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Abstract: Haldane conjectures the fundamental difference in the energy spectrum of the Heisenberg
antiferromagnetic (HAF) of the spin S chain is that the half-integer and the integer S chain have
gapless and gapped energy spectrums, respectively. The ground state (gs) of the HAF spin-1/2 and
spin-1 chains have a quasi-long-range and short-range correlation, respectively. We study the effect of
the exchange interaction between an HAF spin-1/2 and an HAF spin-1 chain forming a normal ladder
system and its gs properties. The inter-chain exchange interaction J⊥ can be either ferromagnetic (FM)
or antiferromagnetic (AFM). Using the density matrix renormalization group method, we show that
in the weak AFM/FM coupling limit of J⊥, the system behaves like two decoupled chains. However,
in the large AFM J⊥ limit, the whole system can be visualized as weakly coupled spin-1/2 and
spin-1 pairs which behave like an effective spin-1/2 HAF chain. In the large FM J⊥ limit, coupled
spin-1/2 and spin-1 pairs can form pseudo spin-3/2 and the whole system behaves like an effective
spin-3/2 HAF chain. We also derive the effective model Hamiltonian in both strong FM and AFM
rung exchange coupling limits.

Keywords: quantum phase transition; Heisenberg antiferromagnetic; density matrix renormalization
group method; ground-state properties

1. Introduction

A one-dimensional interacting Heisenberg antiferromagnetic (HAF) spin system has
been a playground for condensed matter physicists [1–14], and one of the most striking
features of this one-dimensional system is the nature of the energy spectrum. These
systems can be either a gapped or gapless spectrum for an integer or a half-integer spin as
conjectured by Haldane [15,16]. The ground state (gs) of the HAF half-integer spin chains
have a quasi-long-range order and this was shown explicitly for spin-1/2, spin-3/2 and
spin-5/2 [17,18]. On the other hand, the HAF integer spin systems exhibit short-range
correlations due to the formation of a valance bond solid (VBS) [19]. In fact, two edge
modes at the end of the spin-1 HAF chain show an interesting topological order and the gs
has a four-fold degeneracy [19,20].

The HAF integer and half-integer spin ladder systems are some other interesting
low-dimensional systems. These ladders were extensively studied and show an interesting
behavior of the spin-dimer formation along the rung for a spin-1/2 ladder [21] and topologi-
cal states for a spin-1 ladder [22,23]. Many ladder materials were extensively synthesized for
a spin-1/2 ladder, such as CuCl2·2N(C5D5) [24], KCuF3 [25], KCuGaF6 [26], etc., and a spin-
1 ladder, such as CsNiCl3 [27], Ni(C2H8N2)2NO2(ClO4) [28], Ni(C5H14N2)2N3(PF6) [29],
etc. Some of these systems can be modeled by a simple Heisenberg model with the nearest
neighbor (NN) antiferromagnetic (AFM) exchange interaction. However, the Ni, Co and
other heavy elements have a tendency to have large single-ion anisotropy and the effect of
anisotropy is explored theoretically [30,31].
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The studies of mixed spin chains, where two dissimilar spins are placed next to each
other, have attracted much attention due to recently synthesized chain materials such as
NiCu(pba)(H2O)32H2O with (S1, S2) = (1, 1/2), ACu(pbaOH)(H2O)3nH2O, where A = Ni,
Co, Fe, Mn with (S1, S2) = (1, 1/2), (3/2, 1/2), (2, 1/2), (5/2, 1/2), respectively [32]. Ac-
cording to the Lieb–Mattis theorem [33], the mixed spin chains exhibit the ferrimagnetic
gs with a total spin S = (N/2)(S1 − S2), where N/2 is the total number of unit cells. The
Heisenberg mixed spin chain models are studied extensively using the linear spin wave
theory (LSWT) and the density matrix renormalization group (DMRG) which shows that
the correlation length in the spin correlation reduces to ξ ≈ 1.44 for a mixed spin chain with
S1 = 1 and S2 = 1/2 [13,14]. Similar spin ladders could also be experimentally realized
through artificial quantum matter, such as magnetic adatoms [34], nanographenes [35] or
cold atoms [36].

