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Abstract: The development of a wide-range phenomenological model of metal with a small number
of adjustable parameters for studying the behavior of metals in expanded and compressed states
under the exposition of high energy density fluxes is the objective of the paper present. Both the
reference data, methods of the quantum-statistical model of the atom, the density functional theory,
and the requirement to the expanded and compressed states description of metal should be consistent
on their boundary were used in the model. The expressions for thermodynamic functions and the
critical parameters of expanded iron were obtained within the framework of the soft sphere model.
The Grüneisen parameters calculated for the expanded and compressed states of the metal appear
to be in good agreement with each other was shown. A calculation technique of the ion component
average charge of the metal in expanded and compressed states is proposed. The experimentally
defined volume range of V/V0 = 3–4 in which the character of iron conductivity changes from metallic
to non-metallic includes the obtained in frameworks of our approach value of the critical volume:
V/V0 = 3.802 was established. The behavior of the average charge of the ion component is discussed.
The contribution of the thermal electrons to the thermodynamic functions is evaluated.

Keywords: thermodynamic functions; high energy densities; metals; equations of state; liquid-vapor
metal-insulator phase transitions; behavior of electrons near the critical region

1. Introduction

The action of high-intensity energy fluxes on a matter is widespread in nature and is
used in practical applications of high energy density physics [1,2]. Under such influence, the
state of matter changes dramatically in a broad range of temperatures and densities. The last
one changes from an ideal gas to a highly dense substance. A complete range of problems
arising in the theoretical and experimental study of matter behavior at temperatures and
pressures intrinsic to high energy density physics and its applications is shown [2]. The
point is that the particular interest, in this case, is the effect of intense laser radiation on a
metal. The interest is associated with the presence of a free boundary in the irradiated metal,
which expands to vacuum or cold gas at atmospheric or high pressure. The solid-liquid
and liquid-vapor phase transitions (PT) accompany this expansion [1,2]. In addition, a
rapid change in the electron concentration near the critical point of PT was observed [3]. It
is a consequence of a sharp decrease in the overlap of the valence-shell electrons due to
the metal-dielectric PT [4]. This situation is common for a high-pressure gas discharger
controlled by laser radiation [5,6] when the last one forms initial plasma on an electrode,
e.g., an anode. As a result, it expands to the cathode in an external electrostatic field.

The objective of the paper is a building of phenomenological model for a porous-free
metal. We used iron as an example to determine its thermodynamic functions depending
on temperature T and specific volume V.

The contribution of thermally excited ions to these functions is considered within the
Debye solid-state model [7,8], e.g., in shock wave physics. It is proposed to separate ex-
panded and compressed matter states using this approach. While following this approach,
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one has to consider the contribution of the thermal excitation of electrons to the thermo-
dynamic functions of an expanding matter. For a compressed porous-free metal case, the
Debye frequency ωD and temperature TD = h̄ × wD/kB depend only on its density ρ where
kB is the Boltzmann constant and h̄ is the reduced Planck constant. As it will be shown
below, the Grüneisen parameter γ = d ln(ωD)/d ln(ρ) tends to its limiting value of 2/3
for high compressions. Results of the experimental study of melting and structural PT of
simple metals during their quasi-static compression in Bridgman diamond anvils [9–14] are
an additional argument in favor of Debye frequency independent of temperature. In [15,16],
the insufficiency of a single-phase description of melting based on the Lindemann criterion,
which is used to identify melting in shock wave experiments [17], was shown.

Similarly to [18], the model of soft spheres in a range of expanded matter is used to
describe the thermal contribution of ions to thermodynamic functions. W. Hoover [19]
and D. Young [20] proposed this model as a generalization of the classical Van der Waals
equation. The advantage of this model is the absence of description difficulties of the free
space. In addition, in the model of soft spheres, the volume coincides with the volume
of a quasi-neutral atomic cell attributed to one atom, i.e., a central ion with an electron
density neutralizing its charge, as it can be also seen in a compressed substance. This
approach allows one to calculate the contribution of electrons to thermodynamic functions
in a similar way both for the expanded state and compressed ones of a metal.

