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Abstract: We show that we can interpret the exact solution of the one-dimensional t-J model in the limit
of small J in terms of charge carriers with both exchange (braid) and exclusion (Haldane) statistics with
parameter 1/2. We discuss an implementation of the same statistics in the two-dimensional t-J model,
emphasizing similarities and differences with respect to one dimension. In both cases, the exclusion
statistics is a consequence of the no-double occupation constraint. We argue that the application of this
formalism to hole-doped high Tc cuprates and the derived composite nature of the hole give a hint to
grasp many unusual properties of these materials.
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1. Introduction

This paper is a brief review of the attempt to assign 1/2 Haldane statistics to the charge carriers of
the one- and two-dimensional t-J model, comparing the two cases and arguing that the second case is
relevant for the low-energy physics of hole-doped high Tc cuprates. The emphasis is on ideas and only a
few mathematical details are given.

In quantum systems of identical particles, one can define two kinds of statistics. One is the exchange
(or braid) statistics: the (C-valued) many-body wave-function acquires a phase factor ei(1−α)π , with
α ∈ [0, 2[, when one performs a positively oriented exchange between two particles and the inverse phase
factor for a negatively oriented exchange. The parameter α is 0 for fermions, 1 for bosons, and, for the other
values, the corresponding particles are generically called anyons (see, e.g., Reference [1]); in particular, for
1− α = ±1/2, they are called semions and in this paper we will be mainly interested in this case. The same
phase factors arise in the quantum field theory setting if we perform an equal-time oriented exchange of
the fields creating the corresponding particles [2]. Anyons require an hard-core exclusion condition and
can exist only in space-dimension D < 3, where the exchange of two identical hardcore particles can be
oriented, namely one can distinguish an exchange and its inverse. This is possible, in one dimension (1D),
because the real line is oriented and, in two dimensions (2D), because one cannot continuously connect
exchanges with opposite orientation. Since oriented exchanges generate the braid groups [3], this statistics
is also called braid statistics. This connection can be made more intuitive using the path-integral formalism,
where, due to the boundary conditions in time, each configuration of the worldlines of the particles form
a braid if there are no intersections. Actually, using the fact that the probability for two brownian paths
in R2 to intersect each other at a fixed time is zero, the hard-core condition is not necessary in 2D in the
continuum [4].

Another kind of statistics can be defined for quasi-particles in finite-density quantum systems of
identical particles: the Haldane’s fractional exclusion statistics, generalizing Pauli exclusion principle for
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fermions [5]. It is identified by a parameter g measuring the effective interaction among quasi-particles
occupying the same state in the one-particle Hilbert space. A way of characterizing this statistics at T = 0 is
the following [6]: A quasi-particle obeys exclusion statistics with parameter g if the quasi-particle density,
denoted by ng, having the same volume enclosed by the Fermi surface of the Fermi gas with density n0,
satisfies

n0/ng = (1− g). (1)

Clearly, g = 0 for standard fermions, and other intermediate values of g in (0, 1) define a fractional
exclusion statistics. In particular, and this will be the case of interest here, this implies that at a fixed
momentum (neglecting other internal degrees of freedom) a quasi-particle with exclusion statistics 1/2
can have an occupation number twice that of a free fermion, so that the volume of its Fermi surface is half
of that of a Fermi gas with the same density.

In this paper, following References [7–9], we show that we can attribute consistently both exchange
and exclusion statistics 1/2 to the charge carriers of the one- and two- dimensional t-J model. A quite
interesting physical application of these ideas is a derived explanation of many features of the low-energy
physics of high Tc cuprates. In fact, most of the researchers believe that for the hole-doped cuprates the key
actors in the superconducting transition are the so-called Zhang–Rice singlets [10], that can be modeled
as empty sites of a 2D t-J model on a square lattice representing the Cu sites in the CuO planes of the
cuprates. The model hamiltonian for a plane is then given by:

Ht−J = ∑
〈i,j〉

PG

[
−tc∗iαcjα + J~Si · ~Sj

]
PG, (2)

where i, j denote nearest neighbour (nn) sites of the lattice, c the hole field operator, PG the Gutzwiller
projection eliminating double occupation, α the spin indices, and summation over repeated spin (and
vector) indices is understood, here and in the following. For the cuprates, a typical value for the nn
hopping is t ≈ 0.3 eV and for the anti-ferromagnetic Heisenberg coupling is J ≈ 0.1 eV. (Actually to get
a reasonable shape of the Fermi surface in the tight binding approximation one adds to the nn hopping
term at least a nnn term with coefficient t′, |t′| ∼ 0.03− 0.1 eV, strongly material dependent, but it will
not be considered here, except in the final section). As already mentioned, we will be interested also
in the 1D version of the model, which can be exactly solved by Bethe ansatz [11] and conformal field
theory techniques [12], but, following References [7,8], here will be solved via spin-charge decomposition.
This solution suggests the main strategy to treat the physically more relevant 2D version.

