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Abstract: The redox process in a lithium-ion battery occurs when a conduction electron from the
lithium anode is transferred to the redox orbital of the cathode. Understanding the nature of orbitals
involved in anionic as well as cationic redox reactions is important for improving the capacity and
energy density of Li-ion batteries. In this connection, we have obtained magnetic Compton profiles
(MCPs) from the Li-rich cation-disordered rock-salt compound LixTi0.4Mn0.4O2 (LTMO). The MCPs,
which involved the scattering of circularly polarized hard X-rays, are given by the momentum density
of all the unpaired spins in the material. The net magnetic moment in the ground state can be
extracted from the area under the MCP, along with a SQUID measurement. Our analysis gives insight
into the role of Mn 3d magnetic electrons and O 2p holes in the magnetic redox properties of LTMO.

Keywords: Li-rich cathode material; magnetic property; magnetic Compton profile

1. Introduction

Lithium-rich disordered cathode materials, such as LixTi0.4Mn0.4O2 (LTMO), are at-
tracting a lot of current attention because their capacity can reach 300 mAhg−1 [1], which is
significantly greater than that of the conventional cathode materials. For example, LiCoO2
has a capacity of 140 mAhg−1, and LiFePO4 has a capacity of 170 mAhg−1. Although the
high capacity of the Li-rich cathode materials has been suggested to result from a combina-
tion of cationic and anionic redox processes [2], a fundamental understanding of the redox
mechanism at play in Li-rich cathode materials is needed for optimizing their performance.
Details of the anionic redox mechanisms are not fully understood because experiments
that can directly probe redox orbitals are limited. In this connection, Hafiz et al. have
reconstructed the orphaned O− 2p orbital of LTMO in momentum space by combining
high-energy X-ray Compton scattering with accurate first-principles calculations [3]. This
visualization was enabled by the bulk sensitivity of the Compton scattering technique.
Studies of redox orbitals in other cathodes materials include LiCoO2 [4], LiMn2O4 [5,6],
and LiFePO4 [7]. Moreover, the imaging Compton technique has been applied to in
operando and in situ measurements to monitor the lithiation state of commercial batter-
ies, see Ref. [8] and references therein. There are fundamental difficulties in visualizing
redox orbitals using X-ray photoemission spectroscopy (XPS) [9], soft X-ray absorption
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(XAS) [10], and X-ray resonant inelastic scattering (RIXS) [11] since these techniques are
surface sensitive.

Hafiz et al. [3] have shown that the orphaned O− 2p states giving anionic redox do
not hybridize with the Mn 3d orbitals. Moreover, both Mn 3d and O− 2p can carry a net
moment, while the Ti/Li ions do not carry significant magnetic moments. Thus, a funda-
mental understanding of these magnetic properties can provide further insight into the
redox processes [12–14]. Interestingly, one can take advantage of the net magnetization to
extract unique orbital information in manganese oxides materials via magnetic Compton
scattering experiments [15,16]. In this way, Ref. [6] discusses the nature of the unpaired Mn
3d magnetic orbitals in the spinel LixMn2O4 (LMO) cathode material. Here, along the same
lines, we extract both the Mn 3d and O− 2p spin momentum densities and the correspond-
ing net magnetic moments. LTMO, such as LMO, becomes ferrimagnetic in the presence of
lithium vacancies and develops a small net magnetic moment [6]. Therefore, through mag-
netic Compton scattering, we can extract further details concerning the magnetic electron
involved in the anionic redox process in LTMO. Notably, the X-ray scattering cross-section
from magnetic electrons is two orders of magnitude smaller than in the charge scattering
channel. Therefore, magnetic Compton scattering experiments in battery materials have
only become practical in recent years via the use of circularly polarized light at high energy,
high-intensity synchrotron sources, such as SPring-8 in Japan.