The behavior of the HAF spin-1/2 and spin-1 chains is drastically different; therefore,
it is an important question to ask about the effect of the exchange interaction between
an HAF spin-1/2 and an HAF spin-1 chain. In this work, we consider a spin ladder
system as shown in Figure 1, where spins on each leg are interacting through an AFM
exchange interaction, but the rung interaction between two legs can be either ferro- or
antiferromagnetic. In this manuscript, we focus on the limiting cases: weak and strong
rung couplings. In a strong ferromagnetic rung coupling, the nearest S = 1 and s = 1/2
from different legs form a pair which has an effective S = 3/2 spin and these interacting
effective spins form an effective antiferromagnetic spin-3/2 chain, whereas the equivalence
of this system with AFM rung coupling is not clear yet [37]. In this work, we also show
that in a strong AFM rung exchange interaction limit, this system behaves like a spin-1/2
chain. We have extensively studied the effect of FM and AFM rung couplings on the energy
gap, spin density and spin correlation on individual legs in both strong and weak rung
exchange coupling limits.

The paper is organized into five sections. In Section 2, we present the Hamiltonian
and numerical method. The numerical results are explained in Section 3. The effective
Hamiltonians from perturbative calculations are represented in Section 4. The conclusion is
given in Section 5.
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Figure 1. Mixed spin ladder with spin-1/2 and spin-1 legs. The exchange interaction strength on
both spin-1/2 and 1 legs is J. The inter-leg exchange interaction is J⊥. i represents the site index on
each leg and r is the distance between a spin and the reference spin considered at the middle of the
same leg.

2. Model Hamiltonian and Numerical Method

We consider a mixed spin ladder made of spin s = 1/2 and S = 1 legs which are
interacting with each other through either FM or AFM J⊥ exchange interaction. The
interaction between the spins on both spin-1/2 and spin-1 legs is AFM J. The system is
represented schematically in Figure 1. A general model Hamiltonian for this system can be
written as

H = J ∑
i

si · si+1 + J ∑
i

Si · Si+1

+J⊥ ∑
i

si · Si. (1)
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Here, we have studied the influence of both FM and AFM rung coupling J⊥ on the
energy gap of the system, spin density and spin–spin correlations on each individual legs
as a function of α = |J⊥|/J.

We have considered the systems of size 4n, where n is an integer. Each leg contains
an even (2n) number of spins. The physics will be different for the system with an odd
number of spins on each leg, especially at the edges.

We use density matrix renormalization group (DMRG) method to deal with the large
degrees of freedom in our system. This method is a state-of-the-art numerical technique
suitable for 1D or quasi-1D systems, and it is based on the systematic truncation of irrel-
evant degrees of freedom [38–40]. We use the recently developed DMRG method where
we add four new sites at every DMRG step [10]. This method avoids the old-old operator
multiplication while constructing a superblock and reduces the number of non-essential
non-zero small matrix elements in the superblock Hamiltonian. Up to m = 400 eigen-
vectors corresponding to the largest eigenvalues of the density matrix are kept for the
renormalization of operators and the Hamiltonian of the system block. This restricts the
truncation error below 10−10. We have used system sizes up to N = 160 to minimize the
finite size effect.

3. Results

As pointed out earlier, the HAF spin-1 and spin-1/2 chains have distinct behavior,
such as spin-1 forms a VBS in the bulk of the chain and has topological edge modes at
the ends of the chain [19,20,41,42]. The spectrum of the spin-1 chain is gapped and has
a four-fold degeneracy in a thermodynamic limit [20], whereas in the case of the HAF
spin-1/2 chain, the gs is a singlet and has a gapless spectrum [15,16]. In this paper, we show
the effect of exchange coupling J⊥ on the behavior of the spin correlation C(r) = 〈Sz

i Sz
i+r〉,

spin density ρ(i) = 〈Sz
i 〉 and low-lying excitations Γn. The distance r from the reference

site at the middle of a leg and site i is shown in Figure 1. The energy gap Γn is defined as

Γn(α, N) = E0(α, N, Sz = n)− E0(α, N, Sz = 0). (2)

E0(α, N, Sz = n) and E0(α, N, Sz = 0) are the lowest energy states in the given Sz = n
and 0 sectors, respectively. In this paper, the following questions will be addressed: what
happens to the quasi-long-range order and gapless excitation of the spin-1/2 chain and the
short-range correlation, edge states and Haldane gaps of the spin-1 chain in the presence of
an inter-chain interaction J⊥.