Probably the most interesting features of this approach applied to the cuprates are the following:
First, the holes are composites made of only weakly bound spinless holons, charge carriers with Fermi
surface, and spinons, spin carriers without Fermi surface, so that some physical responses dominated
by the spinons have a totally non-Fermi liquid character. This occurs in spite of the fact that the holes
have, in the overdoped region, a Fermi surface satisfying Luttinger theorem, precisely due to the 1/2
Haldane statistics of the holons. Second, the semionic statistics of the holons, generated by attached
charge vortices, implies the appearance, in the spin counterpart, of antiferromagnetic spin vortices with
opposite chirality when centered on holons in two different Néel sublattices. Lowering the temperature
such gas of vortices undergoes a Kosterlitz-Thouless-like transition, with the formation of a finite density
of vortex-antivortex pairs and since the vortices are centered on the charge carriers, this provides a novel
topological mechanism of charge-pairing finally leading to superconductivity [13].
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2. The Spin-Charge Decomposition

Let us outline the formalism of spin-charge decomposition that we use. Inspired by an idea pioneered
by Anderson [14] and Kivelson [15], suggested for the cuprates by the rather different response of charge
and spin degrees of freedom in many experiments, one can tackle the no-double occupation constraint
enforced by the Gutzwiller projector PG by rewriting the hole field cα as a product of a charged spinless
fermion field h, the holon, and a neutral spin 1/2 boson field s̃α, the spinon, as cα = h∗ s̃α [16]. (We use the
tilde here because we will denote by sα a slightly different field). Being spinless, by the Pauli principle,
the holon h implements exactly the Gutzwiller constraint. Furthermore if one imposes the constraint
s̃∗α s̃α = 1, then, since c∗αcα = 1− h∗h, one sees that h∗h is just the density of empty sites in the model.
However, if we treat this fermionic holon in mean-field, because it is spinless the Fermi surface that we get
is not the desired one; in fact, in 1D , from the exact solution, and in 2D, from experiments for overdoped
cuprates (see, e.g., Reference [17]), we know that the Fermi surface satisfies the Luttinger theorem for spin
1/2 fermions. Hence, the D-volume enclosed by the Fermi surface of fermionic spinless holons is twice
the desired one. This suggests that an exclusion statistics with parameter 1/2 would be the appropriate
solution to this problem. We now prove that precisely this exclusion statistics appears if the holons are not
fermions but semions and shows that this exchange statistics can be supported by an argument of energy
optimization. To implement the semionic exchange statistics in the path-integral formalism we start from
2D and make use of the following

Theorem 1 ([7,18]). We embed the lattice of the 2D t-J model in a 2-dimensional space and denote by x =

(x0, x1, x2) the coordinates of the corresponding 2+1 euclidean space-time, x0 being the euclidean time. We couple
the fermions of the t-J model to a U(1) gauge field, Bµ, gauging the global charge symmetry, and to an SU(2) gauge
field, Vµ, gauging the global spin symmetry of the model, and we assume that the dynamics of the gauge fields is

described by the Chern-Simons action −2SU(1)
c.s. (B) + SSU(2)

c.s. (V), with

SU(1)
c.s. (B) =

1
4π

∫
d3xεµνρBµ∂νBρ(x),

SSU(2)
c.s. (V) =

1
4π

∫
d3xTrεµνρ[Vµ∂νVρ +

2
3

VµVνVρ](x), (3)

where εµνρ is the Levi-Civita anti-symmetric tensor in 3D and ∂ν = ∂/∂xν. Then, the spin-charge (or SU(2)×
U(1)) gauged model so obtained is exactly equivalent to the original t-J model. In particular, the spin and charge
invariant euclidean correlation functions of the fermions fields cjα of the t-J model are exactly equal to the correlation
functions of the fields exp[i

∫
γj

B]P(exp[i
∫

γj
V])αβcjβ , where c denotes now the fermion field of the gauged model,

γj a string at constant euclidean time connecting the point j to infinity and P(·) the path-ordering, which amounts
to the usual time ordering T(·), when “time” is used to parametrize the curve along which one integrates.

The two crucial points in the proof of the above theorem are: First, due to a result of Witten [19] the
integration of the two above gauge fields on a set of closed string forming a braid averaged with the above
Chern-Simons actions exactly cancel against each other. Second, the worldlines of the fermions of the t-J
model in the partition function (joined to the strings in the correlation functions) form braids , because
they have no intersections, due to the Gutzwiller constraint.

To the fermion field of the gauged model, we now apply the spin-charge decomposition discussed
above, rewriting it as a product of a holon and a spinon field. A good feature of introducing the above
gauge fields is that they allow a more flexible treatment of charge and spin responses within a spin-charge
decomposition scheme, attaching the “charge” B-string to the holon and the “spin” V-string to the spinon.
Spin and charge responses are in fact quite independent in 1D and this turns out to be partially true even
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in 2D. One can verify [7,18] that the non-local quantum field operator corresponding to the product of the
fermionic holon field h and the “charge gauge string” exp[i

∫
γj

B] obeys semionic statistics and the same

is true for the product of the bosonic spinon field s̃ and the “spin gauge string” P exp[i
∫

γj
V]. After the

holon-spinon decomposition introduced above has been implemented, the action of the gauged t-J model
at doping δ is given by [16] :

S(h, h∗, s̃∗, s̃, B, V) =
∫ β

0 dx0 ∑j h∗j [∂0 − iB0(j)− 2tδ]hj + iB0(j) + i(1− (4)

h∗j hj)(s̃∗jαV0(j)αδ s̃jδ)−∑〈i,j〉 th∗j exp[i
∫
〈i,j〉 B]hi(s̃∗iαP(exp[i

∫
〈i,j〉 V])αδ s̃jδ)]

+ J
2 (1− h∗j hj)(1− h∗i hi)[|(s̃∗iαP(exp[i

∫
〈i,j〉 V])αδ s̃jδ)|2 − 1

2 ]− 2SU(1)
c.s. (B) + SSU(2)

c.s. (V),

where β = 1/kBT. The two-point euclidean correlation function of the hole can be written as:

G(x, y) = 〈c∗xα(x0)cyα(y0)〉 =
∫
DhDh∗Ds̃Ds̃∗DBDV exp[−S(h, h∗, s̃, s̃∗, B, V)]

hx exp[−i
∫

γx
B](x0) exp[i

∫
γy

B]h∗y(y0)(s̃∗xβP(exp[−i
∫

γx
V])βα)(x0)(P(exp[i

∫
γy

V])αδ s̃yδ)(y0)

[
∫
DhDh∗Ds̃Ds̃∗DBDV exp[−S(h, h∗, s̃, s̃∗, B, V)]]−1, (5)

where x, y are lattice sites, and x0, y0 are euclidean times, which in the following will be often understood,
if no confusion can arise.