2. Materials and Methods

Polycrystalline LTMO samples were prepared starting with a mixture of Li2CO3, TiO2
(Wako Pure Chemical Industries, Tokyo, Japan) and Mn2O3 starting materials [17], which
was heated at 900 ◦C for 12 h in an inert atmosphere. The resulting LTMO powder was
remixed with 10 wt% of acetylene black. The LTMO samples for lithium concentrations
x = 0, 0.4, and 0.8 were then prepared through chemical oxidation using an oxidizing agent.
The X-ray diffraction patterns, see Figure S1 of Supplementary Material, show that the
samples have a single rock-salt-type structure. Magnetization curves for the samples were
obtained using a SQUID magnetometer (MPMS5-SW, Quantum Design, Inc., Tokyo, Japan).
The measurements were carried out at around 10 K by scanning the magnetic field from
−5 T to 5 T. The magnetization curves for various lithium concentrations are shown in the
Supplementary Materials.

Magnetic Compton profiles were measured at high-energy inelastic scattering beam-
line 08W of SPring-8, Japan [18,19]. The experimental setup is shown in Figure 1. Circularly
polarized 182.6 keV X-rays (circularly polarization factor pc is ' 0.55), which were emitted
from an elliptical multipole wiggler, irradiate the sample. The size of the incident X-ray
beam at the sample position is a 1 mm square, which is formed by the incident slit. The scat-
tering angle is fixed at 178 degrees. The Compton-scattered X-rays were measured with
10 independent pure Ge solid-state detectors. The measurements were performed by apply-
ing a magnetic field of ±2.5 T to the sample at 10 K in a vacuum atmosphere. The magnetic
Compton profile Jmag(pz) is related to the spin momentum density as follows [20]:

Jmag(pz) =
∫∫ (

ρ↑(p)− ρ↓(p)
)
dpxdpy (1)

where p = (px, py, pz) is the electron momentum, and ρ↑(p) and ρ↓(p) are the momentum
densities of the majority and minority spins, respectively. The ρσ(p) can be written as

ρσ(p) = ∑
i

ni
σ|Φi(p, σ)|2 (2)

Φi(p, σ) =
∫

ψi(r, σ) exp(ip · r)d3r (3)

where σ is the spin, Φi(p, σ) is an electron wavefunction in momentum space, ψi(r, σ) is the
wavefunction in real space and ni

σ is the occupation number. Equations (1)–(3) show how
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the magnetic Compton profile Jmag(pz) is directly related to wavefunctions of the magnetic
electrons and the spin-resolved electronic structure of the magnetic materials.

Figure 1. A schematic of the experimental magnetic Compton scattering setup at BL08W of SPring-8.

3. Results and Discussions

Figure 2 shows the spin magnetic moments and the total magnetic moments of LTMO
(x = 0, 0.4, 0.8 and 1.2) obtained via the magnetic Compton scattering technique and SQUID
magnetometry. The yellow and blue background colors separate the cationic and the anionic
redox regions, respectively [1]. The cationic redox reaction dominates over the lithium
concentration range 0 < x < 0.4, while the anionic redox dominates for 0.4 < x < 1.2 [17].
The total magnetic moments obtained from SQUID magnetometry are extracted from the
magnetization corresponding to a magnetic field of 2.5 T. These results can be compared
to the spin magnetic moment extracted from the magnetic Compton profile using the
sum rule:

m =
∫ ∞

−∞
Jmag(pz) dpz. (4)

