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Abstract: In the present paper, we report the breakdown of the adiabatic picture of superconductivity
in a calcium-doped hexagonal boron nitride (Ca-h-BN) monolayer and discuss its implications for the
selected properties of this phase. In particular, it is shown that the shallow conduction band of the
Ca-h-BN superconductor potentially cause a violation of the adiabatic Migdal’s theorem. As a result,
the pivotal parameters that describe the superconducting state in Ca-h-BN are found to be notably
influenced by the non-adiabatic effects. This finding is described here within the vertex-corrected
Eliashberg formalism that predicts a strong reduction of the order parameter, superconducting
transition temperature and superconducting gap in comparison to the estimates obtained in the
framework of the adiabatic theory. The observed trends are in agreement with the recent results on
superconductivity in hexagonal monolayers and confirm that the non-adiabatic effects have to be
taken into account during the design of such future low-dimensional superconductors.
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1. Introduction

Recently, the calcium-doped hexagonal boron nitride (Ca-h-BN) monolayer joined
the family of hypothetical two-dimensional (2D) superconductors characterized by the
hexagonal structure and conventional pairing mechanism [1]. This group of 2D supercon-
ductors gained increasing attention over the last years, after the theoretical prediction of
phonon-mediated superconductivity in lithium-decorated graphene (LiC6) [2] that was
later partially confirmed within the experiment [3]. In other words, the LiC6 material
promised a perspective on scaled-down phonon-mediated superconductors with novel
applications, so that e further research in this direction became naturally desirable [2,3].
Currently, the low-dimensional conventional superconducting phase is suggested to exist
not only in the Ca-h-BN and LiC6 monolayers but also in many other sibling materials such
as the hole-doped fully hydrogenated graphene (known also as graphane) [4], strained
silicene [5], phosphorene [6] or the electron/hole-doped graphene [7]. However, among
them, the discussed Ca-h-BN monolayer is particularly interesting as it exhibits relatively
high critical temperature values, offers an experimentally feasible structure and develops
the idea of using modified insulators as superconducting materials [1]. In what follows, this
material is fundamentally different from many other representatives of the 2D hexagonal
superconductors. For example, in contrast to h-BN, the calcium doping does not lead to
a superconducting state in graphene, as caused by different behavior of the low-energy
phonon modes between these two materials [1,2].

In addition to the above features of Ca-h-BN, it is also important to observe that this
material is characterized by the shallow conduction band [1]. This is similar to what can
be found in other 2D hexagonal materials [8] but also in bismuthates [9] or in fullerides
and fullerenes [10–13]. Here, however, we additionally note that the electronic energy
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scale in Ca-h-BN is comparable to the phononic one, meaning that the adiabatic Migdal’s
theorem [14] potentially breaks down in the discussed case. This scenario is well-known
and was originally described by Pietronero et al. in their milestone works on non-adiabatic
superconductivity [15,16]. In detail, we can parametrize the electron and phonon scales
by the Fermi (EF) and Debye’s (ωD) energies, respectively, and next calculate the adiabatic
ratio ωD/EF. For the Ca-h-BN superconductor, these energies can be directly extracted from
the results presented in [1], i.e., the EF can be interpreted as a conduction half-bandwidth
(similarly to in [17]) while ωD is taken as the highest phonon frequency of the electron–
phonon spectral function (see [18,19] for more information). In what follows, ωD/EF ' 0.1
for Ca-h-BN [1] and is clearly non-negligible in contrast to adiabatic Migdal’s theorem
[14] where ωD/EF ' 0. This is to say, the calculated ratio suggests that the non-adiabatic
effects may have an influence on the superconducting phase in the Ca-h-BN material. Note
that the magnitude of this impact is subject to change according to the above definition
of the adiabatic ratio. For example, external factors such as doping or strain can lead to
substantial variations of this ratio value (see [8] for a brief discussion of adiabatic ratios in
selected 2D hexagonal superconductors under the influence of various external factors).

