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Abstract: Magnesium diboride (MgB2) thin films on r-cut sapphire (r-Al2O3) single crystals were
fabricated by a precursor, which was obtained at room temperature via a pulsed laser deposition
(PLD) method using a Nd:YAG laser, and an in situ postannealing process. The onset superconducting
transition, Tc

onset, and zero-resistivity transition, Tc
zero, were observed at 33.6 and 31.7 K, respectively,

in the MgB2 thin films prepared by a Mg-rich target with a ratio of Mg:B = 3:2. The critical current
density, Jc, calculated from magnetization measurements reached up to 0.9 × 106 A cm−2 at 20 K
and 0 T. The broad angular Jc peak was found at 28 K when the magnetic fields were applied in a
direction parallel to the film surface (θ = 90◦). This could be indicative of the granular structure with
randomly oriented grains. Our results demonstrate that this process is a promising candidate for the
fabrication of MgB2 superconducting devices.

Keywords: superconductor; thin film; critical temperature; critical current

1. Introduction

Magnesium diboride (MgB2) with the superconducting transition temperature
Tc = 39 K [1] has a great potential for superconducting electronic applications cooled
with liquid hydrogen (LH2) alternative to liquid-helium-based cryogenic systems. In ad-
dition to its relatively high Tc, MgB2 exhibits a lot of fascinating properties, such as a
simple layer structure [1], lower anisotropy [2], and longer coherence length [3], when
compared with cuprate high-Tc superconductors. Additionally, the transparency of the
grain boundaries to current flow [4,5] and the abundance of Mg and B offer the possibility
of employing MgB2 for device applications. Epitaxial MgB2 films enable the fabrication
of the superconducting electronic applications, such as superconducting detectors (tran-
sition edge sensors (TES) and superconducting tunnel junctions (STJ)), digital circuits,
and diodes [6]. Tremendous progress has been made upon the successful application of
a variety of deposition techniques, such as molecular beam epitaxy (MBE) [7], pulsed
laser deposition (PLD) [8–15], electron beam evaporation (EBE) [16–18], hybrid physical–
chemical vapor deposition (HPCVD) [19–21], reactive evaporation [22], and magnetron
sputtering [23]. Two of the most important requirements for the fabrication of MgB2 thin
films are: (i) to provide a sufficiently high Mg vapor pressure for phase stability of MgB2
and (ii) to eliminate the residual oxygen during the thin film synthesis because of the high
sensitivity of Mg to oxidation. MgB2 films have been fabricated via the PLD technique
soon after the discovery of superconductivity in this material [8–11]. The typical fabrication
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process of MgB2 thin films consists of a precursor, grown by the PLD method at room
temperature, and a postannealing process. The postannealing processes are classified as:
(i) ex situ, which is performed in a metal tube under a Mg atmosphere after the precursor
deposition in a chamber [8,9], and (ii) in situ, which is performed in the same chamber
as the deposition chamber for the precursor films under vacuum, Ar or Ar/4%H2 atmo-
sphere [10–14]. The MgB2 films fabricated with a precursor, grown by the PLD method,
and in situ postannealed (in situ PLD process) exhibited a zero-field Tc

zero of 29 K and a
self-field Jc of 2 × 105 A cm–2 at 5 K [12].

KrF (λ = 248 nm) excimer lasers are widely used for PLD due to their high photon
energy and light intensity. However, these excimer lasers are costly and use poisonous
halogen gases for excitation. A feasible way to overcome these drawbacks would be to use
a Nd:YAG (neodymium-doped yttrium aluminium garnet; Nd:Y3Al5O12) solid state laser
instead. The Nd:YAG laser is highly stable and safe compared with excimer lasers, which
use toxic gas. The fundamental wavelength of the Nd:YAG laser is 1064 nm. However,
ultraviolet light can be generated by changing harmonic crystals to the fourth harmonic
of the Nd:YAG’s fundamental wavelength (λ = 266 nm). At this wavelength, the Nd:YAG
laser has a photon energy comparable to the KrF excimer laser’s fundamental mode
(λ = 248 nm). The Nd:YAG laser also has additional advantages over the excimer lasers
associated with their low installation, maintenance costs, and compact footprint. Hence,
the Nd:YAG laser could be a potential alternative to excimer lasers for the PLD system.
However, there are only few reports on MgB2 films fabricated by the Nd:YAG laser [14].
In this paper, we report the fabrication of superconducting MgB2 thin films via an in situ
PLD process using the fourth harmonic of the Nd:YAG laser. The influence of the Mg–B
target composition on Tc of the films is investigated. We also present the structural and
superconducting properties of the obtained MgB2 films.