To answer the above questions, we first study energy gaps Γn and then analyze the
spin density ρ(i) and spin correlation C(r) in the gs.

3.1. Energy Gaps Γn

In the decoupled limit, we expect that the spectrum of each individual chain should
be intact. For the spin-1/2 chain, the first and second lowest excitation gaps are in triplet
and singlet manifolds, respectively, and have algebraic decay with the system size. On
the other hand, the first lowest excitation gap Γ1 in the spin-1 chain decays exponentially,
whereas the second excited state gap Γ2 is the Haldane gap and has a very weak finite size
effect in a chain with an open boundary condition (OBC) [15,16,20].

In the small α limit, the Γ1 of the ladder with the OBC is very close to Γ1 of the spin-1
chain (OBC) as the lowest excitation cost is corresponding to the flipping of the weakly
coupled spin-1/2 edge modes of the spin-1 leg and this gap vanishes exponentially with the
system size. On the other hand, the lowest spin-1/2 excitation on the spin-1/2 leg is much
larger in the small system and decays algebraically with N. However, for the moderate
value of α, the gap shows a flattening behavior for a large N as shown in Figure 2a, and this
should vanish for accurate larger system size calculations. In fact, in the thermodynamic
limit, Γ1 goes to zero for the AFM J⊥. The lower dashed and upper solid black curves
are the lowest excitation energy Γ1 for isolated spin-1 (with J = 1) and spin-1/2 (with
J = 17/9) chains, respectively. In the weak rung coupling limit, Γ1 is similar to that of a
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spin-1 chain. However, in a large α limit, Γ1 is zero in the thermodynamic limit, and in this
limit, the one unit of the spin-1 and spin-1/2 along the rung form an effective spin-1/2, and
their low-lying spectrum behaves as an isolated spin-1/2 chain (with an effective J = 17/9)
spectrum. In a large AFM α limit, the effective spin-1/2 Hamiltonian can be derived from
the perturbation theory discussed later in Section 4.

In Figure 2b, the second excitation for various values of AFM α is shown. The solid
black curves represent the first and second excitation gaps of spin-1/2 and the dashed
black curve represents the second excitation gap of the spin-1 chain with the OBC. The
spin-1/2 chain has a continuous spectrum, and the lowest excitation is a gapless triplet and
the second excitation is the 1st excited singlet which is zero in the thermodynamic limit.
In the case of the ladder, Γ2, in the small AFM α limit, has similar behavior as Γ1 in the
large α limit. The second or higher excitations are much higher in energy for the spin-1 leg
compared to the spin-1/2 leg spectrum. In the large AFM α limit, Γ1 and Γ2 are consistent
with the effective spin-1/2 Hamiltonian given in Equation (15) of Section 4.
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Figure 2. The energy gap (a) Γ1(α, N) and (b) Γ2(α, N) for different α for AFM J⊥. For small value
α (<0.1), the exponential part is dominant, while for α > 0.1, the gaps follow only power-law decay.
The solid thick line represents the spin-1/2 HAF with effective J = 17/9.

In the FM α limit, we notice that Γ1 has exponential decay with the system size in the
small α limit and goes to zero in the thermodynamic limit, whereas Γ1 shows algebraic
decay for the large α as shown in Figure 3a. The solid black curve shows 5/9 times the
scaled lowest excitation Γ1 of the spin-3/2 chain. Γ1 is fitted with Equation (3) as shown
in Figure 3a. The second excitation Γ2 for the FM α shows algebraic decay behavior with
the system size N as shown in Figure 3b. The gap has very similar behavior as the scaled
Γ2(S = 3/2) (5/9 times) in the large FM α limit. In fact, the spin-(1/2,1) ladder behaves
as the spin-3/2 chain in the large FM α limit. The effective Hamiltonian in this limit is
derived as in Equation (20) and both Γ1 and Γ2, in the large α limit, are consistent with the
effective Hamiltonian.