These spin magnetic moments obtained from Compton profiles reproduce the total
magnetic moments obtained from SQUID measurements well. A slight difference between
the spin magnetic moments and the total magnetic moments comes from the orbital con-
tribution to the total moments. The magnetic moments in Figure 2 are seen to increase
with Li concentration in the cationic regime, which is also found to be the case in spinel
cathode materials [6]. Interestingly, the magnetic moment decreases with the addition of
Li in the anionic regime. The crossover between these two distinct trends occurs around
x = 0.4. This can be rationalized as follows. At a low Li concentration (0 < x < 0.4), a valence
electron from the Li 2p shell is transferred into a Mn 3d molecular orbital, which increases
the magnetic moment of the Mn site involved in cationic redox. This trend is consistent
with the cationic behavior of LMO [6]. In contrast, for 0.4 < x < 1.2, a Li 2p valence electron
is transferred into a 2p orbital of a magnetic O− ion to initiate anionic redox. This oxy-
gen reduction decreases the local spin moment of the O ion and produces a net decrease
in the total magnetic moment. The small value of the measured magnetic moment (per
Mn atom) in LTMO (< 0.2 µB) indicates that we have a similar magnetic configurations
as that in LMO. Korringa–Kohn–Rostoker-coherent-potential-approximation (KKR-CPA)
computations [21–23] in LMO suggest that magnetic properties can be described by a
spin-glass-like behavior with randomly oriented Mn moments of about 3 µB[5]; other
calculations [6] show that weak ferrimagnetic states appear as soon as Li vacancies are
present in the unit cell.
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Figure 2. Magnetic moments for various lithium concentrations x obtained by SQUID magnetometry
(black circles) and magnetic Compton profile measurements (red circles). Background colors mark
regions of cationic and anionic redox.

In order to extract atomic features driving the magnetic behavior in Figure 2, we have
carried out a curve-fitting analysis of the magnetic Compton profiles, as illustrated in
Figure 3b–d. Figure 3a shows radial distributions of the orphaned O 2p orbital and Mn
3d orbitals. The areas under the radial distributions are normalized to the same value.
The magnetic Compton profiles are normalized by the spin magnetic moment for each Li
concentration. The curve-fitting is performed by using:

m =
∫ ∞

−∞
Jmag(pz)dpz = a

∫ ∞

−∞
−JO2p(pz)dpz + b

∫ ∞

−∞
JMn3d(pz)dpz, (5)

where a and b are weight parameters, and JO2p(pz) and JMn3d(pz) are the Compton profiles of
O 2p [3] and Mn 3d [24] orbitals, respectively. Our analysis is based on DFT simulations [3],
which show that electrons on the orphaned O 2p, which occupies the B site of rock-salt-type
structure, and Mn 3d states, which partially occupy the A site of rock-salt-type structure,
couple antiferromagnetically and that the magnetic contribution from Ti can be neglected.
Table 1 summarizes the results of our fit.

Table 1. O 2p and Mn 3d contributions to the spin magnetic moments for various lithium concentra-
tions. The error bars are based on the number of measured scattered photons.

Lithium
Concentration

Spin Magnetic
Moment O 2p Mn 3d

0.4 0.157 ± 0.002 0.027 0.184
0.8 0.140 ± 0.002 0.022 0.162
1.2 0.080 ± 0.002 0.010 0.090
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Figure 3. (a) Radial distributions of O 2p and Mn 3d orbitals. (b–d) Curve-fitting analysis of the
magnetic Compton profiles, which are composed of the O 2p (orange line) and the Mn 3d (blue line)
contributions. Momentum is given in atomic units (a.u.).

4. Conclusions

We show that magnetic Compton scattering spectra measured under a magnetic field
of 2.5 T allow access to the momentum density of unpaired spins of disordered lithium-rich
cathode material LixTi0.4Mn0.4O2 (LTMO) over a wide range of lithium concentrations x.
The net moment increases in the cationic redox region (0 < x < 0.4), whereas it decreases
in the anionic redox region (0.4 < x < 1.2). At a low Li concentration, a Li 2p valence
electron is transferred into a Mn 3d molecular orbital to induce an increase in the Mn
magnetic moment involved in cationic redox. In contrast, at a high Li concentration, the Li
2p valence electron is transferred into a 2p orbital of a magnetic O− ion to initiate anionic
redox, which produces a net decrease in the total magnetic moment. Our study provides
conclusive evidence for the anionic redox mechanism in LTMO and suggests new avenues
for designing high-energy-density cathodes for batteries.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/condmat7010004/s1. Figure S1: X-ray diffraction pattern of prepared Li1.2Ti0.4Mn0.4O2. Figure
S2: Hysteresis curves for various lithium concentrations (x) obtained by a SQUID magnetometer.
Measurements were performed at approximately 10K.
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