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Abstract: A phonon of appropriate momentum kF will open a band gap at the Fermi energy EF. The
gap within the electronic density-of-states (DOS), N(EF), leads to a gain in electronic energy and a
loss of elastic energy because of the gap-generating phonon. A BCS-like simulation shows that the
energy gain is larger than the loss for temperatures below a certain transition temperature, TC. Here,
it is shown that the energy count can be almost as favorable for gaps a little below or above EF. Such
gaps can be generated by auxiliary phonons (or even spin- and charge-density waves) with k-vectors
slightly different from kF. Gaps not too far from EF will add to the energy gain at the superconducting
transition. In addition, a DOS-peak can appear at EF and thereby increase N(EF) and TC. A dip in
the DOS below EF will result for temperatures below TC, which is similar to what often is observed
in cuprate superconductors. The roles of spin waves and thermal disorders are discussed.
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1. Introduction

Phonons and electron-phonon coupling, λ, is driving superconductivity in most “low-
TC” superconductors, such as some elementary metals, transition metal nitrides and car-
bides, A15-compounds, etc. The superconducting TC for these materials has been calculated
by the BCS equation [1], or by the strong-coupling McMillan form [2], and the resulting
TC’s show a reasonable correlation with measured TC’s among many superconductors with
low or intermediate TC [3–7]. The high TC in pressurized H3S was predicted from such
calculations even before the measured confirmation [8,9]. A large TC needs a large λ and a
large electronic density-of-states (DOS) at the Fermi energy, EF. However, the TC’s in doped
cuprates and pnictides are high despite a low DOS at EF and N(EF), and this fact cannot be
understood from the above-mentioned methods. Several ab-initio calculations for cuprates
have shown that λ of the order 0.1 to 0.2 are not sufficiently large to explain the high
TC’s of these materials [10]. A similar discrepancy between calculations and observations
can be observed for superconducting low-TC, low-DOS near-insulators such as doped
diamond [11,12].

Here, we investigate how dynamic waves, in particular phonons, make peaks and dips
in the DOS close to EF, and how this can be helpful for superconductivity. Phonons with
propagation of atomic distortions along the lattice induce variations of the electron potential
(W(r)), which can deform the band structure so that a bandgap appears. The wave length
of the potential perturbation determines the energy of the gap center, and the size of the gap
depends on the amplitude of the variations of W(r). The DOS is peaked on both sides of the
gap. These features appear in the real band structure of cuprates [13] as well as in the nearly-
free-electron model. Static displacements (and periodic distributions of dopants, see later)
deform the electron potential in the lattice and can make DOS peaks at EF too, but gaps
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and flat bands are not spread isotropically over the whole Fermi surface. A static distortion
means a new ground state without a possible gain of energy from a phonon excitation, but
the TC of a material with such distortions will be higher than for an undistorted material
if N(EF) is enhanced. This result supports the proposal that superconductivity will be
favored by Van Hove singularities, with peaks in the DOS emerging as a consequence of
structural lattice incommensurate modulations at the nanoscale, associated with frozen
charge- or spin-density waves, in complex cuprate superconductors [14–16].

2. Theory

The atomic displacements in a phonon are different for different sites depending on
the type of atoms, the type of movements (transverse and longitudinal), and on the phonon
wavelength [17]. The electron potential within a displaced atom will alter (mainly because
of the Madelung part) compared to a not-moving atom at the node position of the phonon,
etc., so that the potential has a perturbation (W(r)) along the direction (r) of the phonon
wave. The wavelength of the phonon, with wave vector q, determines what part of the
electronic band is susceptible to have a gap. If W is smooth enough to be described by a
single Fourier component and if the electron band is free-electron like, then gaps appear
at ± 1

2 q and the gap is 2V, where V is the maximal amplitude of W [18]. This is in one
dimension, but complementary phonons with other directions of q will span the gap on
a 3-dimensional Fermi surface. The movement of a single atom is almost harmonic with
a restoring force proportional to the displacement. Assuming that the force constant is
the same for each atom and that the direction of the displacements is irrelevant, then
we can estimate that the elastic energy of the distorted lattice is Ku2 per atom, where
K is the (positive) force constant for each atom in the lattice and u is a representative
averaged amplitude for all atomic displacements. A negative K for static displacements
is not considered here. It depends on the electron-phonon coupling if a large u is able to
make V large.