3. The One-Dimensional t-J Model

To discuss the one-dimensional model, we perform a dimensional reduction of the gauged model
defined in Theorem 1, by restricting the spatial support of the hole fields to a line, let us say along x1,
keeping the strings γ not along this line to avoid intersections with the hole worldlines making the
previous theorem inapplicable.

In 1D, one can give an intuitive picture of holons and spinons as follow (see, e.g., Reference [20]):
Consider the Heisenberg spin 1/2 chain, describing the 1D t-J model in the limit of zero doping and
take as reference state the one with the spin antiferromagnetically ordered, mimicking the Néel order
appearing in 2D. If we insert a dopant by removing the spin from a site then the two neighbouring spins
will be ferromagnetically aligned. Let then the empty site to hop by a simultaneous opposite hopping
of the spin, then we get two separate excitations. There is an empty site, but with neighbouring spins
antiferromagnetically aligned, thus carrying charge but not spin; the corresponding excitation is the holon.
There is another site where one finds a domain wall between two different Néel sublattices, hence carrying
spin 1/2 but neutral; the corresponding excitation is the spinon. Notice, however, that attached to the
site with a spin mismatch of 1/2 there is a string of spins flipped w.r.t. the reference state from that site
to the holon position, which is integral part of the spinon excitation and corresponds to the “spin string”
introduced in Theorem 1. In the continuum semiclassical limit, one can view the spinon as a spin kink,
continuum analog of the above domain wall.

Let us make the above picture mathematically precise in the spin-charge decomposition formalism
previously outlined. Both in 1D and 2D, the gauged model equivalent to the t-J model has three local
gauge invariances: the “charge” U(1), the “spin” SU(2) and the slave-particle corresponding to the
multiplication of the holon field h and the spinon field s̃α by the same local phase, thus leaving the hole
field unchanged.

In 1D [7], we gauge-fix the first symmetry by setting B2 = 0, the second one, as suggested by the
previous “picture”, by setting s̃jα = σ

j
x(10)t, where σx denotes the Pauli matrix and the superscript t the

transpose. Finally, the slave-particle gauge symmetry is fixed by imposing a kind of 1D Coulomb gauge:
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arg(s̃∗αiP(exp[i
∫
〈i,j〉 V])αβ s̃βj) = 0. We now turn to the discussion of charge and spin carriers. We start with

the “charge carrier”.
Since the 0-component of B appears linearly in Equation (4) , we can safely integrate it out getting the

constraint (with µ, ν = 1, 2, z ∈ R3):

εµν∂µBν(z) = −πδ(z2)[∑
j

δ(z1 − j)(1− h∗j hj)(z0)]. (6)

By imposing the gauge-fixing B2 = 0, one finally gets

B1(z) = −
π

2
sgn(z2)[∑

j
δ(z1 − j)(1− h∗j hj)(z0))], (7)

with the convention sgn(0) = 0, so that the holon field turns out to be given by

exp[i
∫

γj

B]hj = exp[±i
π

2 ∑
`>j

(1− h∗`h`)]hj, (8)

with the sign in the exponent being positive (negative) if the angle between the x1 axis, and γ is positive
(negative) in ] − π, π[. Therefore, the sign depends on the choice of the orientation of the x1 line in
the spatial plane; since the original model is independent of this choice we take an average of the two
possibilities. If the doping is δ, the fermion cα of the 1D t-J model in the tight-binding approximation has
a Fermi momentum π(1− δ)/2 since two fermions with opposite spin can have the same momentum.
For the spinless fermion h∗, the Fermi momentum would be π(1− δ) since only one spinless fermion con
have a fixed momentum. However, if we consider the phase string attached to the spinless fermion in
Equation (8) we see that, since the expectation value of h∗`h` is δ, in the leading term it contributes to the
Fermi momentum a term −π(1− δ)/2. Hence, the distance between the two Fermi point of the semionic
holon of Equation (8) is π(1− δ), and it obeys an Haldane statistics of parameter 1/2.

To derive the holon contribution to the euclidean c-correlator G(x, y) in the scaling limit, we
decompose each h into right and left movers as h(x) ∼ hR(x)eiπ(1−δ)x1

+ hL(x)e−iπ(1−δ)x1
, the spinor

doublet H = (hR, hL)
t having the dynamics of a massless Dirac fermion . Using as in Reference [21]

the Schwinger formula [22] for the two-point correlation functions of massless 2D Dirac fields coupled
to gauge fields, one finds as leading holon contributions corresponding to the two string directions:
e±iπ(1−δ)x1/2[(x1 − y1) ± ivc(x0 − y0)]−1/2[(x1 − y1)2 + v2

c (x0 − y0)2]−1/16, where vc ∼ tR denotes the
charge velocity.

