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Abstract: We extend the Husimi (coherent state) based version of linearized semiclassical theories for the
calculation of correlation functions to the case of survival probabilities. This is a case that could be dealt
with before only by use of the Wigner version of linearized semiclassical theory. Numerical comparisons
of the Husimi and the Wigner case with full quantum results as well as with full semiclassical ones will be
given for the revival dynamics in a Morse oscillator with and without coupling to an additional harmonic
degree of freedom.
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1. Introduction

The quest for a simplified description of quantum dynamics of many body systems in terms of
classical dynamical input has recently become ever more prominent [1]. A lot of the progress that has been
made recently in the quantum optics community for bosonic systems is based on the use of the so-called
truncated Wigner approximation [2–4].

Along similar lines, in the chemical physics community, a classical Wigner dynamics was introduced
early on by Heller [5], with a precursor in reaction rate theory by Miller [6]. Historically, the heuristic
introduction of this Wigner method, based on classical trajectories preceded its derivation from a
semiclassical initial value representation of the propagator by Cao and Voth [7] by two decades. Nowadays,
the classical Wigner method in chemical physics is also referred to as linearized semiclassical initial value
representation (LSC-IVR) and is prominently used by the Miller group [8–10]. Technically, the LSC-IVR
method is much easier to apply than the full semiclassical initial value representation (SC-IVR) of, e.g.,
Herman and Kluk [11], as it linearizes the phase difference between interfering classical trajectories and
does not contain any oscillating terms in the integrand (no sign problem). In addition to the application to
(reactive) single surface dynamics, also the application of LSC-IVR to electronically nonadiabatic processes
i.e., those involving transitions between different potential energy surfaces was shown by Miller and
co-authors [12,13]. Furthermore, LSC-IVRs are close in spirit to the diagonal approximation that is used to
calculate the smooth part of the semiclassical spectral density in chaotic systems [14].

Whereas in the pioneering works of the Heller as well as the Miller groups, Wigner transforms in the
LSC-IVR are used, a new semiclassical framework, introduced by Antipov, Ye and Ananth [15], based on
Husimi functions, see also [16,17], can be tuned to reproduce existing quantum-limit and classical-limit
SC approximations to quantum real-time correlation functions. So far, the applicability of the Husimi
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LSC-IVR is restricted to correlation functions CAB(t) = 〈ÂB̂(t)〉 with operators B̂ that do not contain
exponential terms [15]. In the present contribution, we will extend the usability of the Husimi based
LSC-IVR to the calculation of survival probabilities, that is, we will choose identical (projection) operators
Â = B̂ = |Ψ〉〈Ψ|, where the involved wavefunctions are Gaussians. We will discuss, however, also other
more common choices for the operators.

In the course of our investigations, we will show comparisons of numerical results for survival
probabilities using three different approaches (Wigner LSC-IVR, Husimi LSC-IVR and full SC-IVR) with
the full quantum mechanical results. The system for which we perform the investigations is the Morse
oscillator and we will especially focus on the revival phenomenon which is present in the full quantum
dynamics. If the Morse oscillator is coupled to a harmonic oscillator (acting as a bath for the system) the
revival phenomenon is expected to vanish also in the full quantum result.

This paper is organized as follows. First, in Section 2, general correlation functions will be introduced.
Then two possible classical approximations will be discussed and because the Husimi version is less
general than the Wigner form, in Section 3, a new approach to the survival probability will be laid out.
A comparison of numerical results in Section 4 is followed by discussions and an outlook in Section 5.
Detailed analytical calculations of determinants of block matrices whose results are needed in the main
text can be found in the Appendixes A and B.

2. Theory

In the following, we will introduce the general form of correlation functions that are to be studied
and then we will compare different implementations thereof based on classical trajectories.

2.1. General Correlation Functions

The time correlation function of two arbitrary operators Â and B̂ with a (Heisenberg) time-evolved
operator B̂(t) is defined as

CAB (t) = Tr
[
ÂB̂(t)

]
= Tr

[
Âe

i
h̄ Ĥt B̂e−

i
h̄ Ĥt
]

(1)

where Ĥ = ∑N
i=1

p2
i

2mi
+ V (q) is the Hamiltonian of the system under consideration. This system shall have

2N degrees of freedom in phase space, denoted by (p, q).
Dynamic phenomena in complex systems can be described in terms of real-time correlation functions.

The general time correlation function has various applications based on the choice of the arbitrary operators
Â and B̂. Various choices for the operators of the correlation function are as follows:

• Â = |Ψα〉 〈Ψα|, B̂ = |Ψα〉 〈Ψα|
|Ψα〉 〈Ψα| is a projection operator on initial state |Ψα〉. This leads to the survival probability which is
equivalent to the absolute value squared of the auto-correlation function. In the following, we will
assume the initial states to be Gaussian wavefunctions.

• Â = Q−1 exp
{
−βĤ

}
r̂, B̂ = r̂,

where Q is the partition function, β = 1/kT inverse temperature and r̂ the position operator. This is
the temperature dependent dipole-dipole correlation function used to study IR spectra. Semiclassical
investigations for this case have been performed in [16,18,19] in the high temperature limit β→ 0.

• Â = |Ψα〉 〈Ψα|, B̂ = |r〉 〈r|
This choice leads to the reduced density. For the case of a Caldeira-Leggett model, the transition to
classicality and the blue shift of the system oscillator have been investigated in [20], see also [21].
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• Â = |Ψα〉 〈Ψα|, B̂ = x̂, x̂2, . . .
Here x̂ is the position operator in one dimension. This choice is used to calculate
time-dependent moments.

We will be evaluating the dipole-dipole correlation function and the survival probability using both
Wigner LSC-IVR and Husimi LSC-IVR methods in the following subsection.

2.2. Comparison between Wigner LSC-IVR and Husimi LSC-IVR

For the following comparison, we restrict the discussion to the case N = 1, i.e., a single degree of
freedom. The generalization to arbitrary N is straightforward.

