31.13 [47], but the PT2(2) prediction deviates significantly, E = −29.12.

The relative deviation between PT2 energies and IhSGHF is smallest for s = 2. The
Hilbert-space of dimension N = 560 ≈ 9× 1041 for s = 2 is completely out of reach of
ED. The problem size is again drastically reduced by cPHF(2), which operates with merely
Nvar = 1440 variational parameters. Somewhat unfortunately, we cannot offer a reliable
assessment of the accuracy of cPHF in this rather large system, where obtaining an accurate
reference value with DMRG would be very challenging.
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Table 9. Variational estimates from GHF; SGHF; IhSGHF (projection onto S = 0, Γ = Ag), a singlet-
product on fused hexagons (q = 10); and PT2 for the ground state of the truncated icosahedron with
1
2 ≤ s ≤ 2.

s GHF (2) SGHF (2) IhSGHF (2) q = 10, si = 0 PT2 (1) PT2 (2)

1/2 −24.2705 −25.5486 −27.8429 −28.6199 −31.0543 −29.1216

1 −85.6371 −87.7764 −90.1147 −89.8943 −96.7113 −96.9910

3/2 −186.6961 −189.5706 −192.4293 −183.7630 −202.2428 −203.7112

2 −327.0802 −330.4438 −343.1173 −310.5941 −347.1526 −349.5852

(d) Truncated icosidodecahedron

Lastly, as another demonstration of the applicability of cPHF to systems that are
far too large for ED, we consider a truncated icosidodecahedron with 120 s = 1

2 vertices,
N = 2120 ≈ 1036.Figure 16 presents three symmetry-compatible cluster groupings
(q = 4, 6, 10).
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Figure 16. Cluster groupings compatible with Ih symmetry in the truncated icosidodecahedron.
The midpoints of the squares ((a), q = 4), hexagons ((b), q = 6), and decagons ((c), q = 10) form an
icosidodecahedron (Q = 30), dodecahedron (Q = 20), or icosahedron (Q = 12), respectively.

Being bipartite, the system has a nondegenerate S = 0 ground state, which should
transform as Ag (like the classical Néel state, EUHF(1) = −45). With 120/180 bonds included
in the clusters, none of the three groupings has an obvious advantage: EUHF(4) = −60.7642,
EUHF(6) = −59.0690, EUHF(10) = −58.8657. For a given q, all clusters assume the same
mi = 0 state, but no local singlets are formed (si 6= 0), leading to spin densities of
Néel-type. We selected q = 4 for cPHF calculations (Nvar = 900) : ESUHF = −61.3769,
ESGHF = −61.6502, EIhSGHF = −64.0101. With respect to IhSGHF, q = 6 (Nvar = 2520)
is still inferior to q = 4, yielding EIhSGHF = −62.7728. The same trend is true for PT2:
EPT2(4) = −64.9139, EPT2(6) = −64.0437.

SPCFs (referring to the site numbering of Figure 17) from IhSGHF(4) are plotted in
Figure 18. All correlations within the same sublattice are positive; all correlations between
different sublattices are negative. The strong correlation across the whole range of the
molecule is most likely artifactual, because PHF (or cPHF) reverts to HF (or cHF) in the ther-
modynamic limit [5,6]. Therefore, long-range order for large systems is generally exaggerated.
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Figure 17. Numbering of centers forming inequivalent pairs with site 1 in the bicolorable (red, blue)
truncated icosidodecahedron lattice. Sites without a number are white but still belong to one of the
two sublattices.
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4. Conclusions

By partitioning spin sites into clusters, the cPHF method extends the variational flexi-
bility of PHF for a simple approximation of ground states of finite Heisenberg systems. The
optimization of a cluster-product state for the restoration of good quantum numbers (spin
and point group) comes at a mean-field cost, with a prefactor depending on the projection-
grid size. The compact representation of the cPHF wave function in terms of a projector
acting on a cluster mean-field state is suitable for the calculation of various properties.

We considered only energies and spin-pair correlations, but other quantities needed
for modeling EPR or INS spectra, such as spin densities or expectation values of higher-
rank local spin operators, as well as transition-density matrices, could also be obtained
straightforwardly, opening a perspective for the application of cPHF to moderately large
magnetic molecules. For antiferromagnetic s = 1

2 spin rings, which are more challenging for
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PHF than s > 1
2 systems [6], cPHF significantly improves over ordinary PHF by predicting

rather accurate ground states for larger ring sizes. Although the cluster ansatz cannot
access the full cyclic symmetry, the accuracy of cPHF improves with cluster size, where a
smaller number of bonds is left to be correlated through symmetry projection.