Let us turn to the “spin carrier”. Since we have already gauge-fixed the SU(2) gauge-invariance using
the spinons, the gauge field V has to be integrated without gauge-fixing. This can be implemented by
splitting the integration over V into an integration over a field Vm, satisfying the gauge-fixing condition
Vm

2 = 0 and its gauge transformations expressed in terms of an SU(2)-valued scalar field g, i.e., Vµ =

g†Vm
µ g + g†∂µg, µ = 0, 1, 2. We now find the configuration of g that optimize the partition function of

holons in a fixed, but holon-dependent, g-background. It is rigorously proved in Reference [7] that such
configuration is given by gm

j = exp[−i π
2 σx ∑`>j h∗`h`]. This is the “string” of spin flips that we have

encountered in the previous “pictorial” discussion. Finally, we set g = Ugm, with U ∈ SU(2) describing
the fluctuations around the optimal configuration. We write

U =

(
s1 −s∗2
s2 s∗1

)
, (9)
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and we will call in the following the sα again “spinons”. As a first “mean field” approximation, we neglect
in the calculation of Vm the fluctuations of the spinons in the directions orthogonal to the spins of the
optimal configuration. Proceeding now as done for the B field and integrating over Vm

0 one finds

Vm
1 (z) =

π

2
sgn(z2)[∑

j
δ(z1 − j)(1− h∗j hj)(z0))(s∗1js1j − s∗2jsj2)]σ3. (10)

Let us remark an interesting feature [23] of the above approach: thanks to the holon-depending spin
flips, since the holon in a oriented hopping link is at its end, (s̃∗iαP(exp[i

∫
〈i,j〉 V]))αδ s̃jδ) in the t-term of

Equation (4) equals (σ|i|x U†
i Ujσ

|i|
x )11 = s∗αisαj, whereas in the J-term, where there are no holons, it equals

(σ
|i|
x U†

i Ujσ
|j|
x )11 = εαβsαisβj. But under the constraint s∗αjsαj = 1 the following identity holds: |s∗αisαj|2 +

|εαβsαisβj|2 = 1 so that if one optimizes the t-term choosing |s∗αisαj| = 1, simultaneously one optimizes also
the J-term. This optimizing property is somewhat strange, since the same expression in terms of V gives
rise to different expressions in terms of the spinons s in the t- and the J-terms. It is intrinsically due to
the SU(2) gauge degrees of freedom, absent in the more standard slave-particle approaches involving
only U(1) gauge degrees of freedom. An exception is the “string formalism” of Weng [8], in 1D essentially
equivalent to the charge-spin decomposition discussed here. The optimization is achieved there using the
Gutzwiller projection in the squeezed chain (see below) of occupied sites, the only ones in which spinons
are defined in this Hamiltonian formalism, a feature that, however, has no natural extension to 2D.

As a consequence of the spin flips, the gauge-fixing for the slave-particle gauge symmetry in the
present formalism becomes arg(s∗αisαj) = 0 in the t-term, but in the links of the J-term it is given by
arg(s∗αiεαβsβj) = 0. This fact is used in the following further approximations. We assume that the spin
fluctuations can be treated in mean field in the hopping term because the corresponding term is real due
to the discussed slave-particle gauge fixing, and we denote the renormalized hopping by tR . Furthermore,
since the paths of spinons cannot overlap due to the Gutzwiller constraint we replace for the spinon
motion the original chain by a squeezed chain of lattice spacing (1− δ) with single occupancy constraint.
We redefine the spinons in the squeezed chain, denoted by s, through sαj = (Ujσ

|j|
x )α1. Written in terms of

s the J-term is just the Heisenberg model in the Schwinger-boson representation. The slave-particle gauge
fixing becomes arg(s∗αisαj) = 0. Then, approximating the term quartic in s by mean field and making using
of the reality condition imposed by the gauge-fixing, the J-term can be rewritten as

∑
i

s∗αi∂τsαi + JR ∑
〈i,j〉

(s∗αisαj + h.c.) + i ∑
i

λi(s∗αisαi − 1) (11)

with λ a Lagrange multiplier field enforcing the single-occupancy constraint, and JR a renormalized spin
coupling constant. The absence of a possible gap term derived from umklapp is justified by its absence in
the Heisenberg model, as in, e.g., Reference [24].

One can now compute the long-wavelength continuum limit of the spinon contribution to the
euclidean correlator G(x, y) of the fermion c of the t-J model. Motivated by [7], but following closer the
formalism of Reference [8], one first fermionize separately the two components of s by a Jordan-Wigner
transformation, and we denote by fα the corresponding fields. Reinserting the “spin string”, the semionic
spinon field in the squeezed chain is written in terms of f as fαj exp[(−1)α(±)i π

2 ∑`>j f ∗β` fβ`)], where the

sign ± depend on the direction of the “spin string” w.r.t. the x1 axis, as discussed for the holon. Similarly,
in the scaling limit we decompose each fα into right and left movers as

fα(x) ∼ fαR(x)eik f x1
+ fαL(x)e−ik f x1

, (12)
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k f being the spinon Fermi momentum in the squeezed chain, with massless Dirac spinor doublets Fα =

( fαR, fαL)
t, plus the single-occupancy constraint. In the leading term, the mean-field contribution of the

exponential in the “spin string” exactly cancels one of the two k f exponentials in Equation (12) so that in
this approach the spinons do not contribute to the Fermi momenta of the fermion c of the t-J model. Hence,
taking into account the Haldane statistics of the holon, when the electron is reconstructed combining the
holon with the spinon, it has the same Fermi surface of the tight-binding approximation for the fermion,
as we wanted to prove, thus satisfying Luttinger theorem.

For completeness, we now outline how to finalize the computation of the c correlator. To implement
exactly the single-occupancy constraint, we use the technique of duality (equivalent to bosonization
in 1D [25–27]): we couple minimally each Fα with a U(1) gauge field Aαµ, µ = 0, 1 and impose the
constraint that the field strengths of Aα are zero, by inserting in the Lagrangian a term with multiplier
fields, denoted by φα, given by iεµν∂νφα Aαµ. Defining φ± = (φ1± φ2)/2 a change of variable, re-adsorbing
λ into the gauge fields Aα produces the constraint φ+ = 0. Then, using the procedure of Reference [21]
integrating out Aα and φ−, one gets for the spinon contributions with the two directions of the strings:
[(x1 − y1)± ivs(x0 − y0)]−1/2, where vs ∼ JR denotes the spin velocity. Combining the holon and spinon
contribution one thus reproduces [7,8] the correct long-wavelength limit of the correlation function G(x, y)
of the 1D t-J previously obtained by Bethe ansatz and conformal field theory techniques .