Herein, to verify the above statement, we characterize the Ca-h-BN superconductor
within the adiabatic and non-adiabatic theoretical approaches of choice, and later compare
their predictions of the most important superconducting parameters. In particular, this
analysis is conducted here in the framework of the Eliashberg equations [20,21] by assuming
the Migdal’s approximation and the first-order vertex corrections to the electron–phonon
interaction for the adiabatic and non-adiabatic cases, respectively. The latter modification
follows the work of Freericks et al. [22] and is introduced within the perturbation theory
since the nonadiabaticity in Ca-h-BN seems not to be related to the Fermi liquid picture
breakdown. In this manner, we calculate and compare theoretical predictions for the order
parameter and later on for the critical transition temperature as well as the superconducting
gap. This list of observables is additionally supplemented here by the ratio for the order
parameter, characteristic of the Bardeen–Cooper–Schrieffer (BCS) theory [23,24].

The present article is organized as follows: in Section 2 we present a comprehensive
introduction to the employed theoretical model; next, in Section 3, we present and describe
the most important results of our analysis. Finally, the manuscript is summarized with our
conclusions and perspectives.

2. Theoretical Model

To perform the analysis of the Ca-h-BN superconductor, we used the following formu-
lation of the Eliashberg equations for the order parameter function (φn = φ(iωn)) and the
wave function renormalization factor (Zn = Z(iωn)) [22] in terms of the n-th Matsubara
frequency (ωn = πkBT(2n + 1)):

φn = πkBT
M

∑
m=−M

Kn,m − µ∗m√
ω2

mZ2
m + φ2

m
φm −Vφ, (1)

Zn = 1 +
πkBT

ωn

M

∑
m=−M

Kn,m√
ω2

mZ2
m + φ2

m
ωmZm −VZ, (2)

where:
Kn,m = 2

∫ ωD

0
dω

ω

ω2 + 4π2(kBT)2(n−m)2 α2F(ω), (3)

is the electron–phonon pairing kernel that depends on the phonon energy given by ω and
the electron–phonon spectral function (known also a the Eliashberg function) written as:

α2F(ω) =
1

2πρ(EF)
∑
qν

δ(ω−ωqν)
γqν

ωqν
, (4)
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with α being the average electron–phonon coupling, F(ω) representing the phonon density
of states, ρ(EF) denoting the electron density of states at the Fermi level, and γqν standing
for the phonon linewidth at given phonon energy ωqν. Note that in the present analysis
we assume the form of the α2F(ω) function after [1], where this function was calculated
by using the ab initio methods. Hence, the Eliashberg function provides a direct relation
to the considered Ca-h-BN superconductor within the employed equations by containing
the unique information about the system as described by Equation (4). In this context
µ∗n = µ∗θ(ωc − |ωn|) is the Coulomb pseudopotential (parameter describing magnitude of
the depairing Coulomb interactions), where θ gives the Heaviside function and ωc is the
cut-off frequency. Moreover, the Vφ and VZ are the first-order vertex correction terms to the
electron–phonon interaction written as:

Vφ =
π3(kBT)2

4EF

×
M

∑
m=−M

M

∑
m′=−M

Kn,mKn,m′√
(ω2

mZ2
m + φ2

m)
(
ω2

m′Z
2
m′ + φ2

m′
)(

ω2
−n+m+m′Z

2
−n+m+m′ + φ2

−n+m+m′

)
× (φmφm′φ−n+m+m′ + 2φmωm′Zm′ω−n+m+m′Z−n+m+m′ −ωmZmωm′Zm′φ−n+m+m′ ), (5)

and

VZ =
π3(kBT)2

4EFωn

×
M

∑
m=−M

M

∑
m′=−M

Kn,mKn,m′√
(ω2

mZ2
m + φ2

m)
(
ω2

m′Z
2
m′ + φ2

m′
)(

ω2
−n+m+m′Z

2
−n+m+m′ + φ2

−n+m+m′

)
× (ωmZmωm′Zm′ω−n+m+m′Z−n+m+m′ + 2ωmZmφm′φ−n+m+m′ − φmφm′ω−n+m+m′Z−n+m+m′ ). (6)