2. Materials and Methods

The MgB2 films were fabricated by a precursor and an in situ postannealing process.
The Mg–B precursor films were obtained via the PLD method using the fourth harmonic of
a Nd:YAG solid-state laser (Lotis TII, LS2147, Minsk, Belarus). To compensate for a possible
loss of Mg due to the high Mg volatility, we prepared Mg-enriched targets with a nominal
composition of Mg:B = 2:2, 3:2, and 4:2. These targets were prepared using a spark plasma
sintering technique with a fine mixture of metal Mg and laboratory-made MgB2 powder,
synthesized from Mg and B using a modified powder-in-closed-tube technique [24–26],
and providing for a highly dense Mg–B target (~100% density) with minimal oxygen
incorporation. The ultra-high vacuum (UHV) chamber was evacuated to a base pressure of
~5 × 10−7 Pa and subsequently filled with Ar buffer gas (99.9999% purity) purified with
gas filters for the removal of remanent O2 and H2O molecules in the Ar gas cylinder, to
the pressure of ~5 Pa. The precursor layers were amorphous Mg–B film, deposited on
r-cut sapphire (r-Al2O3) (1

_
102) single crystals at room temperature for 120 min at a pulse

frequency of 10 Hz. After the deposition, these films were postannealed in the same UHV
chamber at 780–800 ◦C for 15 min in an atmosphere of ~0.9 atom purified Ar gas, followed
by cooling down to room temperature. The film thickness was typically estimated to be
~200 nm after the postannealing.

The structure of the films was evaluated by grazing incidence X-ray diffraction
(GIXRD) in SmartLab (Rigaku) with Cu-Kα radiation. The GIXRD scan was collected
with a grazing incidence angle of 0.5◦. The magnetization, M, was measured via a super-
conducting quantum interference device (SQUID, Quantum Design) magnetometer with
a perpendicular applied field H to the film surface. The critical temperature, Tc

mag, was
determined as the bifurcation of zero-field cooling (ZFC) and field cooling (FC) in M(T)
curves. Electrical transport measurements were carried out with a standard four-probe
method in a physical property measurement system (PPMS and DynaCool, Quantum
Design). A 100 µm wide by 1 mm long bridge was fabricated by laser cutting for transport
measurements. The film was mounted on a rotator holder in the maximum Lorentz force
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configuration, where the current direction is always perpendicular to the applied magnetic
field, and the film was rotated around this current axis. In this paper, we define the direction
of the applied magnetic fields θ = 0◦ and 90◦ as the magnetic fields perpendicular and
parallel to the film surface, respectively. The critical current density Jc was determined
from I–V curves using a 1 µV cm–1 criterion. Tc

onset was defined as the temperature where
resistivity starts to deviate from the extrapolated normal-state behavior, while Tc

zero was
defined as a resistivity criterion of 0.1 µΩ cm.

3. Results and Discussion

Figure 1 shows the temperature dependences of magnetization for the three films
fabricated using target pellets with a nominal composition of Mg:B = 2:2, 3:2, and 4:2 with
an H ⊥ film surface. The measurements were performed under 10 Oe to evaluate the
shielding and Meissner regions, corresponding to ZFC and FC curves, respectively. Tc

mag

values were estimated to be 29.0, 31.2, and 15.5 K for the films fabricated with the target
ratio of Mg:B = 2:2 (film #1), 3:2 (film #2), and 4:2 (film #3), respectively. Film #3 shows
the lowest Tc

mag of 15.5 K among the three films with a very small diamagnetic shielding
signal in the ZFC curve, which is nearly overlapped with FC curves for films #1 and #2. The
reason for the observed lower Tc

mag is considered to be that the film composition deviates
from the stoichiometry. The small diamagnetic signal of film #3 also indicates that the
superconducting phase would be present in a filamentary-like manner because of excess
Mg. Film #2 with the highest Tc

mag of 31.2 K shows a very steep transition under zero-
field-cooling (ZFC) condition with large shielding fraction. On the other hand, diamagnetic
signal in the FC process is very small, which arises from strong vortex pinning in the film.
The temperature dependence of the electrical resistivity of film #2 at 0 T is shown in Figure 2.
The inset is a magnified view around the Tc region. A sharp transition is evident in Figure 2.
The onset- and zero-resistivity temperatures were estimated to be Tc

onset = 33.6 K and
Tc

zero = 31.7 K, respectively. The residual resistivity ratio (RRR = ρ(300 K)/ρ(40 K)) was
calculated to be 1.3, which is consistent with previous reports [11,12,15]. The low RRR
value would be ascribed to fine structure [12] and/or phase purity [19] and/or less amount
of unreacted Mg [27]. The Tc value of film #2 is shown to be higher than those observed
in previous PLD-fabricated MgB2 films via in situ and ex situ processes using a Nd:YAG
laser [14] or the in situ process utilizing an excimer laser [10–13]. This could be attributed
to the use of a highly dense Mg–B target and a high vacuum background pressure of
~5 × 10−7 Pa in this study. However, the obtained Tc value is still lower than the original
Tc of MgB2 [1] and MgB2 films fabricated by other processes [7–9,15–21] including the ex
situ process with the excimer laser [8,9].