In the classical, so-called LSC-IVR employing Wigner functions, the expression for the general
time-correlation function is given by [5,7]

CW
AB (t) =

∫ dpdq
2πh̄

AW (p, q) BW (pt, qt) , (2)

where AW (p, q) and BW (pt, qt) are the Wigner-Weyl transforms of operators Â and B̂ and (pt, qt) are
classical trajectories in phase space that evolve from the initial conditions (p, q) according to Hamilton’s
equations of motion

q̇t =
∂H
∂pt

ṗt = −
∂H
∂qt

. (3)

AW (p, q) is defined as:

AW (p, q) =
∫

d∆qe−i p∆q
h̄

〈
q +

∆q
2
|Â|q− ∆q

2

〉
. (4)

Now in the case of the coherent state based LSC-IVR method employing Husimi functions, the general
time-correlation function is given by [15]

CH
AB (t) =

∫ dpdq
2πh̄

AH (p, q) BH (pt, qt) , (5)

where AH (p, q) and BH (pt, qt) are the Husimi transforms of the operators Â and B̂. AH (p, q) is defined
as [22]

AH (p, q) = 〈z(p, q)|Â|z(p, q)〉, (6)

where |z(p, q)〉 represents a coherent state with width parameter γ̃, given in position representation by

〈x|z(p, q)〉 =
(

γ̃

π

)1/4
e−

γ̃
2 (x−q)2+ i

h̄ p(x−q), (7)

with a phase convention slightly different from Klauder’s [23].
We stress that although the Wigner expression is generally valid, the Husimi version of the correlation

function only holds for operators B̂ that do not contribute to the phase [15]. In passing, we note that a
proof that any operator is determined by its expectation in all coherent states is given in [24].

Now we will examine two cases with the help of both LSC-IVR methods (Wigner and Husimi). Firstly
this will be the dipole-dipole correlation function and secondly the survival probability.
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2.2.1. The Dipole-Dipole Correlation Function

For the case of dipole-dipole correlation function, we choose the operators Â and B̂ as: Â =

exp
{
−βĤ

}
q̂/Q and B̂ = q̂. Here exp

{
−βĤ

}
/Q is the canonical density-operator ρ̂. Therefore,

the Wigner-Weyl transform [2] is given by (we are neglecting the partition function Q in the following)

AW (p, q) =
∫

d∆qe−i p∆q
h̄ 〈q + ∆q

2
| exp

{
−βĤ

}
q̂|q− ∆q

2
〉 (8)

and the canonical density-operator matrix element is

ρ (y, z) = 〈y|e−βĤ |z〉. (9)

Because we are investigating the classical limit of correlation functions, a high temperature limit
seems justified. For high temperatures, i.e, for small β, a short time approximation to the “imaginary time
propagator” e−βĤ is possible [25] and it leads to the expression

ρ (y, z) ≈
√

m
2πβh̄2 e

− m
2βh̄2 (y−z)2

e−βV( y+z
2 ) (10)

for the canonical density-operator. Applying the short-time approximation to the canonical
density-operator and neglecting an additive term proportional to β, the Wigner-Weyl transform
thus becomes

AW (p, q) ≈
∫

d∆qe−i p∆q
h̄ ρ

(
q +

∆q
2

, q− ∆q
2

)
q

=
∫

d∆qe−i p∆q
h̄

√
m

2πβh̄2 e
− m

2βh̄2 ∆q2

e−βV(q)q

= qe−βV(q)
√

m
2πβh̄2

∫
d∆q exp

{
− m

2βh̄2 ∆q2 − i
p∆q

h̄

}

= qe−βV(q)
√

m
2πβh̄2

√
2πβh̄2

m
e−

βp2
2m

= qe−βH . (11)

Similarly, it can be shown that

BW (pt, qt) = qt. (12)

Hence, the dipole-dipole correlation function comes out to be

CW
AB (t) =

∫ dpdq
2πh̄

qe−βHqt, (13)

see also [26].
Now, we will calculate the dipole-dipole correlation function using coherent states. The Husimi

transform of operator Â is given by
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AH (p, q) = 〈z(p, q)|e−βĤ q̂|z(p, q)〉.

≈
∫

dx
∫

dx′〈z(p, q)|x′〉〈x′|e−βĤ |x〉〈x|z(p, q)〉q, (14)

where we used a stationary phase argument that allows to treat the operator q̂ like a constant [16]. Again
applying the short-time approximation to the canonical density-operator and substituting the explicit
expressions for 〈z(p, q)|x′〉 and 〈x|z(p, q)〉 we get,

AH (p, q) ≈
∫

dx
∫

dx′q
(

γ̃

π

) 1
2

exp
{
− γ̃

2
(
x′ − q

)2 − ip
h̄
(

x′ − q
)}

√
m

2πβh̄2 exp

{
− m

2βh̄2

(
x′ − x

)2 − βV
(

x′ + x
2

)}
exp

{
− γ̃

2
(x− q)2 +

ip
h̄
(x− q)

}

= q
(

γ̃

π

) 1
2
√

m
2πβh̄2

∫
dx
∫

dx′ exp
(
− x′2

(
γ̃

2
+

m
2βh̄2

)
+ x′

(
γ̃q− ip

h̄

)

− x2

(
γ̃

2
+

m
2βh̄2

)
+ x

(
γ̃q +

ip
h̄

)
+

m
βh̄2 x′x− γ̃q2

)
e−βV

(
x′+x

2

)
. (15)

Now, we approximate the potential V
(

x′+x
2

)
by its value at x = x′ = q [16], which is constant and

hence can be taken out of the integral. Therefore, we have

AH (p, q) ≈ q
(

γ̃

π

) 1
2
√

m
2πβh̄2 e−βV(q)

∫
dx
∫

dx′ exp
(
− x′2

(
γ̃

2
+

m
2βh̄2

)
+ x′

(
γ̃q− ip

h̄

)