We additionally studied hexagonal lattice fragments (s = 1
2 ) and symmetric polyhedra

( 1
2 ≤ s ≤ 2) where cluster groupings can maintain the full spatial symmetry. In these

systems, it is generally advantageous to include strongly antiferromagnetic bonds in the
clusters. This may be accomplished by maximizing the number of intact rings (Clar sextets)
in hexagonal lattices or by defining, if possible, clusters in terms of classically unfrustrated
bonds in polyhedra. Applications to the s = 2 truncated icosahedron and the s = 1

2
truncated icosidodecahedron demonstrate that cPHF can be applied to systems whose size
is prohibitive for exact diagonalization and challenging for other methods.

More advanced symmetry-projected methods have been under active development in
various fields of many-body physics and appear worth pursuing for Heisenberg systems.
Specifically, a linear combination of cluster-product states (configurations) is systematically
improvable by increasing the number of configurations and would thus ameliorate prob-
lems associated with the lack of size-extensivity. Such a multiconfiguration variant of cPHF
would also give access to excited states in the respective symmetry sectors that are needed
for modeling spectra and low-temperature properties of molecular magnets.
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Appendix A. Optimization of the Broken-Symmetry Reference

The self-consistent field (SCF) optimization of the cluster-product state |Φ〉,
Equation (A1),

|Φ〉 = |Φ1〉|Φ2〉 . . .
∣∣ΦQ

〉
=

Q

∏
i=1
|Φi〉 (A1)

in cPHF is closely analogous to the diagonalization-based PHF algorithm described in the
Supplemental Material to [6]. Here, we explain gradient-based optimization [21] as an
alternative approach that displays better convergence behavior for the present problem. In
the following, we assume for simplicity that (i) all sites have the same local spin-quantum
number s, (ii) all clusters (total number Q) contain the same number of sites q, and (iii)
all nonzero interactions between pairs of spin centers (belonging to the same cluster or to
different clusters) have the same strength in the Heisenberg model, Jij = 1. We use indices i
and i′ for clusters (i, i′ = 1, 2, ..., Q) and p and p′ for sites in a cluster (p, p′ = 1, 2, ..., q).

In Equation (A2), a Thouless rotation eẐ relates |Φ〉 to an initial guess
∣∣Φ0〉:

|Φ〉 = AeẐ
∣∣∣Φ0

〉
. (A2)

A is a normalization constant. This rotation separates into rotations for all individual
clusters,

|Φ〉 =
Q

∏
i=1

(
AieẐi

∣∣∣Φ0
i

〉)
, (A3)
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where
Ẑi = ∑

v∈virt
∑

o∈occ
Zi,vo ĉ†

i,v ĉi,o . (A4)

The quantum-chemical terminology used in Equation (A4), occ = “occupied”,
virt = “virtual”, refers to a fermionic formulation (cf. [6]), where

∣∣Φ0
i
〉

defines a single
occupied molecular orbital (o = 1) at the respective cluster in terms of a fermionic
creation operator,

|Φi〉 ↔ ĉ†
i,o|0i〉, (A5)

where |0i〉 is the vacuum at cluster i. The remaining (orthogonal) M − 1 states, where
M = (2s + 1)q is the dimension of the local Hilbert space, defines a set of virtual orbitals.
The M− 1 optimization parameters Zi,vo are the elements of a complex column vector Zi
(the Thouless vector). The essence of cPHF consists of minimizing the energy E of the
projected state |Ψ〉 = P̂|Φ〉.

As indicated, we find it helpful to draw a conceptual connection to electronic-structure
theory by associating the state of a spin cluster with a molecular orbital occupied by a
single fermion. This is analogous to our approach to PHF [6], which can be regarded
as a special case of cPHF with cluster size q = 1. A fermionic formulation leads to a
second-quantized Hamiltonian,

Ĥ = ∑
lm

tlm ĉ†
l ĉm +

1
2 ∑

klmn
ĉ†

k ĉ†
l ĉm ĉn[kn

∣∣∣lm] , (A6)

parameterized by one- and two-body integrals tlm and [kn|lm] , respectively. Projection
into the subspace of states that have exactly one fermion per site is implicitly assumed,
such that the fermionic Hamiltonian (Equation (A6)) becomes equivalent to the Heisenberg
model, Ĥ = ∑i<j Jijŝi · ŝj.