The Γ1 vs. the inverse of the system size curve can be fitted with the sum of algebraic
and exponential functions. The exponential decay of the energy gap is a signature of the
presence of the edge mode or signifies that spin-1 behavior is dominant. On the other hand,
the decaying of the energy gap following a power law with the system size originates from
the spin-1/2 leg. However, the finite energy gap shows the dimer formation along the
rung and has a contribution from both the spin-1/2 and spin-1 legs. Therefore, the fitting
expression for the energy gap can be written as

Γn(0, N) = A exp(−N/2ξ) + B/(N/2)ν. (3)

For different α, the values of coefficients A, B, ξ, ν are shown in Tables 1 and 2 for anti-
ferromagnetic and ferromagnetic rung interactions, respectively. In Table 1, we note that
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Γ1(α, N) for small α exhibits dominant exponential behavior as the value of A is much
larger compared to B. However, for a large value of α, the value of B is much larger than
A (almost zero). This indicates the decaying behavior of the gap with N changes from
exponential to power law. In Table 2, the value of B is always larger than A for all values of
α. This behavior indicates the spin-3/2 spin chain behavior of the system.
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Figure 3. The energy gap (a) Γ1(α, N) and (b) Γ2(α, N) for different α for FM J⊥. The solid thick lines
represent the corresponding energy gaps for an HAF S = 3/2 chain with effective J = 5/9.

Table 1. Values of various exponents and constants are evaluated from the fitting of the Γ1(α, N)

shown in Figure 2a using Equation (3).

α A ξ B ν

0.02 0.719 5.638 0.141 0.992
0.04 0.765 5.163 0.068 0.410
0.06 0.821 4.457 0.136 0.422
0.08 0.981 3.633 0.245 0.485
0.20 0 − 0.800 0.642
0.30 0 − 1.13 0.704
0.40 0 − 1.39 0.744

Table 2. Values of various exponents and constants are evaluated from the fitting of the Γ1(α, N)

shown in Figure 3a using Equation (3).

α A ξ B ν

0.05 0.405 5.641 3.975 1.770
0.1 0.164 5.444 5.411 1.715
0.3 0.089 6.453 4.855 1.088
0.6 0.041 7.149 4.580 1.071
0.8 0.031 7.711 4.460 1.065

1.00 0.026 8.202 4.370 1.061
1.50 0.022 8.971 4.223 1.055

3.2. Spin Densities ρ(r)

To understand the low-lying excitation in the system, we also study the spin densities
in the lowest excited state in the Sz = 1 spin manifold. The spin density at each site i is
defined as

ρ(i) = 〈Sz
i 〉. (4)

The site numbering is shown in Figure 1 and represented as i on each leg. The site
numbering starts from the end and has a value N/4 in the mid of a leg. The ladder is
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made up of both spin-1/2 and spin-1 legs; therefore, the excited states of the system have
different contributions from different legs. In the weak AFM rung coupling limit, the
lowest excitation is dominated by the spin-1 leg contribution; therefore, the spin densities
on the spin-1 leg resemble that of an isolated spin-1 chain, shown as a solid black circle
in Figure 4a. On the other hand, the wave-like behavior of the spin density on this leg is
similar to an isolated spin-1/2 chain (shown as a solid square) in the strong AFM rung
coupling limit [37,43]. The scaling factor 1.61 in Figure 4a comes from just fitting the spin
density in the spin-1 leg with that for an isolated spin-1/2 chain. It decays exponentially
toward the middle of the leg with the distance from the end. ρi on the spin-1/2 leg is small
for a given N, and odd and even effects are visible, as shown in Figure 4b. Because we
are calculating the density in the Sz = 1 sector, all the odd sites have a positive density
and even sites have a negative density so that the sum of the spin densities of the system
becomes 1. The spin density on the spin-1/2 leg increases as we increase α, but it again
starts to decrease after a certain value of α. ρi on both legs has the largest value at the
boundary but decays as one moves toward the bulk.