− x2

(
γ̃

2
+

m
2βh̄2

)
+ x

(
γ̃q +

ip
h̄

)
+

m
βh̄2 x′x− γ̃q2

)
. (16)

The total exponent E inside the integral can now be written in the form

E = −
(
x′, x

)
A

(
x′

x

)
+ bT

(
x′

x

)
+ c, (17)

where

A =

 γ̃
2 + m

2βh̄2 − m
2βh̄2

− m
2βh̄2

γ̃
2 + m

2βh̄2

 (18)

and

b =

(
γ̃q− i

h̄ p
γ̃q + i

h̄ p

)
(19)

and also c = −γ̃q2. The value of the Gaussian integral is

∫
dx
∫

dx′ exp {E} =
√

π2

det A
exp

{
bTA−1b

4
+ c
}

, (20)
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where

bTA−1b =
1

det A

(
b2

1a22 + b2
2a11 − 2b1b2a12

)
(21)

and

det A = a11a22 − a2
12 =

γ̃2

4
+

mγ̃

2βh̄2 . (22)

Applying the short-time approximation β → 0 to the expression of bTA−1b and also to det A, we
arrive at the final result for the Husimi transform

AH (p, q) ≈ q
(

γ̃

π

) 1
2
√

m
2πβh̄2 e−βV(q)

√√√√ π2

mγ̃

2βh̄2

exp
(

γ̃q2 − β
p2

2m
− γ̃q2

)
.

= qe−βH , (23)

independent of the coherent state width parameter γ̃. Similarly,

BH (pt, qt) = qt. (24)

The dipole-dipole correlation function comes out to be

CH
AB (t) =

∫ dpdq
2πh̄

qe−βHqt. (25)

Hence, we can conclude that the expressions for the Wigner-Weyl (13) and Husimi (25) versions for
the dipole-dipole correlation function case in the high temperature limit coincide.

2.2.2. The Survival Probability

For the case of the survival probability, the operators Â and B̂ are projection operators; i.e., Â = B̂ =

|Ψα〉 〈Ψα|, and it is assumed that the wavefunctions in position space are Gaussians. Let us first derive the
survival probability using Wigner LSC-IVR. For the Wigner-Weyl transform, we get

AW (p, q) =
∫

d∆qe−i p∆q
h̄ 〈q + ∆q

2
|Â|q− ∆q

2
〉

=
∫

d∆qe−i p∆q
h̄ 〈q + ∆q

2
|Ψα〉 〈Ψα| q−

∆q
2
〉

=
∫

d∆qe−i p∆q
h̄ Ψα

(
q +

∆q
2

)
Ψ∗α

(
q− ∆q

2

)
=
∫

d∆qe−i p∆q
h̄

( γ

π

) 1
4 exp

{
−γ

2

(
q +

∆q
2
− qα

)2
+

i
h̄

pα

(
q +

∆q
2
− qα

)}
( γ

π

) 1
4 exp

{
−γ

2

(
q− ∆q

2
− qα

)2
− i

h̄
pα

(
q− ∆q

2
− qα

)}

=
( γ

π

) 1
2
∫

d∆qe−i p∆q
h̄ exp

{
−γ

[
(q− qα)

2 +

(
∆q
2

)2
]
+

i
h̄

pα∆q

}

=
( γ

π

) 1
2
∫

d∆q exp
{
−γ

4
∆q2 − i

h̄
∆q (p− pα)− γ (q− qα)

2
}

. (26)
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Defining a = γ
4 , b = − i

h̄ (p− pα) and c = −γ (q− qα)
2, we can use the 1D version of the Gaussian

integral (20) and the Wigner-Weyl transform becomes

AW (p, q) = 2 exp
{
−γ (q− qα)

2 − 1
γh̄2 (p− pα)

2
}

(27)

and, similarly,

BW (pt, qt) = 2 exp
{
−γ (qt − qα)

2 − 1
γh̄2 (pt − pα)

2
}

. (28)

Therefore, the survival probability becomes

CW
AB (t) =

∫ dpdq
2πh̄

AW (p, q) BW (pt, qt)

= 2
∫ dpdq

πh̄
exp

(
− γ

[
(q− qα)

2 + (qt − qα)
2
]
− 1

γh̄2

[
(p− pα)

2 + (pt − pα)
2
] )

. (29)

Now let us try to get a first guess at the survival probability using the Husimi LSC-IVR method. We
stress that the Husimi version for the correlation is not applicable to the present case [15] but we will get
a partial answer by using it anyways. Operators Â and B̂ are again projection operators. Their Husimi
transforms are thus given by

AH (p, q) = |〈z(p, q)|Ψα〉|2. (30)

Now,

〈x|z(p, q)〉 =
(

γ̃

π

) 1
4

exp
{
− γ̃

2
(x− q)2 +

i
h̄

p (x− q)
}

(31)

〈x|Ψα〉 =
( γ

π

) 1
4 exp

{
−γ

2
(x− qα)

2 +
i
h̄

pα (x− qα)

}
, (32)

where Ψα is a Gaussian centered around (pα, qα) with the width parameter γ. Therefore,

〈z(p, q)|Ψα〉 =
∫

dx
(

γ̃γ

π2

) 1
4

exp
{
− γ̃

2
(x− q)2 − γ

2
(x− qα)

2 − i
h̄
[p (x− q)− pα (x− qα)]

}
. (33)

To simplify matters, we consider γ̃ = γ and get

〈z(p, q)|Ψα〉 = exp
{
−γ

4
(q− qα)

2 − 1
4γh̄2 (p− pα)

2 +
i

2h̄
(q− qα) (p + pα)

}
(34)

for the overlap. Similarly,

〈Ψα|z(p, q)〉 = exp
{
−γ

4
(q− qα)

2 − 1
4γh̄2 (p− pα)

2 − i
2h̄

(q− qα) (p + pα)

}
. (35)

Therefore, the Husimi transforms are given by

AH (p, q) = exp
{
−γ

2
(q− qα)