In the present work, Equations (1) and (2) are called the non-adiabatic Eliashberg
formalism (N-E). On the other hand, when terms (5) and (6) are neglected we refer to
the obtained set of equations as the adiabatic Eliashberg approach (A-E). Note that both
sets are given here within the isotropic approximation according to the character of the
Eliashberg function adopted from [1]. Such approximation can be introduced here because
the Fermi surfaces originating from the interlayer states (pivotal for superconductivity in
Ca-h-BN) resemble circular pockets for the discussed superconductor [1]. As a result, the
k-momentum dependence can be neglected in the present equations.

To this end, Equations (1) and (2) are solved here numerically by using the in-house
developed computational packages. The details of the numerical procedures can be found
in [18] in the case of the adiabatic formulation and in [8,22] for the non-adiabatic approach.

3. Results and Discussion

The main results of our theoretical computations are depicted in Figure 1. Therein,
the symbols mark the exact numerical solutions of the Eliashberg equations, whereas lines
should be considered as a guide for the eye. In detail, Figure 1A presents direct solutions of
the Eliashberg equations in the adiabatic (blue symbols) and non-adiabatic (grey symbols)
regime as a temperature dependence of the order parameter (∆m=1(T) = φm=1/Zm=1) for
the selected values of the Coulomb pseudopotential. Note that the exact value of µ* is
unknown due the the fact that there are no experimental estimates of the TC for the Ca-h-BN
superconductor. In other words, µ* cannot be currently used as a fitting parameter to match
predictions of the Eliashberg equations with the experimental estimates. This is due to the
fact that Equation (1) depends simultaneously on µ* and T. Therefore, various values of
Coulomb pseudopotential are considered here in order to cover the entirety of the potential
superconducting phase in Ca-h-BN, i.e., µ* = 0.1 is the conventional choice that corresponds
to the low/moderate magnitude of the depairing correlations according to [21,25], while
µ* = 0.3 can be viewed as an extreme case of the strong depairing Coulomb interaction [26].
In this manner, µ* = 0.2 is the intermediate level that supplements our sampling of the
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superconducting phase. In this context, future comparisons of the results, presented here
with the experimental measurements, as well as predictions for other hypothetical 2D
superconductors, should be possible.
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Figure 1. (A) The thermal behavior of order parameter (∆m=1) for the selected values of Coulomb
pseudopotential (µ*) in Ca-h-BN superconductors. The (B) The critical temperature (TC) and (C) the
superconducting gap (∆g) as a function of the Coulomb pseudopotential (µ*) in the same supercon-
ducting material. Note that the results are depicted for the adiabatic (A-E) and the non-adiabatic
(N-E) regimes. The symbols correspond to the exact numerical solutions of the Eliashberg equations
and the solid lines serve as a guide for the eye.

In relation to the above, the results presented in Figure 1A show all the major features
that can be expected in terms of the phonon-mediated superconducting phase. Specifically,
for each considered case, the ∆m=1(T) function has a plateau at lower temperatures and
becomes a decreasing function as the temperature increases. Nonetheless, central to our
analysis is the comparison between the results obtained within the adiabatic and non-
adiabatic regimes. It can be observed that at each µ* level, the inclusion of the vertex
corrections leads to the lower ∆m=1(T) values when comparing to the adiabatic case.
Moreover, by inspecting Figure 1 (A) more closely, the reduction of the ∆m=1(T) function
appears to be stronger for higher µ* values. This observation is crucial as it shows that
non-adiabatic effects strongly influence the superconducting state in Ca-h-BN, as suggested
before by the non-negligible value of the adiabatic ratio for the discussed material. It also
shows the correlation between the magnitude of the non-adiabatic effects and the strength
of the Coulomb depairing interaction.