4. The Two-Dimensional t-J Model

If we try naively to export to 2D the string mechanism discussed in 1D, we immediately find a big
difference already in the intuitive picture: in correspondence to the string of spin flips between the holon
and spinon positions in a chain, the two parallel adjacent chains have the spin with the same orientation of
those of the string. and since the spin interaction is antiferromagnetic this configuration costs an energy
proportional to the length of the string, i.e., holon and spinon are confined: this is a manifestation of the
slave-particle gauge force. However, this is not an optimal solution from the point of view of energy. To get
a suggestion for improvement, one notices that the kink corresponding to the continuum limit of the spin
string is the typical semiclassical excitation in 1D, but not in 2D, where its role is played by the vortex.
If we accept the suggestion coming from the 1D model for the exchange statistics of holon and spinon,
one should search for a semionic representation of the hole field also in 2D and precisely a charge-vortex
attached to a fermionic “bare” holon converts it into a semion. As explained later, the spin-vortex generated
by consistency will also play a key role in the formalism. These vortices are somewhat analogous to those
introduced by Laughlin in the Fractional Quantum Hall Effect and in fact a semionic representation of the
hole was advocated by him [28] quite soon after the discovery of high Tc. As we sketch below, in 2D, as in
1D, this semionic holon obeys a 1/2 exclusion statistics.

We now make these ideas precise in the spin-charge gauge formalism. For convenience, we start
with the spin excitation, since some of its features will be needed in the description of the charge carrier,
but we try to follow as close as possible the procedure discussed in 1D. Analogously, we introduce
the gauge-fixing s̃jα = σ

j
x(10)t for the “spin” gauge symmetry, the field Vm satisfying the Coulomb

gauge-fixing condition ∂µVm
µ = 0, µ = 1, 2 and its gauge transformations, again written in terms of an

SU(2)-valued g field. We did not succeeded to find rigorously, as in 1D, a configuration of g, depending
on the holon configuration, optimizing the holon-partition function in that g background, but we still
found a configuration gm optimal “on average”, in a Born-Oppenheimer approximation [16]. As in 1D in
this configuration the spinons s̃ are antiferromagnetically ordered, but there is in addition a spin flip on
the sites where holons are present, as for the final site of a hopping link of holons at the time of hopping.
Hence, neglecting Vm, the argument given in the previous section on the simultaneous optimization in
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this formalism of the t and J terms holds also in 2D, giving a motivation “a priori” for this spin-charge
gauge approach.

Spin fluctuations around the “optimal” configuration are described by the SU(2)- matrix field U, the
components of which are written, as in 1D, in terms of spinon fields sα. At least in the long wavelength
continuum limit it is convenient to make the slave-particle gauge symmetry explicit by introducing the
related gauge field that we denote by Aµ. This can be done in absence of holons simply by assuming a
continuum limit of the spinon field s of the form sxα(x0) −→ sα(x) + (−1)|x|pα(x), where s and p in the
r.h.s. are continuum fields and |x| = x1 + x2. Integrating out the ferromagnetic component p, as shown in
Reference [29], both in 1D and 2D, we obtain a low-energy spinon Lagrangian in the form of a CP1 model:

Ls =
1
g

[
|(∂0 − iA0) sα|2 + v2

s

∣∣∣(~∇− i~A
)

sα

∣∣∣2] , (13)

where g ∼ J and vs ∼ J is the spinon velocity, with the lattice spacing set to 1. Furthermore Aµ(x) =

(−1)|x|s∗α(x)∂µsα(x), with µ a space-time index, and the implicit constraint s∗αsα = 1 is understood. For
later purposes, we remark that in 1D there is an additional Θ-term

LΘ = i
Θ
2π

εµν∂µ Aν, (14)

with Θ = π.
In 2D neglecting, with a stronger approximation w.r.t. 1D , the spinon fluctuations U in the

computation of Vm one gets ( with µ = 1, 2):

Vm
µ (z) = −1

2 ∑
j
(−1)|j|∂µ arg(~z− j)h∗j hj(z0)σz, (15)

with |j| = j1 + j2. We recognize in the term (−1)|j|∂µ arg(~z− j) the vector potential of a vortex centered
on the holon position j, with opposite vorticity (or chirality) for the center in opposite Néel sublattices.
We call these vortices antiferromagnetic spin vortices; they are the topological excitations of the U(1)
subgroup of the SU(2) spin group unbroken in the antiferromagnetic phase. Hence, they are still a
peculiar manifestation of the antiferromagnetic interaction, like the more standard antiferromagnetic spin
waves, but they appear only in 2D. These vortices are of Aharonov-Bohm type, hence a purely quantum
effect, inducing a topological effect far away from the position of the holon itself, where their classically
observable field strength is supported.

In the low-energy continuum limit, one can see from (4), expanding to the leading power the
exponentials in the links, that Vm appears linearly in the t-term of the action; since its spatial average
vanishes in a “mean field” treatment we ignore it. With the same approximation in the J-term Vm appears
instead quadratically and assuming self-consistently that for sufficiently large δ the full SU(2) spin
symmetry is restored at large scales, one finds an interaction between vortices and spinons proportional to:∫

d3x(Vm
µ Vm

µ )(x)s∗αsα(x). (16)

A quenched average, 〈·〉, over the positions of the center of the antiferromagnetic spin-vortices yields the
following estimate [16]: 〈Vm