2 − 1
2γh̄2 (p− pα)

2
}

(36)
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and

BH (pt, qt) = exp
{
−γ

2
(qt − qα)

2 − 1
2γh̄2 (pt − pα)

2
}

. (37)

Hence, the survival probability follows to be

CH
AB (t) =

∫ dpdq
2πh̄

exp
(
− γ

2
(q− qα)

2 − 1
2γh̄2 (p− pα)

2 − γ

2
(qt − qα)

2 − 1
2γh̄2 (pt − pα)

2
)

. (38)

If we compare the Wigner-Weyl transforms and the Husimi transforms, we see that both expressions
are quite different. In the Husimi transform (36), there is the factor of 1

2 multiplied to the terms in the
exponential, which is not present in the Wigner-Weyl transform (27). In addition, in the Wigner-Weyl
transform we have an additional factor of 2 multiplied with the exponential term. Hence, the two

expressions for the transforms are different and we find that AH =
√

Aw
2 . Also, the final Husimi result (38)

does not give unity at initial time as a simple Gaussian integration shows. We note in passing that if we
had considered the width parameters of the coherent state (γ̃) and that of the Gaussian initial state (γ) to
be different would not have resolved matters.

We are therefore led to introduce a new approach of calculating the linearized semiclassical survival
probability starting from the Herman-Kluk (HK) propagator.

3. Quasiclassical Staying Probability Using the HK Propagator

Here we develop a consistent approach to the linearized survival (or staying) probability, using the
HK propagator. We follow the path used by Cao and Voth as well as by Miller and his co-workers to
derive the Wigner LSC-IVR i.e, making a sum and difference coordinate transformation of the integration
variables. Let us consider an initial Gaussian wavefunction for N degrees of freedom, centered at (pα, qα),
given by

Ψα (x, 0) =
(

det γ

πN

) 1
4

exp
{
− (x− qα)

T γ

2
(x− qα) +

i
h̄

pT
α (x− qα)

}
, (39)

where we have defined (column) vectors and a matrix via

x =


x1

.

.
xN

 γ =


γ1 0 0 0

0
. . . 0 0

0 0
. . . 0

0 0 0 γN

 qα =


q1α

.

.
qNα

 pα =


p1α

.

.
pNα

 .

Subscripts denote the N degrees of freedom. Later, subscript 1 denotes the Morse oscillator coordinate
and the other subscript(s) correspond to the harmonic oscillator(s) acting as the bath for the system. We
stress that the HK propagator to be used below is based on real classical trajectories and therefore can
account for interference effects but for the inclusion of tunneling effects (not to be studied in the present
manuscript) also non-classical trajectories would be needed.

The auto-correlation function is given by

c (t) = 〈Ψα (0) |Ψα (t)〉. (40)
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Using the HK propagator [11] to evolve the wavefunction in time, this is given by

c (t) =
∫ dN pdNq

(2πh̄)N 〈Ψα (0) |z (pt, qt)〉R (p, q, t) e
i
h̄ S(p,q,t)〈z (p, q) |Ψα (0)〉, (41)

with the classical trajectories (pt, qt) and the classical action

S (p, q, t) =
∫ t

0
[pt′ · q̇t′ − H]dt′, (42)

as well as the prefactor

R (p, q, t) =
1

2N/2

(
det

{
m11 + γm22γ−1 − ih̄γm21 −

1
ih̄

m12γ−1
}) 1

2

, (43)

where m11, m12, m21 and m22 are the elements of the so-called monodromy (or stability) matrix M [27],

M =

(
m11 m12

m21 m22

)
=

 ∂p̃t
∂p̃T

∂p̃t
∂q̃T

∂q̃t
∂p̃T

∂q̃t
∂q̃T

 . (44)

The width parameter matrix of the coherent state |z (p, q)〉 is γ̃, but here for simplicity we will
consider the width parameters for the Gaussian initial state and the ones for the coherent state appearing
in the HK propagator to be equal.

We look for a quantity with a classical analog, therefore we consider the “probability to stay”

P (t) = |〈Ψα (0) |Ψα (t)〉|2 = |c (t) |2, (45)

which is given as the double phase space integral

P (t) =
∫ dN pdNq

(2πh̄)N

∫ dN p′dNq′

(2πh̄)N 〈Ψα (0) |z (pt, qt)〉R (p, q, t) e
i
h̄ S(p,q,t)〈z (p, q) |Ψα (0)〉

〈z
(
p′t, q′t

)
|Ψα (0)〉R∗

(
p′, q′, t

)
e−

i
h̄ S(p′ ,q′ ,t)〈Ψα (0) |z

(
p′, q′

)
〉, (46)

sometimes referred to as double HK expression. To make progress with the integration, we introduce the
sum and difference variables

q̃ =
q + q′

2
∆q = q− q′ (47)

p̃ =
p + p′

2
∆p = p− p′, (48)

with the reverse transformation

q = q̃ +
∆q
2

q′ = q̃− ∆q
2

(49)

p = p̃ +
∆p
2

p′ = p̃− ∆p
2

. (50)

For general N, the Jacobian for the variable transformation in the double phase space integral is
always unity.
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We now expand the trajectories around q̃t (p̃, q̃), p̃t (p̃, q̃) up to the first order. Using the reverse
transformation in (49,50) this leads to

qt = q̃t +
∂q̃t
∂q̃T (q− q̃) +

∂q̃t
∂p̃T (p− p̃) = q̃t + m22

∆q
2

+ m21
∆p
2

= q̃t +
δqt
2

, (51)

q′t = q̃t +
∂q̃t
∂q̃T

(
q′ − q̃

)
+

∂q̃t
∂p̃T

(
p′ − p̃

)
= q̃t −m22

∆q
2
−m21

∆p
2

= q̃t −
δqt
2

, (52)

pt = p̃t +
∂p̃t
∂p̃T (p− p̃) +

∂p̃t
∂q̃T (q− q̃) = p̃t + m11

∆p
2

+ m12
∆q
2

= p̃t +
δpt
2

, (53)

p′t = p̃t +
∂p̃t
∂p̃T

(
p′ − p̃

)
+

∂p̃t
∂q̃T

(
q′ − q̃

)
= p̃t −m11

∆p
2
−m12

∆q
2

= p̃t −
δpt
2

. (54)