In the FM rung coupling limit, the lowest excitation is in the triplet sector. In this
coupling limit, ρi in the spin-1 and 1/2 legs is plotted in Figure 5a,b, respectively. In the
weak rung exchange coupling limit, the ρi in the spin-1 leg has similar behavior to ρi of an
isolated spin-1 chain, shown as a solid black circle in Figure 5a, whereas it behaves like an
isolated spin-3/2 chain in a strong α limit as shown by a solid triangle in Figure 5a. The
value 1/1.61 is the scaling factor. The magnitude of the spin density is much smaller in
the spin-1/2 leg and decays on going toward the bulk as shown in Figure 5b. In the large
α limit, this ladder behaves as a spin-3/2 chain; therefore, the lowest excitation is in the
triplet sector and ρi on both legs behaves similarly to that in a spin-3/2 chain, as shown in
Figure 5a,b. It is noticeable that a spin=3/2 HAF chain has a sufficiently large edge state as
the spin density waves are not localized as opposed to a spin-1/2 chain [42].

The exponential decay of the edge spin density is an important quantity to study the
edge modes. We notice the effect of α on the edge modes in Figure 4a. The exponential
nature of the spin density in the spin-1 leg is visible for finite α = 0.1 but has spin-1/2-
like behavior for α ≥ 0.5. In the ferromagnetic α side, the edge mode in the spin-1 leg
exists always. However, the spin density decays exponentially for smaller α but has an
algebraic decay in the large α limit as shown in ref. [42], where the system behaves like
spin-3/2 chains.

3.3. Spin–Spin Correlations

The longitudinal correlation functions C(r) defined in Equation (5) are an excellent
measure of an effective interaction among the spins of a system. For an isolated spin-1/2
chain, the C(r) goes as

√
ln(r)/r, where r is the distance from the reference spin [18,44,45].

For our system, the reference spin is set at the middle of each leg and it is numbered as
r = 0, as shown in Figure 1. In an isolated spin-1 chain, C(r) decays exponentially due to
the valance bond-state formation. The longitudinal spin–spin correlation at a distance r
with respect to a reference spin at r = 0 is defined as

C(r) = 〈Sz
0 · Sz

r 〉, (5)

where r is the distance from the reference spin. The gs of the system is always in the singlet
state; therefore, the total correlation is thrice of the longitudinal correlation C(r). C(r) in
both the spin-1/2 and spin-1 legs is plotted in Figure 6 for the AFM rung coupling and in
Figure 7 for the FM rung coupling. Figure 6a shows the correlation on the spin-1 leg in
the log-normal scale to identify the exponential behavior. In the AFM rung system, C(r)
in the spin-1 leg of the ladder has the exponential behavior for α = 0.02 and matches well
with the scaled C(r) of an isolated spin-1 chain, shown as a solid black circle with a dotted
line, whereas in the strong limit α ≥ 0.1, there is a clear deviation from the exponential
behavior as shown in Figure 6a. At a very strong α, the C(r) of the spin-1 leg matches
with the scaled C(r) of an isolated spin-1/2 chain as shown by the solid black square
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in Figure 6a. Figure 6b illustrates C(r) in the log-log scale for the spin-1/2 leg, where
C(r) exhibits algebraic behavior. Here, the C(r) value increases with an increasing α but
decreases after a certain value of α. In both the small and large α limit, the C(r) in the
spin-1/2 leg matches well with the scaled C(r) of an isolated spin-1/2, shown as a solid
square with a dotted line in Figure 6b. In the large rung coupling limit, the effective spin
of the per-unit cell can behave as the spin-1/2 as one spin-1/2 of spin-1 gets involved in
forming a rung singlet, whereas other effective spin-1/2 couples with neighboring effective
spin-1/2 with an effective coupling are shown in Section 4 of the analytical calculations
using the perturbation theory.