We calculated the contribution of the thermal excitation of electrons to thermody-
namical functions using a density functional theory method (DFT) for T = 0 involving
the LmtART-7 software developed by Prof. S. Yu. Savrasov [21,22]. The results of these
calculations determined the contribution of electrons. Moreover, we used the results of
calculations involving the quantum-statistical model of the atom [23,24] in the range of high
values of relative densities 10–20. This allowed us to propose corrections to the chemical
potential of the quantum-statistical model of the atom at T = 0, providing the correct de-
scription of the behavior of the electronic component in the region of low and normal metal
densities. As a result, one could calculate the thermodynamic functions of the electronic
and the ion components and the Grüneisen parameters for expanded and compressed
matter states. Also, we paid attention to the behavior of thermodynamic functions near the
critical point of the ion component and the boundary of the metal-dielectric PT.

2. Metal Models and Thermodynamic Functions

Commonly (see [2,7,15,18] and refs herein), the free energy for determining the ther-
modynamic functions of a continuous medium is written in the following form:

F(V,T) = Ec(V) + Fn(V,T) + FTe(V,T) (1)

The first term is the cold compression function, which accounts the interaction of the
nuclei and all electrons in an atomic cell of volume Va at T = 0. The second one expresses
the contribution to the thermodynamic functions of the thermal excitation of ions. The
last term depicts the contribution of the thermal excitation of the electrons of the atomic
cell. Due to the neutrality of the atom cell, the quantity of excited electrons is equal to
the average charge of the ion. This value depends on the cell volume and temperature:
Zi = ∑Z

z=0 Znz/n, here n = Va
−1 = ∑Z

z=0 nz, Va is the volume of the atom cell, and Z—
nucleus charge [8]. Using known expressions of statistical physics [9] for pressure and
internal energy, one can obtain from (1) the following expressions:

P(V, T) = − ∂F
∂V

= Pcx(V) + PTi(V, T) + PTe(V, T); (2)

E(V, T) = −T2
(

∂

∂T
F
T

)
V
= Ecx(V) + ETi(V, T) + ETe(V, T). (3)
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2.1. Cold Pressure and Energy

As a basis for obtaining cold compression functions, one can use the expression for
the binding energy in the form of the Born-Mayer potential proposed in [25] (also see
refs herein).

Eπ(δ) = ΛEπ(δ) = Λ
1

α− 1

exp
(

η
√

α
(

1− δ−1/3
))
− α exp

η
(

1− δ−1/3
)

√
α

, (4)

where Λ is the binding energy for δ = 1, δ = ρ/ρ0, ρ0 = ρ(T = 0) (constants α, η see (7) below).
In the range of applicability of quantum-statistical models (QSM) of an atom, expression (4)
does not agree with the well-known fact that the energy and pressure of the degenerated
electron gas determine the cold compression functions. Taking into account this fact and
keeping the behavior of the cold compression functions to be almost unchanged, we suggest
using the following relation instead of (4):

Ecx(δ) = ΛEπ(δ)
1 + aδ1/3 + bδ2/3

1 + a + b
, (5)

here coefficients a, b, which one can find from the requirement of coincidence with the
cold compression function calculated in the framework of the Thomas-Fermi model with
quantum and exchange corrections (QSM) [26]. According to (5), the following expressions
define the cold pressure:

Pcx(δ) = Λρ0

(
Pπ(δ)

1+aδ1/3+bδ2/3

1+a+b + Eπ(δ)
aδ4/3+2bδ5/3

3(1+a+b)

)
,

Pπ(δ) =
√

αηδ2/3

3(α−1)

(
exp

(
η
√

α
(

1− δ−1/3
))
− exp

(
η(1−δ−1/3)√

α

))
.

(6)

The Grüneisen parameter relates with constants α and η, included in (4)–(6), by the
following expression [24–26]:

γπ0 =
(α + 1)

6
√

α
η. (7)

One can use expression (7) to improve the accuracy of parameters α and η using
known, e.g., the experimental value of the Grüneisen parameter.

As one can see from (6), the relation for cold pressure Pc(δ = 1) = 0, i.e., for T = 0, gives
a = −2b. Using the tables from work [26], one can calculate the parameters b = 6.021 × 10−2

and, accordingly, a = −1.204 × 10−1 for the iron we investigated experimentally in [5]. For
their definition, we used the values of the parameters we refined: α = 2.953; η = 5.156. These
values correspond to γπo = 1.977.

Figure 1a demonstrates the adequacy of the description of the quantum-statistical
curve of cold compression using expressions (4)–(6). Figure 1b shows the matching of
the energy in a compressed state at T = 0 to that one determined by the thermodynamic
functions of the degenerate electron gas.
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Figure 1. Calculations of cold compression: (a) comparison of the cold compression curve for the 
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energy of a highly degenerate electron gas. 
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Figure 1. Calculations of cold compression: (a) comparison of the cold compression curve for the
QSM model [25] and the proposed model, (b) matching of the energy of cold compression to the
energy of a highly degenerate electron gas.