Then we expand the action up to the first order around S̃, as the second order difference vanishes.
This yields

S (qt (p, q) , q) = S̃ (q̃t (p̃, q̃) , q̃) +
∂S̃

∂p̃T (p− p̃) +
∂S̃

∂q̃T (q− q̃)

= S̃ +
∂S̃

∂p̃T
∆p
2

+
∂S̃

∂q̃T
∆q
2

(55)

and an analogous formula for S′ (which denotes the action depending on the primed variables). From
classical mechanics we have

∂S̃
∂p̃T =

∂S̃
∂q̃T

t

∂q̃t
∂p̃T = p̃T

t m21, (56)

∂S̃
∂q̃T =

∂S̃
∂q̃T

t

∂q̃t
∂q̃T +

∂S̃
∂q̃T = p̃T

t m22 − p̃T (57)

for the first derivatives and therefore the action difference becomes

S− S′ = S̃ + p̃T
t m21

∆p
2

+ p̃t
Tm22

∆q
2
− p̃T ∆q

2

−
(

S̃− p̃T
t m21

∆p
2
− p̃T

t m22
∆q
2

+ p̃T ∆q
2

)
= p̃T

t m21∆p + p̃T
t m22∆q− p̃T∆q

= p̃T
t δqt − p̃T∆q. (58)

The prefactor in zeroth order is given by

R (p, q, t) R∗
(
p′, q′, t

)
= |R (p̃, q̃, t) |2

=
1

2N

(
det

{
m11 + γm22γ−1 + ih̄γm21 +

1
ih̄

m12γ−1
}

det
{

m11 + γm22γ−1 − ih̄γm21 −
1
ih̄

m12γ−1
}) 1

2

. (59)

Collecting terms, the total expression for the staying probability is
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Pcl (t) =
∫ dN p̃dN q̃

(2πh̄)N

∫ dN∆pdN∆q

(2πh̄)N |R (p̃, q̃, t) |2 exp {E}, (60)

where the exponent E has still to be defined. From

〈z (p, q) |Ψα〉〈Ψα|z
(
p′, q′

)
〉 = exp

(
− 1

4

[
(q− qα)

T γ (q− qα) +
(
q′ − qα

)T
γ
(
q′ − qα

)]
− 1

4h̄2

[
(p− pα)

T γ−1 (p− pα) +
(
p′ − pα

)T
γ−1 (p′ − pα

)]
+

i
2h̄

[
(q− qα)

T (p + pα)−
(
q′ − qα

)T (p′ + pα

)] )
(61)

using (49,50), we find the contributions

(q− qα)
T γ (q− qα) +

(
q′ − qα

)T
γ
(
q′ − qα

)
= 2 (q̃− qα)

T γ (q̃− qα) + 2
(

∆q
2

)T
γ

(
∆q
2

)
(62)

as well as

(p− pα)
T γ−1 (p− pα) +

(
p′ − pα

)T
γ−1 (p′ − pα

)
= 2 (p̃− pα)

T γ−1 (p̃− pα)

+ 2
(

∆p
2

)T
γ−1

(
∆p
2

)
(63)

and

(q− qα)
T (p + pα)−

(
q′ − qα

)T (p′ + pα

)
= ∆qT (p̃ + pα) + (q̃− qα)

T ∆p. (64)

The total exponent (including the action difference) thus is

E =
i

2h̄

[
∆qT (pα − p̃) + (q̃− qα)

T ∆p
]
− i

2h̄

[
δqt

T (pα − p̃t) + (q̃t − qα)
T δpt

]
− 1

2

[
(q̃− qα)

T γ (q̃− qα) +

(
∆q
2

)T
γ

(
∆q
2

)
+ (q̃t − qα)

T γ (q̃t − qα) +

(
δqt
2

)T
γ

(
δqt
2

)]

− 1
2h̄2

(
(p̃− pα)

T γ−1 (p̃− pα) +

(
∆p
2

)T
γ−1

(
∆p
2

)
+ (p̃t − pα)

T γ−1 (p̃t − pα) +

(
δpt
2

)T
γ−1

(
δpt
2

))
. (65)

Remembering the defining equations of the stability matrix

δpt = m11∆p + m12∆q, (66)

δqt = m22∆q + m21∆p, (67)

we can now do the ∆p and ∆q integrations as they are simple Gaussian integrations. To this end, we write
the exponent in the form

E = −
(

∆qT, ∆pT
)

A

(
∆q
∆p

)
+ bT

(
∆q
∆p

)
+ c, (68)
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where

A =


1
2

(
γ
4 +

mT
22γm22

4

)
+ 1

2h̄2
mT

12γ−1m12
4

1
2

mT
22γm21

4 + 1
2h̄2

mT
12γ−1m11

4

1
2

mT
21γm22

4 + 1
2h̄2

mT
11γ−1m12

4
1

2h̄2

(
γ−1

4 +
mT

11γ−1m11
4

)
+ 1

2
mT

21γm21
4

 (69)

is a 2N × 2N matrix and

b = − i
2h̄

(
(p̃− pα)−mT

22 (p̃t − pα) + mT
12 (q̃t − qα)

− (q̃− qα)−mT
21 (p̃t − pα) + mT

11 (q̃t − qα)

)
(70)

is a 2N element column vector, whereas

c = −1
2

[
(q̃− qα)

T γ (q̃− qα) + (q̃t − qα)
T γ (q̃t − qα)

]
− 1

2h̄2

[
(p̃− pα)

T γ−1 (p̃− pα) + (p̃t − pα)
T γ−1 (p̃t − pα)