In the small FM rung exchange coupling limit, the systems can behave as decoupled
chains of spin-1/2 and spin-1, whereas in the strong coupling limit, the behavior of C(r) on
both the legs is similar to the scaled C(r) of spin-3/2, shown by the triangle with dotted
lines as shown in Figure 7a,b. We note that, for small α, the spin-1 leg C(r) has exponential
behavior as usual, but for α > 0.1, the behavior changes toward the power law and is
similar to that of an isolated spin-3/2 chain, as shown in Figure 7a. In the spin-1/2 leg,
C(r) is always algebraic and it behaves like C(r) of an isolated spin-1/2 chain in a small α
limit, whereas it behaves like an isolated spin-3/2 chain in a strong α limit, as shown in
Figure 7b.
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Figure 4. (a) The magnitudes of spin densities on the spin-1 leg are shown in the upper panel; (b) for
the spin-1/2 leg, spin densities are shown in lower panel for AFM J⊥ with N = 120 in Sz = 1 sector.
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Figure 5. (a) The magnitudes of spin densities on the spin-1 leg are shown in the upper panel; (b) for
the spin-1/2 leg, spin densities are shown in lower panel for FM J⊥ with N = 120 in Sz = 1 sector.
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Figure 6. (a) The spin–spin correlations on the spin-1 leg are shown in log-normal scale in the upper
panel; (b) for the spin-1/2 leg, spin–spin correlations are shown in the log-log scale in the lower panel
for AFM J⊥ for N = 120.
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Figure 7. (a) The spin–spin correlations on the spin-1 leg are shown in log-normal scale in the upper
panel; (b) for the spin-1/2 leg, spin–spin correlations are shown in the log-log scale in the lower panel
for FM J⊥ for N = 120.
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4. Effective Hamiltonian in Strong Coupling Limit

In this section, the strong rung coupling limit |J⊥| >> J of the Hamiltonian in Equa-
tion (1) is considered. For both strong the ferromagnetic and antiferromagnetic |J⊥| >> J,
it can be rewritten as

H = H0 + H′ (6)

H0 =
N

∑
i=1

Hi = J⊥
N

∑
i=1

ŝi · Ŝi (7)

H′ =
N

∑
i=1

Hi,i+1 = J
N

∑
i=1

ŝi · ŝi+1 + J
N

∑
i=1

Ŝi · Ŝi+1. (8)

where H0 is the strong coupling part of the Hamiltonian or exchange interaction between
spin-1/2 and 1 along the rung, whereas H′ is the perturbation term along the legs. In the
limit of J = 0, the system is a collection of interacting spin (1/2, 1) pairs with an exchange
interaction J⊥ between them. The pair have a total spin of either 1/2 or 3/2 with energies
E1/2 = −J⊥ and E3/2 = J⊥/2. The states are either a doublet or quartet. The doublet states
D can be written as ∣∣∣D 1

2

〉
i

=
1√
3

[
−
∣∣∣∣12 , 0

〉
i
+
√

2
∣∣∣∣−1

2
, 1
〉

i

]
(9)∣∣∣D− 1

2

〉
i

=
1√
3

[∣∣∣∣−1
2

, 0
〉

i
−
√

2
∣∣∣∣12 ,−1

〉
i

]
(10)

whereas the quartet Q can be written as∣∣∣Q 3
2

〉
i

=

∣∣∣∣12 , 1
〉

i
(11)∣∣∣Q 1

2

〉
i

=
1√
3

[√
2
∣∣∣∣12 , 0

〉
i
+

∣∣∣∣−1
2

, 1
〉

i

]
(12)∣∣∣Q− 1

2

〉
i

=
1√
3

[√
2
∣∣∣∣−1

2
, 0
〉

i
+

∣∣∣∣12 ,−1
〉

i

]
(13)∣∣∣Q− 3

2

〉
i

=

∣∣∣∣−1
2

,−1
〉

i
. (14)

The gs of the rung is a doublet when the rung interaction is antiferromagnetic, and it
is a quartet when the rung interaction is ferromagnetic. For the AFM J⊥, the effective
Hamiltonian can be written in terms of pseudo spin-1/2 operators σ which can have three
components, x, y and z, and form an equivalent spin-1/2 antiferromagnetic Heisenberg
chain. The effective Hamiltonian up to the first-order correction for the AFM J⊥ can be
written as

H = −NJ⊥ +
17J
9

N

∑
i=1

σ̂i · σ̂i+1, (15)

where σ̂i are the pseudo spin-1/2 operators.
Similarly, for the ferromagnetic rung interaction, the gs of the spin pairs on a rung is in

Sz
tot = 3/2 and the energy is J⊥/2. The effective Hamiltonian in this case can be written as