µ Vm
µ 〉 ≈ δ| log δ|, thus providing a mass-gap to the spinons. Hence, the gapless

spinons s forming the spin waves of the CP1 (or equivalently O(3)) model describing the undoped system,
traveling in a gas of antiferromagnetic spin vortices centered on holons acquire a gap ms , converting the
long-range AF of the undoped model in the short-range AF when doping exceeds a critical value. This is
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selfconsistent with the previous assumption of the SU(2) symmetry restoration at large scales. Leaving
aside for the moment the monomial quartic in the holons of the J-term in Equation (4), we treat in mean
field the monomial quadratic in the holons, so that the antiferromagnetic coupling is renormalized to
J(1− 2δ). We see here the effect of strong reduction of antiferromagnetism due to the increase of the
density of empty sites, corresponding to Zhang–Rice singlets in the cuprates. As a result, one finds that
the continuum limit of the term∫

dx0[∑
j

i(σ|j|x U†
j ∂0Ujσ

|j|
x )11 + ∑

〈i,j〉

J
2
(1− h∗j hj − h∗i hi)|(σ

|i|
x U†

i P(exp[i
∫
〈i,j〉

Vm])Ujσ
|j|
x )11|2 −

1
2
](x0) (17)

within the above approximations is given by

∫
d3x

1
g

[
|(∂0 − ia0) sα|2 + v2

s

∣∣∣(~∇− i~a
)

sα

∣∣∣2 + m2
s s∗αsα

]
(x), (18)

where ms ≈ J(1− 2δ)
√

δ| log δ|. In view of the action (18) within this formalism, it is natural to consider
the bosonic spinons sα as the spin carriers at large scales, at odds with the semionic statistics of the
spinons found in 1D also in the continuum limit. However, still a “spin gauge string” will be necessary
to reconstruct the hole, as discussed below. The spinon system behaves as a spin liquid since the spinon
confinement which would appear with the massive action (18) is avoided by the interaction with the
gapless holons, as briefly discussed in the next section.

We now turn to the charge carrier. We use the Coulomb gauge-fixing ∂µBµ = 0, µ = 1, 2 for the
“charge” gauge symmetry and integrating the B0 field we obtain Bµ(z) = Bm

µ + bµ(z) where Bm
µ introduces

a π-flux phase, i.e., exp[
∫

∂p Bm] = −1 for every plaquette p and

bµ(z) =
1
2
[∑

j
∂µ arg(~z− j)(h∗j hj)(z0))]. (19)

We can recognize in ∂µ arg(~z − j) the vector potential of a vortex centered on the holon position j ,
i.e., centered on an empty site of the t-J model. At first, we neglect the b-field. Then, as discussed
in [30], through Hofstadter mechanism [31] the π-flux (chosen in staggered form) converts the holon
with tight-binding dispersion ωh ∼ 2t[(cos kx + cos ky)− δ] into a pair of lattice “Dirac fields”, ψa, with

pseudospin index a related to the two Néel sublattices and with dispersion: ωh ∼ 2t[
√

cos2 kx + cos2 ky −
δ] restricted to the magnetic Brillouin zone. One thus obtains two “small FS” centred at (±π

2 ,±π
2 ) with

Fermi momenta kF ∼ δ.
Above a crossover temperature T∗, we find that the optimal configuration gm involves also a phase

factor canceling the contribution of Bm in the loops of hopping links of holons, so that the hopping holons
feel an approximately zero flux [32], and one recovers the tight-binding Fermi surface. By analogy with
the phase diagram of hole-doped cuprates, we call pseudogap (PG) the parameter region in the δ-T plane
below T∗ and strange metal (SM) the region above.

Reintroducing the b-field, the non-local field hj exp[
∫

γj
b] obeys semionic statistics. We now use a

result proven in Reference [33]:

Theorem 2. In an incompressible 2D Fermi system with Hall conductivity σH = 1/(2π), if its fermions are
coupled to a Chern-Simons gauge field b with action − 1

α SU(1)
c.s. (b) with the statistical parameter α = 1/2 turning

them into semions, then these semions obey the Haldane statistics with parameter 1/2.
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Let us sketch the proof. From the Chern-Simons coupling with parameter α, we get εµν∂µbν = −2παj0
with j0 the charge density. Inside a region S we turn on the Chern-Simons coupling α adiabatically from 0
to 1/2. For an incompressible Hall system, the generated statistical flux in turn induces a charge current
perpendicular to the boundary of S. Denoting by N(α) the particle number in S with Chern-Simons
coupling α and using the continuity equation ∂0 j0 = −∂µ jµ, µ = 1, 2 for the charge current jµ and the Hall
relation jµ = σHεµν∂0bν, we derive

∂0N(α) =
∫

S
d2x∂0 j0(x) = −

∫
S

d2x∂µσHεµν∂0bν(x) =
∫

S
d2x2πασH j0(x) = 2πσH∂0αN(α). (20)

Integrating over the time of the adiabatic process from (20) we get N(1/2)(1− πσH) = N(0) and using
σH = 1/(2π) comparing with (1) we get g = 1/2.

Hence, in order to show that the semionic charge carriers of the 2D t-J model in the present
formalism have an exclusion statistics parameter 1/2, we need to prove that the “bare” fermionic
holon system has Hall conductivity 1/(2π) and is incompressible. To prove the first property, we
start noticing that, if the constraint s̃∗α s̃α = s∗αsα = 1 is imposed, since c∗αcα = 1− h∗h, one finds that
(exp[i

∫
γj

B]hj)
∗(exp[i

∫
γj

B]hj) = h∗j hj is just the density of empty sites in the model and the Gutzwiller
constraint is exactly implemented. However, in the large-scale continuum limit we have seen that the
interaction with antiferromagnetic spin vortices makes the spinon s(x) gapped. This implies that in this
limit the single-occupancy constraint on s is not fully satisfied, as the spinon mass gap is incompatible
with it, so the Gutzwiller projection is not anymore exactly implemented.