]
(71)

is a constant term. Hence the Gaussian integration gives

∫ dN∆pdN∆q

(2πh̄)N exp {E} = 1

(2πh̄)N

√
π2N

det A
exp

{
bTA−1b

4
+ c

}
. (72)

The exact analytic calculation of det A using the method of factorization, as shown in the appendix
following the lines of Herman’s 1986 paper [28], finally gives

det A =

(
1

8h̄

)2N
det

{
m11 + γm22γ−1 + ih̄γm21 +

1
ih̄

m12γ−1
}

det
{

m11 + γm22γ−1 − ih̄γm21 −
1
ih̄

m12γ−1
}

. (73)

This cancels the HK-prefactor absolute square.

|R (p̃, q̃, t) |2 1

(2πh̄)N

√
π2N

det A
= 2N . (74)

Therefore, the remaining integral over p̃ and q̃ is:

Pcl (t) = CH
AB(t) = 2N

∫ dN p̃dN q̃

(2πh̄)N exp

{
bTA−1b

4
+ c

}
. (75)

Before evaluating this expression numerically some remarks are in order:

• The result is a linearized semiclassical result and we therefore can call it an LSC-IVR result.
• Because it is based on Gaussian basis functions it is the correct Husimi version in the case of the

survival (or staying) probability, Â = B̂ = |Ψα〉〈Ψα|.
• In contrast to a straightforward application of (38), in addition to the Husimi exponent c, there is a

term bTA−1b
4 in the exponent that contains stability information, similar in spirit to the semiclassical

hybrid dynamics, where part of the degrees of freedom are treated using the thawed Gaussian
approximation [29].
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• Furthermore also an overall factor of 2N appears naturally, ensuring normalization at the initial time
t = 0.

4. Numerical Results

For the following numerical investigations, we consider a Morse oscillator as our system of interest.
The potential describing the binding of a diatomic molecule is given by

VM (x) = D [1− exp (−βx)]2 . (76)

We consider the mass of the system to be unity. D is the dissociation energy, β is the stiffness (or
range) parameter. The values of the dimensionless potential parameters that we use here are [30]: D = 150
and β = 0.288, leading to ω = 4.988 for the frequency of (harmonic) oscillations around the minimum. We
choose the value for the phase-space center of the Gaussian wavefunction |Ψα〉 to be qα = 3.5 and pα = 0
and we take the width parameter of the Gaussian as γ = 4.

We note that Hamilton’s equations are solved with the classical Hamiltonian in all cases. Using
instead the Hamiltonian matrix element between coherent states that is sometimes used for the Husimi
case would lead to almost identical results for the potential parameters considered here. The phase space
coordinates, as well as the stability matrix elements are then determined numerically by using a symplectic
leap frog method [27].

The quantity of interest in the following is the survival probability P(t) that will be followed up to
the first full revival time, Trev = 2π/β2 which, in the present case, is around 60 times the classical period
of the Morse oscillator, given by Tcl = 2π/ω = 2π/(

√
2Dβ) ≈ 2π/5.

The number of trajectories used for the full HK as well as for the LSC-IVR results was 104. The time
step chosen in all dynamical calculations was ∆t = 2π/(100×ω) = Tcl/100.

4.1. Uncoupled Case

In Figure 1, we compare the full numerical solution to the time-dependent Schrödinger equation
(TDSE) with the corresponding semiclassical HK result. It can be seen that the two results coincide very
nicely, although the HK result due to the loss of norm is not coming back to unity fully at the revival time,
which is around t = 75. The fact that the semiclassical HK propagator can reproduce the interference
based revival in a Morse oscillator has been investigated in detail by Wang and Heller [30].

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Figure 1. Survival probability for the 1D Morse oscillator up to first full revival time using a split-operator
method with fast Fourier transform (FFT) to solve the time-dependent Schrödinger equation (TDSE) (full
blue line) and full Herman-Kluk (HK) result (dashed red line).
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In Figure 2, we compare several LSC-IVR results. The Wigner and Husimi results differ as well as
does the Husimi without the additional exponential term. For short times all three results are identical.
For times when all three results have decayed to small values, differences become visible. The new Husimi
and the Wigner result are very close, though. The revival visible in the full quantum result is not displayed
in any of the linearized approaches, though.

0 10 20 30 40 50 60 70 80
0

0.2

0.4

0.6

0.8

1

Figure 2. Survival probability for the 1D Morse oscillator using Wigner (full blue curve) and Husimi
linearized semiclassical initial value representation (LSC-IVR) (dotted yellow curve) as well as Husimi
version without the term bTA−1b

4 but with an additional factor of two (dashed orange curve).

4.2. Coupling to a Harmonic Bath Degree of Freedom

Now we proceed and ask the question what happens to the revival dynamics, if we couple the Morse
oscillator to a very heavy harmonic oscillator of mass my = 20 such that the total Hamiltonian reads

H =
p2

x
2

+
p2

y

2my
+ VM(x) +

1
2

myω2
yy2 + λxy, (77)

with ωy = 1.17 and the initial width parameter for the ground state wavepacket in the harmonic degree
γy = myωy. The very heavy oscillator shall mimic the interaction with a many degree of freedom bath
with smaller masses, i.e., a “condensed phase” environment, see also [15].

First, we look at a moderate coupling strength of λ = 1. The corresponding results from the Wigner
and the Husimi approach as well as the Husimi without the bTA−1b

4 term in the exponent are contrasted in
Figure 3. It can be seen that the additional term brings the Husimi result closer to the Wigner one, rather
similar to the uncoupled case. At longer times there is just a small amplitude wiggling in the signal due to
the coupling.

In Figure 4, we turn to a higher coupling strength of λ = 9 and first compare the full solution to
the TDSE with the corresponding semiclassical HK result. It can be seen that, as in the uncoupled case,
the two results again coincide very nicely, even the small oscillations are reproduced until around t = 75.
The revival is not visible any more, due to the strong coupling to the harmonic degree, however.