2.2. Cold Energy and Pressure in the Soft Sphere Model

The expanded state of matter differs from the compressed one in that it consists of
singly charged ions, neutral atoms, and electrons at rather low densities and temperatures
but still sufficient for ionization.

Solid-liquid and liquid-vapor PT accompany the transition of the metal from δ = 1
densities to small values of δ. The disappearance of the overlap of electron shells at
temperatures close to zero causes metal-dielectric PT [4]. The last one takes place in the
electron liquid. Assuming the solid-liquid and liquid-gas PT occur in an ionic liquid, i.e.,
the structural part of the free energy or the sum of the first two terms of (1). Thus, it seems
to be incorrect to use expression (4) since it overestimates the contribution of the band
structure of the metal in the case of its expanded state [25].

Let us use the well-described, e.g., in [18] method of generalized the Lennard-Jones
type potentials formation to obtain the equation of state for cold extension (compression)
in an expanded matter. Besides, it requires the continuity condition of the description
of substance in expanded and compressed states for δ = 1. As a result, we obtain the
following relations:

Eex(δ) =
Λ

m− n

(
nδ

m
3 −mδ

n
3

)
(8)

Pex(δ) =
mnΛρ0

3(m− n)

(
δ(1+

m
3 ) − δ(1+

n
3 )
)

; (9)

cex
2 =

dPex

dρ
=

dPex

ρ0dδ
=

mnΛ
3(m− n)

((
1 +

m
3

)
δ

m
3 −

(
1 +

n
3

)
δ

n
3

)
. (10)

Equations (8) and (9) satisfy conditions for the continuity of cold energy and pressure
at δ = 1. But Equation (10) needs to be verified. Differentiating the pair of Equation (6), we
obtain ccx

2/Λ = 2.944 for δ = 1. Respectively, from (10), we get ccx
2/Λ = mn/9. If one is

limited using only integer values of m and n, then the following values m = 9, n = 3 will
be obtained. Equations (8) and (9) do not give a satisfactory description of the iron under
compression so one should use Equations (5) and (6) to study expanded states. Figure 2a
demonstrates the behavior of zero isotherms Pc(δ), Ec(δ) for δ < 1, and Figure 2b Pc(δ), Ec(δ)
for δ > 1.
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Figure 2. Zero isotherms: (a) expanded iron, (b) compressed iron.

2.3. Thermodynamic Functions of the Ion Component of a Metal

First, we consider the description of the thermodynamic functions of compressed
metal. The study of structural and melting PT in the compressed state of metal requires a
detailed consideration of the dynamics of the phonon and electronic spectra. The last one
depends on the conditions of its loading and heating. We concentrate here on the expanded
state of the metal. One can describe the compressed state using the Debye model [9]. For the
expression of the compressed metal free energy, one can assume the lattice zero oscillations
energy is included in that one of cold compression. Then the specific free energy of an
excited simple lattice is determined by the following expression [9]:

FTc(δ, T) = ΛFTc
(
δ, T
)
= ΛT

(
3 ln
(

1− exp
(
−ωD

T

))
− D

(
ωD

T

))
, (11)

here ωD = }ωD/Λa is the dimensionless Debye frequency T = kBT/(}ωD), Λa = ΛMA,
Ma = Au is the mass of the atom, A is the atomic weight of the element, u = 1.660 × 10−27,
kg is the atomic mass constant [27], and:

D(x) =
3
x3

x∫
0

z3dz
exp(z)− 1

(
x =

ωD

T

)
(12)

is Debye function.
Applying (11) known thermodynamic expressions, one can obtain the following:

ETic
(
δ, T
)
= ΛETic

(
δ, T
)
, ETic

(
δ, T
)
= 3TD

(
ωD

T

)
(13)

The relation (13) gives a contribution of thermal excitation of the ion component to the
internal energy of the compressed metal.