In order to analyze the crystal structure of the film, the GIXRD measurement, which
can avoid intense signal from the substrate and obtain stronger signal from the film, was
performed. Figure 3 displays the GIXRD patterns for MgB2 film #2. The relative peak
intensity in the GIXRD measurement could be indicative of the presence of the MgO phase
other than the MgB2 phase. The occurrence of the MgO phase would result from little
amount of residual oxygen in the Mg–B target and supplied Ar gas. The absence of MgB2
peaks may be attributed to poor crystallinity [28].

Figure 4a presents the magnetic field dependence of Jc for MgB2 film #2 at 5, 10, and
20 K with the magnetic field applied perpendicular to the film surface. Jc was calculated
from the magnetization hysteresis (M-H) loops using Bean’s critical-state model [29,30].
For rectangular prism-shaped superconductors of dimensions a < b, the in-plane critical
current density Jc

ab for an H ⊥ film surface is given by Jc
ab = 20∆M/(a(1 − a/3b)), where

∆M is the difference in magnetization, M (emu cm−3), between the upper and lower
branches of the M-H loop. In the inset of Figure 4a, the M-H loop in film #2 is plotted.
At 5 K, the M(H) in low magnetic fields has an irregular shape, which is characteristic of
a flux jump, whereas the M(H) in high magnetic fields varies smoothly with increasing
and decreasing magnetic fields. The presence of flux jumps was observed just after the
discovery of superconductivity in MgB2 material [31,32]. The Jc(0 T) values were obtained
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to be 1.9 × 106 and 0.9 × 106 A cm−2 for 10 and 20 K, respectively. The Jc values were
decreased rapidly with increasing applied magnetic fields. The transport Jc as a function
of magnetic fields up to 1 T ⊥ film surface for MgB2 film #2 at different temperatures is
shown in Figure 4b. The transport Jc(1 T) at 20 K is about one-third of the value of one of
the MgB2 wires [33].
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Figure 1. Temperature dependence of magnetization M for both zero-field-cooling (ZFC) and field-
cooling (FC) processes at a magnetic field of H = 10 Oe applied in the direction perpendicular to
the film surface for the three films (films #1, #2, and #3) fabricated using three target pellets with a
nominal composition of Mg:B = 2:2 (film #1), 3:2 (film #2), and 4:2 (film #3), respectively.
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loop under an H ⊥ film surface. (b) Magnetic field dependence of the transport critical current
density Jc at different temperatures up to 1 T for the MgB2 film prepared by the Mg:B = 3:2 target
(film #2). The magnetic field is applied perpendicular to the film surface.

Figure 5 shows the angular dependence of transport Jc for MgB2 film #2 at 28 K up to
0.8 T. Jc exhibits a broad maximum at θ = 90◦ (H // film surface) and no prominent Jc peak
at θ = 0◦ (H ⊥ film surface). Jc-anisotropy values, γJc (Jc

90◦/Jc
0◦ ), of 2.0, 2.6, and 2.0 were

observed at 0.03, 0.1, and 0.3 T, respectively, indicating that the applied magnetic fields have
only a small impact on γJc in this measurement condition. Seminal works by Kitaguchi et al.
showed that the MgB2 films on c-cut sapphire (c-Al2O3) (0001) single crystals fabricated
by EBE technique have two pinning mechanisms [16]. One would be attributed to grain
boundaries pinning originating in the columnar grain microstructure, leading to the strong
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peak around an H ⊥ film surface. The other would be caused by the film surface, the
MgB2/substrate interface, or the layer structure of the crystals, leading to the strong peak
around an H // film surface. The MgB2 film on c-cut sapphire (c-Al2O3) single crystals
fabricated by an ex situ PLD process has a broad and small peak at an H // film surface [34].
This could be because of the granular structure with randomly oriented grains in the films.
MgB2 film #2 on r-Al2O3 single crystals in this study has also a broad peak at an H // film
surface. These results indicate that the broad peak would arise from the granular grain
structure. In addition, we found that the difference of the crystallographic orientation on
an Al2O3 substrate would contribute little to the peak position in Jc(θ) curves for MgB2
films in this measurement.
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4. Conclusions

Superconducting MgB2 thin films were prepared via an in situ PLD process using the
fourth harmonic of the Nd:YAG laser. MgB2 film #2 prepared with a nominal composition
of Mg:B = 3:2 shows a superconducting transition at Tc

zero of 31.7 K and Tc
mag of 31.2 K.

The obtained Tc is one of the highest in the MgB2 films prepared by the PLD process using
the Nd:YAG laser. Magnetic hysteresis measurements show that Jc

ab(0 T) of MgB2 film #2
is estimated to be ∼0.9 × 106 A cm−2 at 20 K. The transport measurement in the angular
dependence of Jc in the magnetic field demonstrates that MgB2 film #2 has higher Jc at
θ = 90◦ (H // film surface), which could reflect the granular grain structure. We expect to
achieve higher superconducting properties by fine tuning of the fabrication process. Our
results indicate that the in situ preparation procedure with Nd:YAG laser processes would
be favorable for the fabrication of superconducting devices over the excimer laser process.
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