In Figure 5, the results from the LSC-IVR calculations (Wigner as well as Husimi) in the strong
coupling case are displayed. It can be seen that both also show no revivals, as to be expected. For the very
strong coupling the underlying classical dynamics becomes strongly chaotic and the numerical inversion
of the A matrix turns singular at certain times for a lot of the 10,000 trajectories we propagated. In order to
circumvent this singularity problem, we treated the problematic trajectories without the additional term in
the exponent from the time on, when the inversion is problematic.
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Figure 3. Survival probability for the Morse oscillator coupled to a harmonic degree of freedom with
coupling strength λ = 1, up to first full revival time (in the uncoupled case) using Wigner (full blue line)
and Husimi LSC-IVR (dotted yellow curve) as well as Husimi version without the term bTA−1b

4 (dashed
orange curve).
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Figure 4. Survival probability for the Morse oscillator coupled to a harmonic degree of freedom with
coupling strength λ = 9, up to first full revival time (in the uncoupled case) using split operator FFT to
solve the TDSE (full blue line) and full HK result (dashed red line).
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Figure 5. Survival probability for the Morse oscillator coupled to a harmonic degree of freedom with λ = 9,
up to first full revival time (in the uncoupled case) using Wigner LSC-IVR (full blue line) and Husimi
LSC-IVR (dotted red line).
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5. Conclusions and Outlook

The aim of this presentation was two-fold. The first goal was to highlight that the Wigner-Weyl and
Husimi transform version of linearized semiclassical theories can lead to the same final formula, whereas
they are quite different in the case of the survival probability, where strictly, the simple Husimi version
is not applicable. This fact then established a second goal: to find the correct Husimi-like version of
the linearized semiclassical IVR. This goal was achieved by straightforward linearization of the double
HK expression for the survival (or staying) probability. In the course of the derivation we also slightly
generalized a seminal calculation by Herman (see the appendix of [28]) to the case of width parameter
matrices that are not proportional to the unit matrix.

The newly developed formalism was then applied to the revival dynamics in a Morse oscillator.
The revival, being a quantum interference phenomenon, could, apart from the numerically converged
full quantum results, only be observed in the full HK results, however. Both LSC-IVR variants show a
monotonically decaying envelope and no revival. Coupling the Morse oscillator to a heavy bath oscillator
leads to the absence of the revival in the full quantum calculations also. In this case the LSC-IVR results are
predicting the correct behavior to a large degree and full quantum calculations are not necessary, the system
dynamics has undergone a quantum to classical transition due to the coupling to the environment, similar
to the findings predicted using the semiclassical hybrid dynamics [20].

For the future, it might be worthwhile to look at even more general correlations function, the so-called
out of time order correlators [31] in the (linearized) semiclassical IVR approach.

Author Contributions: Project design: F.G.; analytical calculations, data production, interpretation of the results and
writing of the manuscript: S.L.C. and F.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deutsche Forschungsgemeinschaft under project GR 1210/8-1.

Acknowledgments: Fruitful discussions with Jiri Vanicek, Sergey Antipov and Peter Schlagheck as well as financial
support from the International Max Planck Research School “Many Particle Systems in Structured Environments” in
the initial stages of the project are gratefully acknowledged.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Calculation of det A

In this Appendix we analytically simplify det A from the determinant of a 2N × 2N matrix to the
product of determinants of two N × N matrices, so that it cancels out with the HK-prefactor absolute
square. We do so, by going along the lines of the appendix of Herman’s paper [28]. Our det A can be
written as

det A =

(
1
8

)2N
det

(
γ + mT

22γm22 +
1
h̄2 mT

12γ−1m12 mT
22γm21 +

1
h̄2 mT

12γ−1m11

mT
21γm22 +

1
h̄2 mT

11γ−1m12
γ−1

h̄2 + 1
h̄2 mT

11γ−1m11 + mT
21γm21

)

=

(
1
8

)2N
det

(
L + γI M + i

h̄ I

MT + i
h̄ I γ−1

h̄2 + N

)
. (A1)

The N × N matrices L, M and N are given by

L = XT
+γX−, (A2)

M = XT
+γP−, (A3)

N = PT
+γP− (A4)

and the matrices X± and P± are defined as
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X± = m22 ±
i
h̄

γ−1m12, (A5)

P± = m21 ±
i
h̄

γ−1m11. (A6)

These matrices obey PT
+γP− = PT

−γP+, XT
+γX− = XT

−γX+ and PT
+γX− − PT

−γX+ = XT
−γP+ −

XT
+γP− =

( 2i
h̄
)

I, which follow from the properties of the Lagrange bracket [32] and the fact that the
transformation (p̃, q̃)→ (p̃t, q̃t) is canonical.
Therefore, det A can be written as

det A =

(
1
8

)2N
∣∣∣∣∣ L + γI M + i

h̄ I

MT + i
h̄ I γ−1

h̄2 + N

∣∣∣∣∣
=

(
1
8

)2N
∣∣∣∣∣X

T
+γX− + γI XT

+γP− + i
h̄ I

PT
−γX+ + i

h̄ I γ−1

h̄2 + PT
+γP−

∣∣∣∣∣ . (A7)

As shown in Appendix B, the determinant on the right-hand side of the above equation can be
expressed as the product of three determinants, F, G, and det (γ), where

F =

∣∣∣∣∣ 1
2 XT

+
1
2 XT
−

1
2 PT

+
1
2 PT
−

∣∣∣∣∣ (A8)

G =

∣∣∣∣∣γX−γ−1 + ih̄γP− − i
h̄
(
γX−γ−1 + ih̄γP−

)
γX+γ−1 − ih̄γP+

i
h̄
(
γX+γ−1 − ih̄γP+

) ∣∣∣∣∣ . (A9)

We multiply the transpose of the matrix corresponding to the determinant F from the left by the
product matrix

Y =

(
I −PT

+γP−
0 I

)(
PT
−γ 0
0 P−1

−

)
, (A10)

whose determinant is det (γ) and from the right by det
(
γ−1), such that the determinant F is unchanged.