PTic
(
δ, T
)
= Λρ0PTic

(
δ, T
)
, PTic

(
δ, T
)
= Γ(δ)δETic

(
δ, T
)

(14)

The relation (14) gives a thermal pressure of the ion component. Here in (14), Γ is the
Grüneisen parameter of the ion component of the compressed metal.
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One can see (11)–(14) that it is necessary to find an explicit expression for ωD(δ) to
calculate the thermodynamic functions and the Grüneisen parameter of the ion component
for the compressed metal. In the Debye model of a solid, the mean sound speed determines
the limiting frequency [9]:

ωm = cs

(
6π2

Va

)1/3

= csq, q =

(
6π2

Va

)1/3

, Va = VAu (15)

By definition, the following relation determines the mean speed of sound [9]:

3
cs3 =

2
ct3 +

1
cl

3 , (16)

here the indexes “t” and “l” denote transverse and longitudinal sound wave speeds, re-
spectively. Here we use the relations of Debye frequency for evaluation of the average
sound speed proposed first by S. B. Kormer and V. D. Urlin [28,29] to interpret the re-
sults of experiments of shock-wave compression of porous metals and metal melting in a
shock wave:

ccx = Λ1/2
(

dPcx(δ)

dδ
− 2

3
n1

Pcx(δ)

δ

) 1
2

. (17)

The second term in (17) makes it possible to consider the “softening” of phonon modes
with pressure increase. Hence one can obtain an expression for the Debye frequency using
(17) and (16):

ωD(δ) = ωmDδ
1
3

((
dPcx

dδ −
2
3 n1

Pcx
δ

)
/ dPcx

dδ

∣∣∣
δ=1

) 1
2 , ωD = ωD

ωD0
,

ωmD = ωTD
ωD0

= kBθ

}
√

Λqs0
= 1.319.

(18)

Taking the logarithmic derivative of (18), we obtain an expression for the Grüneisen
parameter:

Γ(δ) =
1
3
+

1
2

δ d2Pcx
dδ2 − 2

3 n1

(
dPcx

dδ −
Pcx
δ

)
dPcx

dδ −
2
3 n1

Pcx
δ

(19)

It should be noted that relation (19) does not contain ωmD. The shock compression
of porous copper, aluminum, nickel, and lead was studied [28]. The first two have n1 = 0,
nickel has n1 = 1, and the last one has n1 = −1. Also, in his survey, L.V. Altshuler stated
that the majority of metals has n1 = 1 [30]. The thermodynamic similarity between metals
of the same groups of the Periodic Table allows one to expect that for low-melting metals,
n1 = 1, and n1 is equal to either 0 or 1 for other metals. By analogy with nickel for iron, we
assume the parameter n1 = 1.

The two ways of calculations according to (19) and (6) with the parameters of cold
pressure are shown in Section 2.1 above. A simple calculation according to (6) gives the
Grüneisen parameter Γ(1) = 1.981. It contains only α and η parameters of the potential given
by expression (4) and yields a minimal difference: ∆Γ = (Γ(1) − wγπ0)/γπ0 = 0.0024 << 1.

The calculation technique used for the thermal contribution of ions to the thermody-
namic functions of the metal in the expanded state is demonstrated below. One can use the
soft sphere model based on classical works [19,20]. According to [18], the exponents m and
n in (8)–(9) are related to parameters of Lennard–Jones type pair potential of atoms (ions):
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U(r) = εrep

(σ

r

)m
3 − εatt

(σ

r

) n
3 (20)

here terms εrep and εatt determine the repulsive and attractive parts of the interaction energy,
respectively, according to the following relations:

εrep = Λa
2

Cm

n
m− n

, εatt = Λa
2

Cn

m
m− n

. (21)

here Λa is the binding energy per ion (atom), m = 9, n = 3, and Cm, Cn are lattice sums [31].
One can obtain the value of the dimensionless constant ε

(bcc)
rep = ε(bcc)

rep/Λa = 0.1005,

ε
( f cc)
rep = ε( f cc)

rep/Λa = 0.07952 for bcc and fcc lattices of iron approximating these lattice
sums. As for liquid metal, it is common to use the fcc lattice in the soft sphere model [19,20].
Also, one can express the contribution to the internal energy of expanded metal ions in
frameworks of the soft sphere model as follows [18–20]:

Eso f t(ρ, T) = ΛETso f t
(
δ, T
)
, Eso f t

(
δ, T
)
= T

(
3
2
+

1
6
(m + 4)δ

m
9

(
εrep

T

) 1
3
Q

)
(22)

Pso f t
(
δ, T
)
= Λρ0Pso f t

(
δ, T
)
, Pso f t

(
δ, T
)
= Γso f t

(
δ, T
)
δEso f t(δ, T) (23)

The expression (23) is the thermal pressure of ions in the soft spheres model, and (24)
is the Grüneisen parameter of the ion component of the expanded metal for this model.