The above findings can be further investigated and reinforced by analyzing other piv-
otal parameters of the superconducting state based on Figure 1A. Herein, of special interest
are the parameters and related effects that can be later observed in the experiment [27]. In
particular, from the results given in Figure 1A, we can first extract the critical temperature
(TC) value that marks the metal-superconductor phase transition. This temperature value is
obtained by using the following relation: ∆m=1(TC) = 0. Such critical temperatures for the
selected Coulomb pseudopotential values are given in Figure 1B. As previously, the results
are presented here for the adiabatic and non-adiabatic cases. The solutions in Figure 1B
once again show the divergence between values obtained in the framework of the adiabatic
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and non-adiabatic approaches. In particular, the non-adiabatic effects clearly suppress
the superconducting state by lowering the TC value at each considered µ* level and the
suppression is stronger as the Coulomb pseudopotential becomes higher; strictly speaking,
the TC ∈ 〈13.2, 7.4〉 K for the adiabatic case and TC ∈ 〈11.8, 4.9〉 K in the non-adiabatic
regime. As a result, we observe that the percentage difference between the adiabatic and
non-adiabatic predictions rises from 11.2% to 40.7% when µ∗ increases from 0.1 to 0.3.
The discussed results also allow us to note that, even for the strong depairing Coulomb
correlations (µ∗ = 0.3), the superconducting state is not suppressed (the TC values are still
non-negligible). We argue that this is due to the fact that Ca-h-BN is characterized by the
relatively high electron–phonon coupling constant (λ > 1) [1].

Similar observations can be made by employing the straightforward relation for the
superconducting gap: ∆g = 2∆m=1(0). The computed values of this property are shown in
Figure 1C for the adiabatic and non-adiabatic regimes by considering selected Coulomb
pseudopotential values. We observe that the superconducting gap is notably higher in the
adiabatic case when comparing to the non-adiabatic one. From the theoretical standpoint,
this is an expected behavior, since materials with higher gap values should present more
enhanced superconducting properties than their narrow-gap counterparts [21]; in detail,
∆g ∈ 〈4.7, 2.5〉meV and ∆g ∈ 〈4.1, 1.5〉meV for the adiabatic and non-adiabatic approaches.
This gives us discrepancies in terms of the percentage difference at the level of 13.6% and
50% for µ* = 0.1 and µ* = 0.3, respectively.

The results obtained for the ∆g may also be used to determine the characteristic ratio
for the superconducting gap given as: R∆ ≡ ∆g/kBTC. This ratio is familiar in the BCS
microscopic theory of superconductivity [23,24] and may be yet another observable for
future comparisons with the experiment [27]. In the present analysis, we obtain R∆ ∈
〈4.14, 3.96〉within the adiabatic formalism and R∆ ∈ 〈4.08, 3.55〉 by using the non-adiabatic
approach. While the behavior of the R∆ is similar to the already discussed ∆g behavior, the
computed values point to the additional aspects hitherto not discussed in the present study.
By referring to the BCS theory again, we know that the conventional superconductors
described within this theory should exhibit a universal value of the discussed ratio equal
to 3.53 [23,24]. In what follows, one can easily observe that the predictions of the present
analysis exceed those of the BCS theory, no matter if we consider the adiabatic or the
non-adiabatic case. According to the Eliashberg formalism, this means that strong-coupling
and retardation effects play an important role in the superconductivity of the Ca-h-BN,
an aspect that was already discussed in detail for the adiabatic regime in [28]. However,
the present analysis also shows that there is a strong interplay between nonadiabaticity
and not only the Coulomb interaction but also the aforementioned strong-coupling and
retardation effects.

4. Summary and Conclusions

In the present study, we have discussed the superconducting phase in the monolayer
Ca-h-BN. Our attention was paid to the role of potential non-adiabatic effects, as suggested
by the non-negligible value of the adiabatic ratio. To provide the most comprehensive
and complementary analysis, we have employed the Eliashberg equations formalism in
the adiabatic and non-adiabatic regimes. By using this formalism it was possible for us to
investigate the pivotal superconducting properties of the discussed material, such as the
critical temperature (TC) and the superconducting gap (∆g).