Thus we get

F =

∣∣∣∣∣ 1
2 XT

+
1
2 XT
−

1
2 PT

+
1
2 PT
−

∣∣∣∣∣
=

∣∣∣∣∣I −PT
+γP−

0 I

∣∣∣∣∣
∣∣∣∣∣PT
−γ 0
0 P−1

−

∣∣∣∣∣
∣∣∣∣∣ 1

2 X+
1
2 P+

1
2 X− 1

2 P−

∣∣∣∣∣det
(

γ−1
)

=

∣∣∣∣∣I −PT
+γP−

0 I

∣∣∣∣∣
∣∣∣∣∣ 1

2 PT
−γX+

1
2 PT
−γP+

1
2 P−1
− X− 1

2 P−1
− P−

∣∣∣∣∣
∣∣∣∣∣γ−1 0

0 1

∣∣∣∣∣
=

∣∣∣∣∣ 1
2
(
PT
−γX+ − PT

+γX−
)

0
1
2 P−1
− X− 1

2

∣∣∣∣∣
∣∣∣∣∣γ−1 0

0 1

∣∣∣∣∣
=

∣∣∣∣∣ − i
h̄ 0

1
2 P−1
− X− 1

2

∣∣∣∣∣
∣∣∣∣∣γ−1 0

0 1

∣∣∣∣∣
=

(
− i

2h̄

)N
det

(
γ−1

)
. (A11)
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Now, multiplying the first column in the determinant of G by i
h̄ and adding it to the second column

we get

G =

∣∣∣∣∣γX−γ−1 + ih̄γP− 0
γX+γ−1 − ih̄γP+

2i
h̄
(
γX+γ−1 − ih̄γP+

)∣∣∣∣∣
=

(
2i
h̄

)N
det

(
γX−γ−1 + ih̄γP−

)
det

(
γX+γ−1 − ih̄γP+

)
(A12)

and

det
(

γX−γ−1 + ih̄γP−
)
= det

{
m11 + γm22γ−1 + ih̄γm21 +

1
ih̄

m12γ−1
}

, (A13)

det
(

γX+γ−1 − ih̄γP+

)
= det

{
m11 + γm22γ−1 − ih̄γm21 −

1
ih̄

m12γ−1
}

. (A14)

Therefore,

G =

(
2i
h̄

)N
det

{
m11 + γm22γ−1 + ih̄γm21 +

1
ih̄

m12γ−1
}

(A15)

det
{

m11 + γm22γ−1 − ih̄γm21 −
1
ih̄

m12γ−1
}

(A16)

Hence det A is expressed by determinants of N × N matrices, according to

det A =

(
1

8h̄

)2N
det

{
m11 + γm22γ−1 + ih̄γm21 +

1
ih̄

m12γ−1
}

det
{

m11 + γm22γ−1 − ih̄γm21 −
1
ih̄

m12γ−1
}

. (A17)

In the paper by Herman [28], the width parameter matrix was taken as γ times identity matrix, i.e.,
the width parameters for all degrees of freedom was chosen to be the same and equal to γ. While, here in
this appendix the width parameter matrix can even be taken as a general symmetric and invertible matrix,
i.e., the width parameters for all degrees of freedom don’t necessarily need to be equal.

Appendix B. Proof of Factorization of det A

For reasons of completeness, here we briefly sketch the factorization of det A, i.e., we prove

det A =

(
1
8

)2N
∣∣∣∣∣X

T
+γX− + γI XT

+γP− + i
h̄ I

PT
−γX+ + i

h̄ I γ−1

h̄2 + PT
+γP−

∣∣∣∣∣ (A18)

=

(
1
8

)2N
FG det (γ) , (A19)



Condens. Matter 2020, 5, 3 19 of 21

with F and G given in (A8) and (A9). Thus,

FG =

∣∣∣∣∣ 1
2 XT

+
1
2 XT
−

1
2 PT

+
1
2 PT
−

∣∣∣∣∣
∣∣∣∣∣γX−γ−1 + ih̄γP− − i

h̄
(
γX−γ−1 + ih̄γP−

)
γX+γ−1 − ih̄γP+

i
h̄
(
γX+γ−1 − ih̄γP+

) ∣∣∣∣∣
=

∣∣∣∣∣f11 f12

f21 f22

∣∣∣∣∣ , (A20)

with the block matrices

f11 =
1
2

(
XT
+γX− + XT

−γX+

)
γ−1 +

ih̄
2

(
XT
+γP− − XT

−γP+

)
=
(

XT
+γX− + γI

)
γ−1, (A21)

f12 =
1
2

(
XT
+γP− + XT

−γP+

)
+

i
2h̄

(
XT
−γX+ − XT

+γX−
)

γ−1

= XT
+γP− +

i
h̄

I, (A22)

f21 =
1
2

(
PT
+γX− + PT

−γX+

)
γ−1 +

ih̄
2

(
PT
+γP− − PT

−γP+

)
=

(
PT
−γX+ +

i
h̄

I
)

γ−1, (A23)

f22 =
1
2

(
PT
+γP− + PT

−γP+

)
+

i
2h̄

(
PT
+γX+ − PT

+γX−
)

γ−1

=
γ−1

h̄2 + PT
+γP−. (A24)

Therefore,

FG det (γ) =

∣∣∣∣∣∣
(

XT
+γX− + γI

)
γ−1 XT

+γP− + i
h̄ I(

PT
−γX+ + i

h̄ I
)

γ−1 γ−1

h̄2 + PT
+γP−

∣∣∣∣∣∣
∣∣∣∣∣γ 0
0 1

∣∣∣∣∣
=

∣∣∣∣∣X
T
+γX− + γI XT

+γP− + i
h̄ I

PT
−γX+ + i

h̄ I γ−1

h̄2 + PT
+γP−

∣∣∣∣∣ , (A25)

what we had wished to prove.
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