Γso f t
(
δ, T
)
=

(
1 +

1
18

Qm(m + 4)δ
m
9

(
εrep

T

) 1
3
)

/

(
3
2
+

1
6

Q(m + 4)δ
m
9

(
εrep

T

) 1
3
)

(24)

Then the energy and pressure of the ion component of the expanded matter are
determined by the relations:

Ei
(
δ, T
)
= Λ

(
Eex(δ) + Eso f t

(
δ, T
))

;

Pi
(
δ, T
)
= Λρ0

(
Pex(δ) + Γso f t

(
δ, T
)
δEso f t

(
δ, T
))

.
(25)

The parameter Q was employed in equations (22)–(24) by D. Young [20] to reduce
the influence of the electron heat capacity on the thermodynamic functions of the ion
component of liquid metals for defining the parameters of equations of the state accord-
ing to experimental data. In the proposed approach, we attribute the solid-liquid and
liquid-gas PT to the ion component of the matter when thermal excitation is taken into
account in the electron liquid (gas) regardless of the thermal excitation of ions (atoms).
Therefore, one should use the experimental values of pressure, temperature, and volume
jump during melting to determine the values of Q in the solid and liquid states of the
expanded metal. For iron: P = 0.101 MPa, Tm = 1811 K, ∆Vm/VLm = (VL − VSm)/VLm = 0.034,
ρLm = 7.020 g/cm3 [27]. Using it one can find ρSm = 7.26708 g/cm3. Indexes “S” and “L”
denote liquid and solid states, and index “m” denotes melting. Thus, we obtain the fol-
lowing values of Q: QSm = 0.548 for the expanded solid iron; QLm = 0.866 for its melt. The
following expression determines the change in enthalpy in the ion subsystem during the
melting of iron:

∆Hm = Λ
(

Pm

(
1

δLm
− 1

δSm

)
+ Eso f t

(
δLm, Tm

)
− Eso f t

(
δSm, Tm

))
(26)

for Pm = Pm/(Λρ0) = 1.731 · 10−6, δSm = Sm/ρ0 = 0.923, ρLm = δLm/ρ0 = 0.0891,
Tm = kBTm/Λa = 3.638 · 10−2 one can obtain ∆Hm = 9.564 kJ/mol when experimental
value is ∆Hm = 13.806 kJ/mol [27]. The conditions of equality to zero at the critical point
of the first and second derivatives ∂Pi(V,T)/∂V and ∂2Pi(V,T)/∂V2 allow one to determine
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the values of the critical density. And then, it is possible to find the critical pressure of iron
according to the equation of state. Their dimensionless values are the following: δcr = 0.263,
Tcr = 0.218, Pcr = 2.152 · 10−2 . Accordingly, the dimensional values of the critical parame-
ters are the following: ρcr = 2.070 g/cm3; Tcr = 10867 K; Pcr = 1.256 GP. Index ”cr” denotes a
critical point.

The critical compressibility factor for pair potential 9-3 is Zcr = 0.375, i.e., corresponds
to [19].

One can see in Figure 3 the behavior of the Grüneisen parameter of iron for ex-
panded (a) and compressed (b) matter. This parameter for expanded iron at low tempera-
tures and δ = 1 is equal to 3, see the uppermost curve in Figure 1a. This case corresponds
to the temperature T = 1.571·10−3 K. The sharp jump of Γsoft is associated with a volume
(density) change during melting. It is demonstrated in Figure 3b, the Grüneisen parameter
of the compressed metal tends to its limit value of 2/3. This jump decreases as the tempera-
ture rises. It is worth noting that at the critical point (δcr = 0.263), this parameter tends to
the value of Γsoft~1. So it becomes practically independent of temperature (the curves for
T/Tcr = 1.04 and T/Tcr = 1.04 merge each other). This fact speaks about the non-ideal state of
the expanded iron in the area near the critical point. Reduced thermodynamic stability in
the region of the critical point of the liquid-gas PT was observed [9,32–34]. Similar intense
fluctuations affecting the dynamics of physical processes at supercritical pressures are
observed in it (see [3] and refs therein).
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2.4. Thermodynamic Functions of the Electronic Component of a Metal

One can express the free energy of an electron gas with a variable number of particles
equal to the charge of an atomic cell zi in the approximation of an average ion as follows:

Fe(Va, T) = ziµe f f (Va, T) +
∫ Z

0
Eg(z)dz− (2m)3/2Va

3π2}3

∫ ∞

0
ε3/2 f0dε (27)

Here µeff is the effective chemical potential of the electron gas given by Fermi-Dirac
statistics having the following distribution function:

f0 =

exp

 ε−
(

µe f f − Eg

)
T

+ 1

−1

=

(
exp

(
ε− µ1

T

)
+ 1
)−1

(28)

here Va = 1/ni, m, ε, T are the volume per one atomic cell (ion), an electron mass, energy,
and temperature, respectively.
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The energy value Eg(Va) is the width of the energy gap, which we proposed in our
earlier paper [35] for the phenomenological description of the metal-insulator transition at
T = 0 [4] within the framework of the metal plasma model [36].

Condition for normalizing the Fermi-Dirac distribution function:

Zi(Va, T) =
21/2(mT)3/2Va

π2}3 F1/2

(µ1

T

)
(29)

Fν(x) =
∫ ∞

0

ξνdξ

exp(ξ − x) + 1
(ν > −1) (30)

defines an implicit relationship between the number of particles and the chemical poten-
tial µ1. The equation (29) can be used to calculate the average ionization composition of
a substance in an equilibrium state. It can be done in a wide range of temperatures and
volumes if chemical potential dependence on atom cell volume is known [35].

Since one can strictly speak of a metal-insulator PT only at T = 0, the energy Eg
depends only on the volume of the atomic cell. In the long-wavelength approximation, the
electrostatic field does not penetrate the metal. The latter means that the permittivity of the
metal formally is infinite. Defining Eg similarly to [35], it can be written as follows:

Eg

(
Va0

Va

)
= Eg(δ) =

{ I1
εr(δ)

= I1
1+3δ(δ∗−δ)−1 , δ ≤ δ∗;

0, δ ≥ δ∗,
(31)

here δ∗ = V∗/V0 = Va∗/Va0 means the relative density of the substance metallization, I1 is
the first ionization potential. In Section 7, Chapter III of the classic monograph [7], an
approximate calculation of multiple gas ionization is considered in detail. The use of
the I1/2 value instead of I1 for the evaluation of reaction constants of a neutral atom lets
one obtain the best agreement with the Saha equations calculations in the area of the first
ionization potential. In our case, it is also possible to expect that one can obtain the best
agreement at T = 0 if the chemical potential tends to asymptote µ1 ≈ −Eg(δ)/2 in the region
of δ ≤ δ∗.

The δ∗, Zi values, and chemical potential for the expanded and compressed states of
iron near δ = 1 in the framework of the DFT method using LmtART-7 software package
were calculated [21,22]. Using the chemical potential data tables, as well as exchange
quantum corrections to them, calculated using the quantum statistical model of the atom
(QSM) [26], the chemical potential of iron was recalculated for the region far from δ = 1.
After that, the average charge of iron ions in the region of high compressions was calculated
for δ = 10–15. In logarithmic coordinates, the data matching was carried out so that the
values of the average ion charge (i.e., the number of electrons in an atomic cell) in the
intermediate region fit smoothly with the DFT model and QSM calculations. We used the
dependence of µ1(Va, T = 0) obtained in this way as an additional correction to µQSM for
iron. We modified the values of the chemical potential obtained using QSM according to
the following:

µQSLMT(Va, T) = µQSM(Va, T)− µQSM(Va, T = 0) + µ1(Va, T = 0) (32)

And one can calculate the thermal energy

εTe(Va, T) =


Zi(Va, T)T F3/2(x)

F1/2(x) −
3
5 Zic(Va)µc(Va), Va ≤ Va∗,

Zic = Zi(Va, 0), µc = µQSLTM(Va, 0);
Zi(Va, T)T F3/2(x)

F1/2(x) , Va > Va∗

(33)
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and thermal pressure as follows:

PTe(Va, T) =
2
3

εTe(Va, T)
Va

=
2
3

ρ
εTe
Ma

= Λρ0
2
3

δεTe, (34)

It was possible to define the number of electrons (average ion charge) in an atomic
cell Zi(Va, T) according to (29) in a wide range of specific volumes and temperatures.
Figure 4 shows the calculation results. Solid and dashed lines show the boundaries of the
solid-liquid and metal-insulator PT, respectively.
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The behavior of the average charge of the ion in comparison with the experimental
results of [3] is discussed below.

