#
Standard Behaviour of Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} Overdoped

^{1}

^{2}

## Abstract

**:**

## 1. Introduction

## 2. Model

## 3. Results and Discussion

## 4. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Watanabe, T.; Fujii, T.; Matsuda, A. Anisotropic Resistivities of Precisely Oxygen Controlled Single-Crystal Bi
_{2}Sr_{2}CaCu_{2}O_{8+δ}: Systematic Study on “Spin Gap” Effect. Phys. Rev. Lett.**1997**, 79, 2113. [Google Scholar] [CrossRef] - Torsello, D.; Mino, L.; Bonino, V.; Agostino, A.; Operti, L.; Borfecchia, E.; Vittone, E.; Lamberti, C.; Truccato, M. Monte Carlo analysis of the oxygen knock-on effects induced by synchrotron x-ray radiation in the Bi
_{2}Sr_{2}CaCu_{2}O_{8+δ}superconductor. Phys. Rev. Mater.**2018**, 2, 014801. [Google Scholar] [CrossRef] - Pavarini, E.; Dasgupta, I.; Saha-Dasgupta, T.; Jepsen, O.; Andersen, O.K. Band-Structure Trend in Hole-Doped Cuprates and Correlation with T
_{cmax}. Phys. Rev. Lett.**2001**, 87, 047003. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Torsello, D.; Cho, K.; Joshi, K.R.; Ghimire, S.; Ummarino, G.A.; Nusran, N.M.; Tanatar, M.A.; Meier, W.R.; Xu, M.; Bud’ko, S.L.; et al. Analysis of the London penetration depth in Ni-doped CaKFe
_{4}As_{4}. Phys. Rev. B**2019**, 100, 094513. [Google Scholar] [CrossRef] [Green Version] - Wang, Z.; Guang-Ming, Z.; Yang, Y.-F.; Zhang, F.-C. Distinct pairing symmetries of superconductivity in infinite-layer nickelates. Phys. Rev. B
**2020**, 102, 220501. [Google Scholar] [CrossRef] - Valla, T.; Drozdov, I.K.; Gu, G.D. Disappearance of Superconductivity Due to Vanishing Coupling in the Overdoped Bi
_{2}Sr_{2}CaCu_{2}O_{8+δ}. Nat. Commun.**2020**, 11, 569. [Google Scholar] [CrossRef] [Green Version] - Ummarino, G.A. Eliashberg Theory. In Emergent Phenomena in Correlated Matter; Pavarini, E., Koch, E., Schollwöck, U., Eds.; Forschungszentrum Jülich GmbH and Institute for Advanced Simulations: Jülich, Germany, 2013; pp. 13.1–13.36. ISBN 978-3-89336-884-6. [Google Scholar]
- Rieck, C.T.; Fay, D.; Tewordt, L. Energy gap, T
_{c}, and density of states in high-temperature superconductors for retarded s- and d-wave interactions. Phys. Rev. B**1989**, 41, 7289. [Google Scholar] [CrossRef] - Ummarino, G.A.; Gonnelli, R.S. Real-axis direct solution of the d-wave Eliashberg equations and the tunneling density of states in optimally doped Bi
_{2}Sr_{2}CaCu_{2}O_{8+x}. Phys. C**1999**, 328, 189. [Google Scholar] [CrossRef] [Green Version] - Ummarino, G.A.; Gonnelli, R.S. Two-band Eliashberg equations and the experimental Tc of the diboride Mg
_{1-x}Al_{x}B_{2}. Physica C**2000**, 341–348, 295. [Google Scholar] [CrossRef] [Green Version] - Ummarino, G.A.; Daghero, D.; Gonnelli, R.S. Tunneling conductance of SIN junctions with different gap symmetries and non-magnetic impurities by direct solution of real-axis Eliashberg equations. Physica C
**2002**, 377, 292. [Google Scholar] [CrossRef] [Green Version] - Cappelluti, E.; Ummarino, G.A. Strong-coupling properties of unbalanced Eliashberg superconductors. Phys. Rev. B
**2007**, 76, 104522. [Google Scholar] [CrossRef] [Green Version] - Jutier, F.; Ummarino, G.A.; Griveau, J.C.; Wastin, F.; Colineau, E.; Rebizant, J.; Magnani, N.; Caciuffo, R. Possible mechanism of superconductivity in probed by self-irradiation damage. Phys. Rev. B
**2008**, 77, 024521. [Google Scholar] [CrossRef] [Green Version] - Ummarino, G.A.; Caciuffo, R.; Chudo, H.; Kambe, S. Energy scale of the electron-boson spectral function and superconductivity in NpPd
_{5}Al_{2}. Phys. Rev. B**2010**, 82, 104510. [Google Scholar] [CrossRef] - Varelogiannis, G. Possible marginality of the superconducting gap symmetry in the oxides. Solid State Commun.
**1998**, 107, 427. [Google Scholar] [CrossRef] - Musaelian, K.A.; Betouras, J.; Chubukov, A.V.; Joynt, R. Mixed-symmetry superconductivity in two-dimensional Fermi liquids. Phys. Rev. B
**1996**, 53, 3598. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bok, J.M.; Bae, J.J.; Choi, H.Y.; Varma, C.M.; Zhang, W.; He, J.; Zhang, Y.; Yu, L.; Zhou, X.J. Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates. Sci. Adv.
**2016**, 2, 1501329. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Ummarino, G.A. Multiband s Eliashberg theory and temperature-dependent spin-resonance energy in iron pnictide superconductors. Phys. Rev. B
**2011**, 83, 092508. [Google Scholar] [CrossRef] - Vidberg, H.; Serene, J. Solving the Eliashberg equations by means of N-point Padé approximants. J. Low Temp. Phys.
**1977**, 29, 179. [Google Scholar] [CrossRef] - Ghigo, G.; Ummarino, G.A.; Gozzelino, L.; Gerbaldo, R.; Laviano, F.; Torsello, D.; Tamegai, T. Effects of disorder induced by heavy-ion irradiation on (Ba
_{1−x}K_{x}) Fe_{2}As_{2}single crystals, within the three-band Eliashberg s±wave model. Sci. Rep.**2017**, 7, 13029. [Google Scholar] [CrossRef] [Green Version] - Torsello, D.; Ummarino, G.A.; Gozzelino, L.; Tamegai, T.; Ghigo, G. Comprehensive Eliashberg analysis of microwave conductivity and penetration depth of K-, Co-, and P-substituted BaFe
_{2}As_{2}. Phys. Rev. B**2019**, 99, 134518. [Google Scholar] [CrossRef] [Green Version] - Torsello, D.; Ummarino, G.A.; Gerbaldo, R.; Gozzelino, L.; Ghigo, G. Eliashberg analysis of the electrodynamic response of Ba(Fe
_{1−x}Rh_{x})_{2}As_{2}across the s±to s++ order parameter transition. J. Supercond. Nov. Magn.**2020**, 33, 2319. [Google Scholar] [CrossRef] - Benedetti, P.; Grimaldi, C.; Pietronero, L.; Varelogiannis, G. Superconductivity beyond Migdal’s Theorem and High-Tc Phenomenology. Europhys. Lett.
**1994**, 28, 351. [Google Scholar] [CrossRef] - Pietronero, L.S. Strassler, and C. Grimaldi. Nonadiabatic superconductivity. I. Vertex corrections for the electron-phonon interactions. Phys. Rev. B
**1995**, 52, 10516. [Google Scholar] [CrossRef] - Grimaldi, C.; Pietronero, L.; Strassler, S. Nonadiabatic superconductivity. II. Generalized Eliashberg equations beyond Migdal’s theorem. Phys. Rev. B
**1995**, 52, 10530. [Google Scholar] [CrossRef] [PubMed] - Ummarino, G.A.; Gonnelli, R.S. Breakdown of Migdal’s theorem and intensity of electron-phonon coupling in high-T
_{c}superconductors. Phys. Rev. B**1997**, 56, 14279. [Google Scholar] [CrossRef] [Green Version]