H = NJ⊥/2 +
N

∑
i=1
〈µi,i+1|Hi,i+1|νi,i+1〉|µi,i+1〉〈νi,i+1|, (16)

where {|µi,i+1〉, |νi,i+1〉 =
∣∣Qβ

〉
i ⊗
∣∣∣Qβ′

〉
i+1
} are sixteen-fold degenerate. Let us first define

the pseudo spin-3/2 operators:

τz
i
∣∣Q±β

〉
i = ±β

∣∣Q±β

〉
i, (17)



Condens. Matter 2023, 8, 17 11 of 13

where β = −3/2,−1/2, 1/2, 3/2.

τ+
i

∣∣Qβ

〉
i = Cβ+

∣∣Qβ+1
〉

i (18)

τ−i |Qα〉i = Cα−|Qα−1〉i (19)

where Cβ+ =
√

3 for β = −3/2, 1/2 and Cβ+ = 2 for β = −1/2. Moreover, Cα− =
√

3 for
α = 3/2,−1/2 and Cα− = 2 for α = 1/2.

We can find the coefficients 〈µi,i+1|Hi,i+1|νi,i+1〉 and express the Hamiltonian in terms
of the pseudo spin-3/2 operators. After some algebras, the effective Hamiltonian up to first
order becomes

H = NJ⊥/2 +
5J
9

N

∑
i=1

τ̂i · τ̂i,i+1 (20)

The spectrum and correlations of these are similar to that of the spin-1/2 and spin-3/2 chains.
The factor 17

9 in Equation (15) and 5
9 in Equation (20) are close to our numerical findings.

5. Discussion

It is well known that isolated HAF spin-1/2 and spin-1 chains are fundamentally
different both in spectrum as well as in the nature of the gs [15,16,19,41]. In this work, we
have studied the effect of magnetic exchange coupling J⊥ between isolated HAF spin-1/2
and spin-1 chains. In fact, coupled spin-1/2 and spin-1 chains can be visualized as a normal
ladder-like structure, as shown in Figure 1. The exchange interaction J⊥ between the legs
can be either ferromagnetic or antiferromagnetic. In the weak AFM coupling limit of J⊥,
the system behaves like two decoupled chains. However, in the large J⊥ limit, the whole
system behaves as an effective HAF spin-1/2 chain due to the formation of a singlet pair
along the rung, leaving an effective spin-1/2 per rung which can interact via an effective
antiferromagnetic exchange interaction, as shown in Section 4. For the FM J⊥, the system
behaves similarly to decoupled chains in a small α limit. However, for a large FM J⊥
limit, coupled spin-1/2 and spin-1 pairs can form a pseudo spin-3/2 and the whole system
behaves like a spin-3/2 HAF chain.

To understand the low-lying spectrum, we have also analyzed two of the lowest-lying
energy gaps Γ1 and Γ2 as well as the spin densities ρi in the lowest excited state on each
leg and the spin correlations along each leg in the gs of the system. The decay behavior
of Γ1 changes from exponential to power law upon increasing J⊥. We notice that there is
a large spin density at the edge of the spin-1 leg, and it decays exponentially in the small
AFM α limit, but it vanishes and behaves like an HAF spin-1/2 chain for α ≥ 0.5. In the
ferromagnetic α limit, the spin density is very high at the end of the leg (especially for the
spin-1 leg), but the decay behavior is similar to that of a spin-3/2 HAF chain in a strong
coupling limit. The correlations on both legs behave like that of isolated spin-1/2 and
spin-3/2 HAF chains for strong AFM and FM rung couplings, respectively.

In the last section, the perturbative calculations in strong rung coupling limits are
discussed, and the effective model Hamiltonians for large ferromagnetic and antiferromag-
netic exchange rung interactions were formulated in terms of the pseudo spin-3/2 and
1/2, respectively.
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Abbreviations

The following abbreviations are used in this manuscript:

HAF Heisenberg Antiferromagnet
gs Ground State
AFM Antiferromagnetic
FM Ferromagnetic
DMRG Density Matrix Renormalization Group
OBC Open Boundary Condition
VBS Valance Bond Solid
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