It is instructive to compare the energy required for a phonon distortion, Ku2 (where
K and u are the representative values for the force constant and the distortion amplitude,
respectively), to the gain in electronic energy (also calculated per atom) because of the gap
(V) generated by the phonon [19]. The gain is usually smaller than the elastic energy and
no phonons will be excited. However, the opposite case is interesting when energy can
be gained through the activation of phonon vibrations. The distortions u are repeatedly
zero for optic phonons and their gaps can therefore fluctuate in time, at least for adiabatic
conditions. Acoustic phonons can support stable gaps, since they always have non-zero
displacements at some points along the atomic rows. A gap is opened in the DOS if the gain
of kinetic electron energy from the activated phonon is larger than the cost from the atomic
vibrations. For a free-electron band, this leads to the following equation, as was shown
previously [19]:

Ku2

NV2 = (
∫

f εdε−
∫

f ε|ε|/
√
(ε2 −V2)dε)/V2 = J(T, V) (1)

where the energy limits in the integration J are ±h̄ω (the reach of λ), and the interval −V to
+V is excluded. The DOS, N, is assumed to be constant, and f (EF, ε, T) is the Fermi–Dirac
occupation. The coupling parameter λ = N(EF)I2/Mω2, where M is an atomic mass, ω
is a phonon frequency and I is the matrix element < dW/du >; the change in W(r) is
due to the displacement du. Furthermore, Mω2 = K, and I = V/u (assuming I constant
all over the Fermi surface, FS) for harmonic oscillations, and Equation (1) can be written
1/λ = J(T, V). The analytic solution for T = 0, when f is a step function and the gap is at
EF, is the same as the BCS result for the superconducting gap at T = 0; V = 2h̄ωe−1/λ [19].
The logarithm of the BCS equation for TC is:

1/λ = ln(1.13h̄ω/TC) (2)
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The numerical limit of the J integral for V → 0 turns out to be very close to the
logarithm in Equation (2). Thus, Equation (1) describes the logarithm of the BCS TC
equation [19]. (The perturbative derivation of Equation (1) has no self-consistent feedback,
no strong coupling effects, and is based on pure band structure, but because the final result
is like BCS, we can, if we wish, refer to the derivation of BCS for gaps at EF.)

The advantage of a numerical solution is that a transition temperature for a gap
below or above the chemical potential (or for a non-constant DOS) can be determined.
Such solutions are different from the BCS result and their gaps below or above EF are not
associated with superconductivity, but they might appear anyway if the balance between
the gap energy and the vibrational energy is favorable. The particle-hole channel in BCS
remains open for gaps slightly aside EF when d f (EF, ε, T)/dT is wide enough for finite T.

It is generally considered that λ is coming from coupling to phonons only, but
coupling to spin-fluctuations can be considered from complementary corrections in
the development [20–24]. Calculations for cuprates demonstrate that spin waves and
electron-phonon coupling can enforce each other and produce deep pseudogaps [13].
The same equations as for electron-phonon coupling can be used with appropriate
parameters for λspin instead of λphon, but quantitative results based on the local-spin
density approximation (LSDA) are not satisfying, see later.

Charge-density waves (CDW) have been demonstrated to reduce the superconducting
TC and the superconducting gap at EF [25]. The doping dependence of the superconducting
gap versus the pseudogap in cuprates appears as a result of the competition between a
superconducting gap and a CDW gap [26]. The potential and the charge in CDW can be
modulated without distortions of the atomic positions, and they (as well as spin waves)
can therefore exist at higher frequency than atomic vibrations. Formation of CDW is an
interesting subject, but an estimate of a corresponding λcdw has not been made and such
waves are not discussed here. Instead, we consider how waves with gaps aside EF can lead
to TC-enhancements for certain temperatures and gap positions.

The FS’s of the cuprates are quite 2-dimensional (2D) because of the weak electron
interaction between different CuO-planes, and the FS takes an almost cylindrical shape
at certain dopings [27]. This is in contrast to the complicated 3-dimensional (3D) multi-
structured FS’s in transition metals and most conventional superconductors. The FS
for the 2D cuprate can be approximated by a free-electron band to give a circular FS
with radius kF , which is well adapted for the model calculation below or for wires of
1D superconductors [28]. Equation (1) describes a gap on a single (one dimensional)
band from a phonon perturbation with a suitable k-vector, k. This requires (like in the
application of BCS to real 3-dimensional bands) that phonons with other directions and
amplitudes of k-vectors have to be included in order to follow a gap over the entire
FS. All band structures have inversion symmetry, and a gap at k will also appear at −k.
This fulfills one condition of nesting, even if other types of nesting are possible between
different bands in multi-band materials.

3. Results

First, we consider the normal case when k = kF (the free electron band opens a gap
at a zone boundary kF) and the energy of the gap center coincides with EF in order to
determine the superconducting of TC. The bold (green) line is in the equation. Figure 1
shows the result for J(T) for a small value of V (1/2 meV) and h̄ω = 100 meV. For instance,
a TC of 5 meV requires a λ of about 1/3.