Integrals in Equation (A6) have a simple block structure. The matrix t comprising
matrix elements tlm is of dimension (Q ·M)× (Q ·M) but consists of Q blocks hi, where hi is
the Hamiltonian of the i-th isolated cluster. We similarly define reduced two-body integrals
[kn|lm] pp′ (for p, p′ = 1, 2, ..., q) for the interaction of site p of an arbitrary cluster with site p′

of another arbitrary cluster. These integrals are generally zero for most combinations p, p′

because only specific site pairs interact. Local spin matrices sp,α (p = 1, 2, ..., q; α = x, y, z)
are of dimension M×M. The number Z of nonzero entries in sp,α is independent of p (for
s = 1

2 , Z = M for all α). For a given α, there are thus Z2 combinations of nonzero entries in
sp,α and sp′ ,α, each combination yielding a nonvanishing integral [kn|lm] pp′ . The value of
[kn|lm] pp′ is the product of the respective nonzero entries in sp,α and sp′ ,α (all couplings are
assumed to have the same strength, J = 1); (k, n) and (l, m) are the (row, column) indices of
the nonzero entries in sp,α and sp′ ,α, respectively.

The initial guess
∣∣Φ0

i
〉
, that is, an initial set of molecular orbitals (MOs), is provided

in terms of expansion coefficients O0
i,occ in the uncoupled

∣∣m1, m2, ..., mq
〉

basis, where
the latter corresponds to an orthonormal atomic-orbital (AO) basis in electronic-structure
calculations. O0

i,occ is an M× 1 vector, and O0
i = (O0

i,occ, O0
i,virt) is M×M. We generate∣∣Φ0

i
〉

through small random mixing of occupied and virtual cHF orbitals. At each iteration
of the optimization process, a pure-state density matrix ρi for each cluster can be formed:

ρi = Oi,occO†
i,occ . (A7)

In the first iteration, we set Z = 0 and Oi = O0
i and calculate (as described below) the

energy E of the projected state as well as the global gradient with respect Z.
Equations (A8) and (A9) describe the updating of Oi through a Thouless rotation Zi

from O0
i in each iteration. The number Li and the lower triangular (M − 1) × (M − 1)

matrix Mi are obtained from Equations (A8) and (A9) by Cholesky decomposition:



Condens. Matter 2023, 8, 18 23 of 29

1 + ZT
i Z∗i = LiL∗i , (A8)

1 + Z∗i ZT
i = MiM†

i . (A9)

Following Equations (3.45) and (3.47) in [21], we form the intermediate
^
O:

(
^
Oi,occ)k = (O0

i,occ)k +
M−1

∑
v=1

(Zi)v(O
0
i,virt)kv , (A10)

(
^
Oi,virt)lm = (O0

i,virt)lm − (Zi)
∗
m(O

0
i,occ)l , (A11)

and finally obtain the properly orthonormalized (unitary) Oi:

Oi,occ =
1
L∗

^
Oi,occ , (A12)

(Oi,virt)lm =
M−1

∑
k=1

(M−1
i )lk(

^
Oi,virt)km . (A13)

In the following, we explain the calculation of the energy E of the projected state
(similar to the PHF algorithm described in [6]; see also [20]) and the calculation of the
global gradient vector G with elements Gvo (o = 1), defined in Equation (A14):

δE = −∑
vo
(GvoδZ∗vo + c.c.) =

−2∑
vo
(Re(Gvo)Re(δZvo) + Im(Gvo)Im(δZvo))

(A14)

As noted above, Oi mediates a transformation from the AO to the MO basis. Matrices
defined in the MO basis carry a tilde, where ρ̃i assumes a simple form:

ρ̃i = O†
i ρiOi =

(
1 0
0 0

)
. (A15)

In Equation (A15), the unit matrix 1 is 1× 1 because there is only one occupied MO
per site. For spin projection, the grid weights t(Ω) (an Euler-angle triplet Ω = (α, β, γ)
defines a grid point) are combined with Wigner D-matrix elements for all combinations of
magnetic quantum numbers m and k [20]:

xmk(Ω) = t(Ω)DS∗
mk(Ω) . (A16)

For combined S- and PG-projection, Λ denotes a combination R̂Λ = R̂ΩR̂g of a spin-
rotation R̂Ω and a site permutation R̂g. The loop over grid points Λ = (Ω, g) thus comprises
two nested loops, for Ω and g. In the spin-rotation matrix RΩ (the matrix representation
of R̂Ω),

RΩ = exp(−iατz)× exp(−iβτy)× exp(−iγτz) , (A17)

τ = (τx,τy,τz) is the total-spin vector of an isolated cluster, τα = ∑
q
p=1 sp,α.