The distinguishing feature of the approach we used is that a change in the metallic
conductivity of a matter to a non-metallic one due to the chaos growth is considered the
metal-dielectric phase transition [37]. It occurs in the supercritical region of expanded iron
in the range of relative volume V/V0 = 0.3–0.4 (i.e., densities δ = 0.25–0.333).

As shown in Figure 4a, this range includes the critical iron density δ = 0.263 obtained
in Section 2.3 above (dashed line). Also, the experimental pressure and temperature values
exceed the parameters of the critical point. The lower curve in Figure 4a corresponds to
T = 0. DFT calculations using the LmtART-7 software package [21,22] gave the density
ρMIT = 1.432 g/cm3 (δMIT = 0.182). It corresponds to the metal-insulator PT at T = 0 when
the overlap of wave functions disappears, i.e., collectivized electrons vanish. At a density
of δ = 1 and T = 0, the number of quasi-free (“valence”) electrons is equal to Zic = 1.95. At
the same time, the total number of iron valence electrons taken into account in the DFT
method is 8. In the region of densities δMIT < 0.182, electrons obey classical statistics, and
at high densities, Fermi statistics. The peculiarities of Zi observed in the left part of the
plot for lower δ are caused by the competition between the mechanisms associated with
pressure and temperature. The point is that in the region of 0.01 < δ < 0.136, a temperature
increase leads to a Zi increase, on the one hand. And on the other hand, the energy gap
Eg(δ) increases due to a density decrease and leads to a slowdown in the ionization rate
(see (31)). The increase of Zi for supercritical temperatures and very low densities occurs
due to these densities corresponding to an ideal gas. After all, the minimum density
is δmin = 2.0674 × 10−6 (ρmin=1.627 × 10−5, g/cm3). In comparison to Zi curves, the curves
in Figure 4b show a much more monotonic behavior of the PTe/Pcr isotherms as a function of
ρ/ρ0 in the supercritical region. To define the contribution of the thermal electron pressure
to the total pressure, we should make some additional remarks about the metal-dielectric
PT and describe methods of the electrical conductivity in the region of the compressed and
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expanded states of a metal. We can obtain the following expression of conductivity using
the results of the previous works [8,35]:

σ =

√
2e2Zinirs

3
√

mT

∂
∂x

∫ ∞
0 ξle f f (ξ) f0(ξ − x)dξ

F1/2(x)
(35)

here rs = (3/4πni)1/3 and leff(ξ) = (1 + A2ξ4/(Zi
2L1 − 2Zi(Z − Zi)L2+(Z − Zi)2L3)2)1/2 is

mean dimensionless effective electron free path, in which Z is a nuclear charge,
A = GT2/(πnie4rs); G = ρ∂Pi/∂ρ(niT)−1 is the structural factor of the metal in the long-
wave approximation; L1, L2, and L3 are Coulomb logarithm analogs defined as follows:

L1(4k2/kD
2) = 1

2

(
ln
(

1 + k2

kD2

)
− 4k2kD

−2

1+4k2kD−2

)
,

L2 = 1
2 ln
(
1 + 4k2rcd

2)( kD
2rcd

2

kD2rcd
2−1 ln 1+4k2kD

−2

1+4k2rcD2 − 1
kD2rcd

2−1

)
, L3 = L1

(
4k2rcd

2); (36)

here rcd = rc/(1 + kDrc); rc—shielding radius of an ion (atom) having Zi = 0; kd = min{ks
2;kei

2};
kei

2 = kDe
2 + (kDi

2 + ke
4)kDi

−2; kDi
2 = 4πe2Zi

2ni/T; kDe
2 = 2πe2ZiniT−1F − 1/2(x)/F1/2(x). The

structural factor G in the mean free path considers the electrons scatter in metal, similar
to that of X-ray waves on density fluctuations. This approach allowed J. I. Frenkel to
explain the dependence of the metal conductivity on temperature: σ~T−1 [38]. In a metal
at δ ≥ 1, the conductivity changes continuously [8,35]. So the metallic dependence of
conductivity on temperature persists up to T ~ Tcr. After removing the degeneracy of the
electronic component, the conductivity dependence changes to plasma one: σ~T3/2. In
the intermediate temperature range at a constant density, the conductivity is minimal and
practically does not depend on temperature. In the region of expanded matter much higher
than the critical temperature, one can expect the conductivity changes smoothly from a
metallic type to a plasma one. Below the critical density in the region of the liquid-gas
PT for the ionic component of the expanded matter, the dependence is Pi/Pcr = f (T/Tcr).
Therefore, the structure factor in the two-phase region and the critical point is G = 0 and
leff = 1.