Now, consider (‘auxiliary’) phonons with gaps below or above EF. Their J-solutions,
shown in Figure 1, are very close to the green curve for intermediate λ, so that an energy
gain is possible for temperatures just slightly lower than the superconducting TC. (Here, TC
denotes the transition temperature for a gap at EF, i.e. a superconducting gap, as well as the
transition temperatures for non-superconducting gaps below or above EF). This is because
the Fermi–Dirac function decreases slowly over a wide energy range for sufficiently large
T, and the exact position of a gap relative to EF is not so important for the energy balance
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between electronic and vibrational energies. At low T, when f is almost a step function,
there is very little energy gain from gaps below or above EF, and that is why the two curves
turn down at low TC in Figure 1. An auxiliary phonon can adjust its k-vector so that the
gap will optimize its position relative to EF for the best energy gain at a given T.
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Figure 1. The result of TC from Equation (1) with V = 0.5 meV for the gap at EF (green heavy line),
for the gap 5 meV above (thin blue line) and for 5 meV below (red broken line), EF. Note that TC is
the transition temperature at which the (gain) of electronic energy equals the (cost) of vibrational
energy for each of the three positions of the gap. This means that TC is the superconducting gap for
the gap at EF, while the TC’s for the other two gap positions are just the temperature at which their
respective gaps can appear. The blue and red curves in the figure will be pushed downwards if the
gaps are more distant from EF.

The separation between the blue and red curves in Figure 1 indicates that a gap above
EF has a larger energy gain than a gap below EF. This is because EF itself is pushed down
together with the DOS peak induced by the gap above EF (see Figure 2), and this increases
the gain in kinetic energy. The situation is less favorable for a gap below EF when the latter
is pushed upwards by the gap. These effects due to the shift of the Fermi–Dirac edge are
largest at low T and/or large gaps. A difference of the electric potential between a gapped
and a normal region is possible if the two regions could be put together, similar to the
thermo-electric effect.

Gaps aside EF can enforce the superconducting gap at EF. First, this is because of the
positive energy count mentioned above. Secondly, these gaps appear at almost the same
temperature as the superconducting transition and they generate a DOS peak at EF with a
higher N(EF). The energy spent on additional phonons will be paid back by a larger gain
in electronic energy at a higher TC. This second mechanism can widen a superconducting
gap even as T → 0, despite a negative energy count from the gaps. Phonons with gaps very
far from EF are not helpful, since no gain of kinetic energy is possible and since the DOS
peaks are too far from EF. A third mechanism to increase TC is to generate a DOS-peak
at EF through a periodic distribution of dopants [16,29,30], but such a peak is fixed (no
T-dependence) and the mechanism of energy gain is absent. The same can be achieved for
a completely softened phonon (K negative) so that the distortions u become static. This can
produce a DOS peak at EF if the periodicity of the distortions in the lattice is optimal.

Figure 2 shows the un-broadened DOS function for a potential perturbation with
k > kF and the resulting gap above EF. Likewise, the gap appears below EF if k < kF.
Figure 3 illustrates how two non-superconducting gaps of equal strengths below and above
EF are superimposed in a common DOS (without mutual interactions between the two
gaps). The DOS has a sharp double peak near EF, since the two gaps work against each
other in the energy range near EF. A stronger upper gap could push the DOS peak near EF
to lower energy, as was discussed above, and therefore lead to an additional energy gain.
However, all phonon gaps near EF probably have similar values of V/u and a symmetric
DOS structure around EF.
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Figure 2. An example of how a free-electron DOS (the thin horizontal line) is deformed when a
phonon sets up a periodic potential with a larger k-vector than kF. A gap (here, of 16 meV) is then
apparent above EF (10 meV in this example shown by the bold blue line). The thin red line is the
Fermi–Dirac distribution for the gapped DOS, and the broken bold blue line shows the occupied part
of the DOS. The thin broken red line is the Fermi–Dirac distribution for the non-gapped DOS, which
is equivalent to the Fermi–Dirac occupation of the constant DOS. As observed by the broken lines,
the occupied Fermi–Dirac edge moves down by the presence of the gap above EF. This leads to a
gain in electronic energy, but the gain becomes smaller as T (kBT = 2.5 meV in the plot) increases.
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Figure 3. A model of how a constant DOS might be deformed when two phonons, one with k smaller
than and one larger than kF are present (thin blue line). Disorder can come from ZPM, thermal
vibrations or spin-fluctuations, and has a smearing effect on the DOS with a large increase in N(EF)

(bold red line).