To understand the implication, let us at first consider the free fermionic holons at doping concentration
δ = 0 in the presence of the staggered π-flux implemented by Bm

〈i,j〉. As mentioned above, they are described
by massless Dirac fields with two flavors, ψa, with dispersion given by two double-cones with vertices
at (±π/2, π/2) in a suitably defined magnetic Brillouin zone. Since the holons are spinless if they obey
fermionic exclusion statistics, they fill both the sheets of the double-cones, hence no dopants can be
introduced for δ 6= 0. However, if the semionic holons obtained by coupling to the b-field satisfy the
exclusion statistics with parameter 1/2, at half filling they fill only the lower bands. Still, the holon density
does not vanish, even if there are no empty sites in the original t-J model at δ = 0. The lower bands are
thus an artifact produced by the violation of the Gutzwiller constraint in the large-scale continuum limit.
Since the semionic holons in the lower bands are a result of relaxing the Gutzwiller projection, they are
“spurious” and describe the singly occupied sites in the original unprojected lattice model. When the
doping holes are introduced in the t-J model, the corresponding “physical” holons partially fill the upper
bands of the double-cones and are responsible for the low energy physics.

Although the spurious lower bands of holons are not directly relevant to the low energy physics in
the scaling limit, they are responsible for the 1/2 exclusion statistics. In fact, due to parity anomaly [34],
to compute the Hall conductivity of massless Dirac fields we need to introduce an infrared regulator (like
a mass) with a parameter m, respecting the symmetry of the system; at the end of the computation one
takes the limit m → 0. The mass regulator breaks parity and even after it is sent to zero, for half-filling
it induces a non-vanishing Hall conductivity sign(m)/4π for each double-cone, generated by its lower
filled band. In the standard case of pure π flux, the overall system preserves time reversal, and the signs
in the two cones are opposite, in agreement with the Nielsen-Ninomyia theorem [35]. For the holon
system in consideration, however, time reversal is broken by the staggered structure of the optimal spinon
configuration and by the chirality of the antiferromagnetic spin vortices. (The full spinon-holon system is
nevertheless invariant under time-reversal and parity due to the opposite signs of the two Chern-Simons
actions). The symmetry structure of the holon system is however preserved by time-reversal combined
with parity w.r.t. a line between the lattice sites realized by exchange of the two Néel sublattices. As a
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consequence, when a regulator respecting this symmetry is introduced, still denoted m, the contributions of
the two cones to the Hall conductivity add up [9] to sign(m)/2π, as in the case of topological insulators [36].
Taking m > 0, in terms of effective action, this corresponds to a contribution SU(1)

c.s. (b).
In the standard free case, if the upper bands are partially filled, their contribution to the Hall

conductivity exactly cancel that of the lower bands. In our case, however, the situation is different, because
the interaction with the slave-particle gauge field makes the holon liquid of the upper bands incompressible
and with vanishing contribution to the Hall conductivity. In fact, one should not introduce a coupling of
the “spurious” holons in the lower bands with spinons so that the density of “physical” holons coupled to
spinons still correctly vanishes at δ = 0; a coupling between spinons and lower bands would introduce
unphysical interactions in the model. Hence, the contribution to the Hall conductivity of the lower bands
is correctly computed as above. The upper bands, however, have additional couplings to the slave-particle
gauge field, generated by spinons, and to Vm. In doing the computation, it will be convenient to take
into account the approximation of neglecting U in Vm, by replacing Vm in the action by a U(1) gauge
field v corresponding to the U(1) subgroup of the spin group SU(2) previously selected by choosing the
directions of the spinons. Accordingly, we need also to replace the SU(2) Chern-Simons action of V by
2SU(1)

c.s. (v), where the factor 2 is due to a normalization needed passing from SU(2) to its U(1) subgroup.
Then, the interaction with A and v, upon integration of “physical” fermionic holons, produce as leading
term of the effective action the Chern-Simons action −SU(1)

c.s. (b + A)− SU(1)
c.s. (v) . We now need to integrate

A to find both the Hall conductivity and the compressibility of the holon system.
Since the upper bands are partially filled, the leading contribution comes from a region near the Fermi

surface. Then, at ω = 0 in the limit k→ 0 in the Coulomb gauge, its polarization bubble matrix is given by:

πh(~k) =

 χh
0 −k2σh

H k1σh
H

k2σh
H

~k2χh
⊥ 0

−k1σh
H 0 ~k2χh

⊥

 , (21)

where χh
0, χh
⊥, σh

H = −1/(2π) are the density of states at the Fermi energy, the diamagnetic susceptibility,
and the Hall conductivity, respectively.

Since the spinons are gapped, integrating them out one obtains a Maxwell effective action for the
slave-particle gauge field Aµ; the spinon polarization bubble matrix at ω = 0 is then given by the
diagonal matrix

πs(~k) = diag(χs
0k2,~k2χs

⊥,~k2χs
⊥), (22)

with χs
0, χs
⊥ the electric and the diamagnetic susceptibility of the spinon system.

We now compute the polarization bubble of the holons dressed by the spinon interaction in RPA
approximation, which should give the leading contribution since the slave-particle interaction is of
long-range. In the small k limit, it is then given by

Πh(~k) = πh[1 + (πs)−1πh]−1, (23)

where the scalar component (corresponding to compressibility) is given by

Πh
0(~k) = χs

0k2, (24)
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and the Hall polarization bubble by

σH(~k) =
σh

Hk2χs
0χs
⊥

(σh
H)

2 + χh
0(χ

s
⊥ + χh

⊥)
; (25)

therefore, both vanish at k = 0, implying that the Fermi liquid in the upper bands of “physical” holons
is incompressible and does not contribute to the Hall conductivity. Since the lower holon bands are
completely filled, we get as result that the total holon system before it is coupled to the Chern-Simons
b-field is incompressible and with Hall conductivity 1/(2π). Hence, according to the result stated in
Theorem 2, after coupling with b, the resulting semionic holons have exclusion statistics parameter 1/2,
as anticipated above.