The PG-operation R̂g converts cluster i into cluster g(i), which may be associated
with a permutation among sites within the clusters (internal spin permutations). Take
a dimerized (q = 2) symmetric N = 6 spin ring as an example (Figure A1). The cyclic
operation Ĉ3 carries center p = 1 of cluster i = 1 into p′ = 1 of g(i) = 2, etc., and thus does
not cause internal permutations; see Figure A1a. In contrast, the vertical two-fold rotation
Ĉ2 illustrated in Figure A1b exchanges site pairs in all three clusters. In other words, the Ĉ2
operation is associated with internal permutations.
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rotation 2Ĉ  illustrated in Figure A1b exchanges site pairs in all three clusters. In other 
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(a), but a vertical rotation causes internal permutations (b).

With R̂g causing an internal spin permutation g(i) in cluster g(i), the single-cluster
block R̃i,Λ of the combined spin-rotation/PG-operation becomes:

R̃i,Λ = O†
i RΩPg(i)Og(i) . (A18)

Pg(i) is the internal permutation operator. As an example, for q = 2, g(i) can have only
two values (exchange or no exchange). For s = 1

2 , the exchange operator has the simple
representation P = 1

2 (1 + 4s1 · s2) [53]. Permutation operators for s > 1
2 were derived

in [54].
R̃i,Λ has four blocks,

R̃i,Λ =

(
R̃

oo
i,Λ R̃

ov
i,Λ

R̃
vo
i,Λ R̃

vv
i,Λ

)
, (A19)

which are superscripted by o (“occupied”) or v (“virtual”). Only the first column of R̃i,Λ,
consisting of R̃

oo
i,Λ (1× 1) and R̃

vo
i,Λ [(M− 1)× 1], is needed to form (i) the rotated overlap,

QΛ ≡ 〈Φ|R̂ΩR̂g|Φ〉, from a product of the rotated overlaps of all clusters, Equation (A20):

QΛ = ∏
i

R̃
oo
i,Λ , (A20)

and (ii) the rotated transition-density matrices ρ̃i,Λ:

ρ̃i,Λ =

(
1 0

R̃
vo
i,Λ

[
R̃

oo
i,Λ

]−1
0

)
. (A21)

The latter are transformed back to the AO basis:

ρi,Λ = Oiρ̃i,ΛO†
i , (A22)

and contracted with four-index interaction integrals (defined in the AO basis),
Equation (A23):

(∆Gi,Λ)kl = ∑
mn

[kl|mn ]pp′(ρi′ ,Λ)mn . (A23)

The perturbation tensor Gi,Λ is the sum of all ∆Gi,Λ increments, as summarized in
Scheme A1:
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Scheme A1. Incremental calculation of the perturbation tensor.

We define Fi,Λ as the sum of the local cluster Hamiltonian and the perturbation tensor:

Fi,Λ = hi + Gi,Λ . (A24)

The quantity VΛ is the trace of the sum hi + Fi,Λρi,Λ, taken over all blocks:

VΛ = ∑
i

Tr
(
hi + Fi,Λρi,Λ

)
. (A25)

Back in the MO basis, F̃i,Λ = O†
i Fi,ΛOi. At each grid point Λ, the following quantities

are incremented (for Equations (A28) and (A29), see Equations (3.37) and (3.38) in [21]):

Wmk+ = wΛ,mk , (A26)

Hmk+ =
1
2

wΛ,mkVΛ , (A27)

R̃i,mk+ = wΛ,mk r̃i,Λ , (A28)

T̃i,mk+ = wΛ,mk

[
1
2

VΛ r̃i,Λ + (1− ρ̃i,Λ)F̃i,Λ r̃i,Λ

]
, (A29)

where r̃i,Λ denotes the first column of ρ̃i,Λ, and wΛ,mk is defined in Equation (A30):

wΛ,mk = xmk(Ω)χ∗Γ(g)QΛ , (A30)

and χ∗Γ(g) is an element of the character vector (the PG-projector is P̂Γ = 1
h ∑h

g=1 χ∗Γ(g)R̂g).
The generalized eigenvalue-problem is solved for the lowest energy E:

Hf = EWf , (A31)

under the normalization constraint f†Wf = 1. We assemble the local gradient g̃i from the
R̃i,mk and T̃i,mk sets of vectors:

g̃i = −∑
MK

f ∗m fk

([
T̃i,mk

]
virt
− E

[
R̃i,mk

]
virt

)
, (A32)

where the notation
[
T̃i,mk

]
virt

signifies that the first element of the vector T̃i,mk is excluded,

that is, g̃i is (M− 1)× 1. The global gradient Gi is obtained by transforming to the MO
basis of the initial guess [21],

Gi =
1
L∗i

(MT
i )
−1

g̃i . (A33)

The Gi for all Q clusters is concatenated into G, which is Q · (M− 1)× 1. The energy
E of the projected state, the initial guess O0, and the global gradient G are passed to the
fminunc function in Matlab. The separation into real and imaginary parts (Equation (A14))
is required for fminunc, which optimizes with respect to a set of real variables.
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Note that for cPHF with a UHF (instead of a GHF reference) we first run a few iterations
with an SCF algorithm to determine the local spin-projections on the z-axis, mi. With the
initial guess thus established, we switch to gradient-based optimization, setting those
elements of the gradient to zero which would change mi. In other words, in gradient-based
optimization, all mi numbers are frozen at their values in the initial guess O0.