Then relation (35) will be as follows:

σ =

√
2e2Zi(ni, T)nirs(ni)

3
√

mT
F1
′(x)

F1/2(x)
(37)

Also, the relation (37) can be used for estimates in the near critical point and in the
overcritical region, the so-called supercritical fluid [33,34], which is characterized by low
stability of matter and high fluctuations of density. We plan to publish a detailed study of
physical processes in this area in a separate paper.

3. Discussion

Let us regard the behavior of the thermodynamic functions of the expanded state of
iron, considering the thermal excitation of the electronic component.

Figure 5 shows the binodal along with the dependence Pb/Pcr = f (T/Tcr) (a), as well as
the pressure of the ion component of the expanded metal (b). One can see that the pressure
of the ion component appears to be positive only at T/Tcr > 0.78, which corresponds to the
value δL = ρL/ρ0 =0.54.



Condens. Matter 2022, 7, 61 12 of 14

Condens. Matter 2022, 7, x FOR PEER REVIEW 12 of 14 
 

 

Figure 5 shows the binodal along with the dependence Pb/Pcr = f(T/Tcr) (a), as well as 
the pressure of the ion component of the expanded metal (b). One can see that the pres-
sure of the ion component appears to be positive only at T/Tcr > 0.78, which corresponds 
to the value δL = 𝜌L/𝜌0 =0.54. 

  

(a) (b) 

Figure 5. Binodal and Pb/Pcr = f(T/Tcr) (a), pressure of the ion component Pi/Pcr = f(T/Tcr) (b). 

The results of calculations of the total pressure of the expanded metal in depend-
ence on the relative matter density are shown in Figure 6. As one can see, the thermal 
pressure of electrons PTe/Pcr shifts the intersection of T/Tcr = 0.707 isotherm by the binodal 
branch of the liquid state matter to the positive region pressures of PΣ/Pcr. 

 
Figure 6. The total pressure of the expanded metal vs relative density.At the same time, the to-
tal pressure for the T/Tcr = 0.482 isotherm changed not significantly because the thermal 
pressure of the electronic component is significantly less than that for ions, according to 
the data presented in Figure 4b. 

Total and ion pressures at δ = 𝜌/𝜌0 ≤ 0.18 practically coincide for T/Tcr = 1.04. At 
higher densities, the total pressure isotherm is higher, but the qualitative character of its 
behavior in the near-critical region is close to that of the ionic pressure. Since we are 
dealing with a non-ideal low-temperature plasma [5,6], further improvement of the new 
critical parameters to consider the contribution of thermal electrons to the total pressure 

Figure 5. Binodal and Pb/Pcr = f (T/Tcr) (a), pressure of the ion component Pi/Pcr = f (T/Tcr) (b).

The results of calculations of the total pressure of the expanded metal in dependence
on the relative matter density are shown in Figure 6. As one can see, the thermal pressure
of electrons PTe/Pcr shifts the intersection of T/Tcr = 0.707 isotherm by the binodal branch of
the liquid state matter to the positive region pressures of PΣ/Pcr.
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At the same time, the total pressure for the T/Tcr = 0.482 isotherm changed not
significantly because the thermal pressure of the electronic component is significantly less
than that for ions, according to the data presented in Figure 4b.

Total and ion pressures at δ = ρ/ρ0 ≤ 0.18 practically coincide for T/Tcr = 1.04. At
higher densities, the total pressure isotherm is higher, but the qualitative character of its
behavior in the near-critical region is close to that of the ionic pressure. Since we are dealing
with a non-ideal low-temperature plasma [5,6], further improvement of the new critical
parameters to consider the contribution of thermal electrons to the total pressure is not
required. Indeed, according to our calculations, the average charge of the ion component of
iron at the critical point is approximately 0.5, i.e., we deal with a mixture of neutral atoms
and singly charged ions.



Condens. Matter 2022, 7, 61 13 of 14

4. Conclusions

The discussion above allows us to conclude that the proposed expressions are usable
for modeling the high-energy effects on metal. In particular, they can be used to describe the
influence of pulsed laser radiation on electrodes placed in an electric field for modeling the
plasma evolution of laser triggered switches. The value of the critical volume V/V0 = 3.802
obtained according to the proposed model is well consistent with the experimentally
established range of the change in the metallic type of conduction to plasma one [3].
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