**Figure 1.**Experimental input parameters of Eliashberg theory: representative energy ${\Omega}_{0}$ (black full squares) and electron-boson coupling constant ${\lambda}_{Z}$ (red full circles) and ${\lambda}_{\Delta}$ (green full triangles) as a function of doping p. ${\lambda}_{\Delta}$ is the value obtained, via Eliashberg equations, to reproduce exactly the experimental critical temperatures. In the inset, the electron–boson spectral function for the last value of doping $p=0.26$ is shown.

**Figure 2.**Calculated values of critical temperature (full red squares) and superconductive gap (full black circles) compared with experimental data (open red squares for the critical temperature and open black circles for the superconductive gap) in the function of the doping p. The lines are visual guides.

**Figure 3.**(Color online) Calculated values of ${\Delta}_{d}\left(i{\omega}_{n=0}\right)$ as a function of normalized temperature $(T/{T}_{c})$ for the four cases examined: $p=0.20$, black solid line; $p=0.23$, red dashed line; $p=0.25$, green dotted line; and $p=0.26$, dark blue dashed-dotted line.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ummarino, G.A.
Standard Behaviour of *Bi*_{2}*Sr*_{2}*CaCu*_{2}*O*_{8+δ} Overdoped. *Condens. Matter* **2021**, *6*, 13.
https://doi.org/10.3390/condmat6020013

**AMA Style**

Ummarino GA.
Standard Behaviour of *Bi*_{2}*Sr*_{2}*CaCu*_{2}*O*_{8+δ} Overdoped. *Condensed Matter*. 2021; 6(2):13.
https://doi.org/10.3390/condmat6020013

**Chicago/Turabian Style**

Ummarino, Giovanni Alberto.
2021. "Standard Behaviour of *Bi*_{2}*Sr*_{2}*CaCu*_{2}*O*_{8+δ} Overdoped" *Condensed Matter* 6, no. 2: 13.
https://doi.org/10.3390/condmat6020013