Thermal disorder and zero-point motion (ZPM) of the lattice will smear the normal state
DOS. This has been shown for several materials, where it can be detected [31–33] and be im-
portant for the physical properties in some materials [34–37]. The effect from disorder will also
smear the gaps in normal-state DOS, and distort the DOS that surrounds the superconducting
gap. The bold red line in Figure 3 shows the smeared two-gap DOS. The smearing (∼50 meV)
is close to what is typical in other materials at low T from thermal disorder of the lattice, but
effects of thermal spin disorder will add to the smearing. The smeared gaps remain as dips in
the DOS, such as what is found from tunneling measurements in many cuprates [38], while
the DOS is peaked at EF.
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4. Possible Spin-Waves

Band gaps at and being close to EF require waves with almost the same wave length,
and it is therefore tempting to believe that such waves are of different origin in order to
minimize any destructing interaction between them. High-frequency spin waves and CDW
are decoupled from slow phonon modes, but spin fluctuations can develop and follow the
atomic distortions of a phonon. In fact, anti-ferro magnetic (AFM) fluctuations on Cu-sites
and phonons are mutually enforced in cuprates if the waves have equal wavelengths, while
different wavelengths generate gaps in the DOS at different energies (The Hamiltonian for
calculating band gaps from phonons is obtained by having the atomic positions distorted
(u) within a supercell. Instead, for band gaps from spin waves, the perturbations consist
of having magnetic fields applied within the atomic spheres along the cell [13]). An AFM
gap appearing below or above EF will be stabilized by electronic energy gains as described
above for phonons, but with an additional energy from the local (Ferro-magnetic, FM) spin
splitting. The loss of elastic energy for phonons is replaced by a loss of kinetic energy when
the electron gas is spin split. The Stoner condition for FM is that the gain of exchange
energy (N2 Isξ2) has to be larger than the loss of kinetic energy (Nξ2), where ξ is the spin
splitting and Is is an exchange integral [39–41].

FM spin-fluctuations are of interest if the two energies are approximately equal,
but calculated values of the DOS and Is in cuprates are too small for that. Observa-
tions of very weak FM moments in over-doped cuprates might be related to intrinsic
disorder [42,43].

However, an AFM wave with alternating up and down spins along the lattice can, via
the spin part of the potential, open a gap in the band structure of the two spins, similar to
the effect of a potential modulation along a phonon distortion. The opening of gaps in the
(two spin) DOS constitutes a gain in kinetic energy in addition to what might result from
the local exchange-energy term, but as for phonons, the efficiency of these gains becomes
weaker for gaps far from EF. AFM and fluctuating AFM moments exist at moderate doping,
but band calculations for cuprates based on the LSDA do not find AFM [10]. Simplified
additions of higher spin-density gradients as well as kinetic energy corrections to the LSDA
in band structure calculations show a stronger tendency towards AFM on Cu sites and
make an opening of a weak gap in the band structure [44]. State-of-the-art inclusions of
such corrections into what is called a meta-GGA potential [45], produce a stabilization of
the magnetic moments on Cu in cuprates [46].

Calculations of the key parameters Is and ξ by use of the meta-GGA potential for
doped cuprates are needed to know whether AFM waves can be stabilized at a certain T
and produce gaps in the DOS. Therefore, in the absence of such calculations, we cannot
say if the superconducting gap and other gaps below and above EF can be caused by pure
phonons or spin-waves (or CDW), or whether the waves are mixtures between lattice
distortions and magnetic excitations. Strong central peaks with weaker side spots have
been detected by neutron scattering [47], which is an indication that complex magnetic
interactions with different wavelengths might be present.

5. Conclusions

The message of this paper is that selected phonons, spin waves, or CDW, can generate
partial gaps near EF and thereby improve the conditions for a superconducting gap within
a boosted DOS peak at EF. Model calculations with reasonable values of the coupling
demonstrate that a gap below or above EF can appear at a temperature very close to
the superconducting TC. The superconducting gap and TC can be boosted by these gaps
through two effects: the increased gain of total energy from the side gaps and the higher
N(EF). Auxiliary gaps appear and disappear together with the superconducting gap,
and the energy position of the these gaps depend on the wavelengths of the generating
waves. The wavelength is not fixed but can be modified so the gaps are able to find an
optimized position as a function of T. This work has not demonstrated whether AFM spin-
fluctuations (or CDW) are more likely than phonons to be responsible for gaps close to EF.
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Gaps produced by phonons have been discussed here because their coupling parameters
are better known than for the other types of waves. Further works are needed to adress
the questions about different types of waves as well as the energetics of the simultaneous
opening of gaps at and aside EF.
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