Appendix B. Spin-Pair Correlation Functions (SPCFs)

The calculation of SPCFs is analogous to the evaluation of the energy. A double-
integration over the spin-projection grid can be avoided because ŝi · ŝj is a spin scalar,
which commutes with the (Hermitian and idempotent) spin-projection operator. For PG-
projection, we consider only one-dimensional representations Γ. Then only the totally
symmetric part (ŝi · ŝj)Γ1

, Equation (A34):

(ŝi · ŝj)Γ1
=

1
h

h

∑
g=1

R̂†
g(ŝi · ŝj)R̂g , (A34)

contributes to 〈Φ|P̂†
Γ (ŝi · ŝj)P̂Γ|Φ〉. Overall, a single summation/integration is required to

evaluate SPCFs for PGSGHF wave functions [6]:

〈Φ|P̂†
S P̂†

Γ (ŝi · ŝj)P̂S P̂Γ|Φ〉 = 〈Φ|(ŝi · ŝj)Γ1
P̂S P̂Γ|Φ〉 . (A35)

The evaluation of the expectation value for each term ŝl · ŝm occurring in the sym-
metrized operator (ŝi · ŝj)Γ1

depends on whether sites l and m are in the same cluster
(corresponding to a single-particle term) or in different clusters (two-particle term).

Appendix C. Reference Energies for Spin Rings

Singlet and triplet energies for spin rings from SUHF, SGHF and PGSGHF are collected
for reference in Tables A1–A3, respectively.

Table A1. Singlet and triplet energies and the gap ∆EST in s = 1
2 rings with N sites and cluster size q.

SUHF predictions are compared to exact results (from Table V.1 in [32]).

N

q 6 12 18 24 30

2

ES −2.6514 −4.8770 −7.1335 −9.3914 −11.6485

ET −1.8956 −4.3114 −6.6414 −8.9434 −11.2237

∆EST 0.756 0.566 0.492 0.448 0.425

6

ES −2.8028 −5.3482 −7.7332 −10.2071 −12.6941

ET −2.1180 −4.7874 −7.3492 −9.8772 −12.3954

∆EST 0.685 0.561 0.384 0.330 0.299

Exact ES −2.803 −5.387 −8.023 −10.670 −13.322

Exact ∆EST 0.685 0.356 0.241 0.183 0.147
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Table A2. Singlet and triplet energies and the gap ∆EST in s = 1
2 rings with N sites and cluster size q.

SGHF predictions are compared to exact results (from Table V.1 in [32]).

N

q 6 12 18 24 30

2

ES −2.8028 −5.0625 −7.3603 −9.6589 −11.9416

ET −2.1180 −4.5485 −6.8696 −9.1446 −11.4453

∆EST 0.685 0.514 0.491 0.514 0.496

6

ES −2.8028 −5.3768 −7.9641 −10.4728 −12.9231

ET −2.1180 −5.0090 −7.6042 −10.1411 −12.6090

∆EST 0.685 0.368 0.360 0.332 0.314

Exact ES −2.803 −5.387 −8.023 −10.670 −13.322

Exact ∆EST 0.685 0.356 0.241 0.183 0.147

Table A3. Singlet and triplet energies and the gap ∆EST in s = 1
2 rings with N sites and cluster size q.

DQSGHF predictions (Q = N/q) are compared to exact results (from Table V.1 in [32]).

N

q 6 12 18 24 30

2

ES −2.8028 −5.3710 −7.8905 −10.3945 −12.8677

ET −2.1180 −5.0104 −7.5544 −10.0287 −12.4834

∆EST 0.685 0.361 0.336 0.366 0.384

6

ES −2.8028 −5.3874 −8.0224 −10.6501 −13.2762

ET −2.1180 −5.0315 −7.7782 −10.4356 −13.0870

∆EST 0.685 0.356 0.244 0.215 0.189

Exact ES −2.803 −5.387 −8.023 −10.670 −13.322

Exact ∆EST 0.685 0.356 0.241 0.183 0.147
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