Our findings are summarized in Table 1 in terms of the numerical values as calculated
within the adiabatic and non-adiabatic Eliashberg formalism. Based on the obtained results,
we observe that non-adiabatic effects strongly influence the superconducting phase in
the Ca-h-BN material, meaning that the adiabatic Migdal’s theorem breaks down in the
considered case. The observed influence is clearly negative as the non-adiabatic formalism
suggests lower values for every analyzed superconducting property, compared to the case
of the adiabatic model. The decrease caused by the nonadiabaticity varies from ∼11%
up to even ∼50% in terms of the percentage difference, depending on the considered
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property and the strength of the Coulomb interaction. The reason the nonadiabaticity
suppresses the superconducting phase in Ca-h-BN can be argued to be related to the sign of
the vertex corrections to the electron–phonon interaction, included in the framework of the
non-adiabatic Eliashberg formalism [15,29]. This is to say, the vertex corrections of a given
order may enter the Eliashberg equations with a specific sign, meaning that they contribute
to the suppression or enhancement of the superconducting state depending on this sign.
This should be considered as a qualitative argument since the order-dependent contribution
of the vertex corrections is a nontrivial problem. Nonetheless, we note that our finding
is in qualitative agreement with previous studies on non-adiabatic superconductivity in
two-dimensional materials such as the LiC6 [8] or the electron-doped graphene [30].

Table 1. The superconducting properties of the Ca-h-BN monolayer: the critical temperature TC, the
superconducting gap (∆g) and the characteristic ratio R∆. Results are presented for the adiabatic
(A-E) and non-adiabatic (N-E) regimes.

µ∗ TC [K] TC [K] ∆g [meV] ∆g [meV] R∆ R∆

(A-E) (N-E) (A-E) (N-E) (A-E) (N-E)

0.1 13.2 11.8 4.7 4.1 4.14 4.08
0.2 9.3 7.4 3.3 2.3 4.10 3.68
0.3 7.4 4.9 2.5 1.5 3.96 3.55

In addition to the above, we observe notable interplay between the non-adiabatic
effects and depairing correlations as well as the strong-coupling and retardation effects. The
first two appear to complement each other and cause suppression of the superconducting
state. On the other hand, the two former enhance the superconductivity in comparison
to the predictions of the BCS theory given in [1]. Specifically, this observation can be
parametrized by inspecting the TC value, which appears to be up to 7% higher in terms
of the percentage difference for µ∗ = 0.1, when calculated within the adiabatic Eliashberg
formalism in comparison to the BCS-like McMillan–Allen–Dynes formula used in [1].
This naturally follows our other finding, which says that the characteristic ratio for the
superconducting gap notably exceeds the universal BCS value of 3.53 [23,24] (see Table 1).
It is also observed that, along with the stronger depairing correlations, the role of the
non-adiabatic effects increases.

In summary, the superconducting phase in Ca-h-BN seems to have phenomenology
that is more complex than previously thought. The obtained results still suggest that the
analyzed state is caused by the strong-coupling between electrons and phonons but with
an equally strong influence of the non-adiabatic effects. They also suggest potential routes
for the future design of two-dimensional superconductors, where even more attention
should be paid to the reduction of the Coulomb interactions because of their interplay
with the negative non-adiabatic effects. As a consequence, the presented predictions can
serve as a reference point for future theoretical and experimental investigations aimed at
the superconducting properties of the Ca-h-BN monolayer. They not only show what can
be expected in terms of the character of the superconducting phase in Ca-h-BN but also
motivate further studies on potentially easy-to-realize 2D conventional superconductors.
To this end, we note that the presented analysis can be extended even further by considering
the impact of the high-order vertex corrections on the superconducting state in terms of
their sign and absolute contribution. As we noted earlier, this is, however, a nontrivial
problem for future investigations and the instructive preliminary discussion of these aspects
can be found in [22].
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