Since the crossover from the pseudogap PG to the strange metal SM is due to spinons, the contribution
of the lower bands remain unchanged in the two "phases". In the partially filled band in SM, qualitatively,
the situation is as discussed above, except for the value of the Fermi momenta, which is now that of the
tight-binding Fermi surface. For later purposes, we finally remark that the total effective Chern-Simons
action given by the original U(1)× SU(2) term of the gauged t-J model plus the induced action obtained
integrating out the holons according to the above computation is given by −SU(1)

c.s. (b) + SU(1)
c.s. (v).

5. The Retarded 2D Hole Correlator

In this section, we sketch the computation [37], within some approximation, of the scaling limit of
the retarded two-point correlation function of the hole reconstructed from spinons and holons in the PG
“phase”, near the Fermi surface. At first, we neglect the contribution of the v and A fields, which will be
re-inserted later on.

We start noticing that in the scaling limit the contribution of the lower band of “spurious” holons is
just a matrix element suppressing the spectral weight of the hole outside of the magnetic Brillouin zone.
It will not be discussed anymore, for details see Reference [38].

To derive the contribution of the “physical” holons to the euclidean c-correlator in the scaling limit,
we use a “tomographic decomposition” [39] near the Fermi surface, a sort of dimensional reduction
angle-dependent allowing to rewrite the holon correlator as a sum of contributions from 1+1 massless
Dirac fields. This procedure is an analogue of the decomposition in 1D in terms of left and right movers.
More precisely let~nθ a unit vector from the center of the considered Fermi surface to a point on the Fermi
surface at an angle θ say respect to the x1 positive direction. We set~nθ ·~x = xθ

‖ and~nθ ∧~x = xθ
⊥. Notice

that ~nθ+π = −~nθ and, accordingly,xθ+π
‖ = −xθ

‖. Let us, for simplicity, omit in the following the flavor
index of the Dirac fields ψa. Following ideas developed in References [38,39] in the scaling limit we write
ψ(x) exp[i

∫
γx

b] ∼
∫

dθ exp[ikFθ xθ
‖] exp[i

∫
γx

b]ψθ(x), where the ψθ can be identified as the quasi-particle
fields in the sense of Landau. Here, kFθ is the Fermi momenta along the θ direction of the Fermi surface of
a spin 1/2 Fermion, in spite of the fact that the holon is spinless, since, as discussed above, the semionic
holons turn out to obey the Haldane statistics of parameter 1/2. The fields ψθ , ψθ+π are the analogue of
the 1D chiral components hR, hL, and we call them sector fields. The field ψθ can then be decomposed as a
product of two fields: a fermionic ψ‖θ(x0, xθ

‖) and a bosonic ψ⊥θ(x0, xθ
⊥). The second field has a propagator

given simply by an approximate Dirac-delta function in xθ
⊥. As in 1D one can then group together ψ‖θ and

ψ‖θ+π into a two-component massless Dirac field which we denote by Ψθ , and we call radial sector field.
In the scaling limit b is minimally coupled only to these fields. Taking into account the renormalization of
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the coefficient of the Chern-Simons action discussed at the end of the previous section, the integration of
the b0 component produces the constraint

1
2π

εµν∂µbν(x0, xθ
‖, xθ
⊥) = δ(xθ

⊥)Ψ
†
θ Ψθ(x0, xθ

‖) (26)

with ∂µ = ∂/∂x0, ∂/∂xθ
‖. After choosing the gauge bθ

⊥ = 0, Equation (26) is solved by

bθ
‖(x0, xθ

‖, xθ
⊥) = πsgn(xθ

⊥)Ψ
†
θ Ψθ(x0, xθ

‖) (27)

with the convention sgn(0) = 0.
Since in Ψθ we have assembled together the fields corresponding to angles θ and θ + π, naively, one

expects that the θ parameter for the radial sector fields should range over an interval of length π. However,
when we include the strings, the result would depend, through a sign, on which specific interval we choose
in the natural range of 2π. This situation is the analogue of the choice in 1D of the relative angle between
the direction of the string and the x1 axis. As we have done there we should avoid this nonphysical feature
and integrate the contributions of the Ψθ fields with θ running in the full 2π range.

Using the Schwinger formula as in Reference [21] and restoring physical units x0 → v f x0 with v f the
Fermi velocity, we find for the leading contribution of the euclidean correlator of the radial sector fields:

〈exp[i
∫

γx
b]ψ∗θ (x0, xθ

‖) exp[−i
∫

γ0

b]ψθ(0)〉 =
1

4
√
(v f x0)2 + (xθ

‖)
2

. (28)

We can see that, because of the Chern-Simons coefficient −1, we get the well known expression of
the propagators of hard-core bosons in one dimensions: the b field has "bosonized" the radial sector
fields. This change of statistics from the semionic one for the holon fields to the bosonic one for the
quasi-particle excitations over their ground state is reminiscent of the change of statistics appearing in the
fractional quantum Hall effect, where the ground state is described in terms of fermionic electrons, but the
quasi-particle excitations above it are the anyonic Laughlin vortices (see, e.g., Reference [40]).

Since the hole must still be a fermion and, as discussed above, the large-scale field for the spinon
is bosonic, it is up to the spin gauge field v to restore the right statistics of holon quasiparticles. In fact,
if we add the v-strings and use the straight-line Gorkov approximation (see, e.g., Reference [41]) for the
coupling of holons to v, then the action +SU(1)

c.s. (v) has precisely the right coefficient to transmute back
to fermionic the exchange statistics of the quasi-particle holon fields dressed by the v-strings, without
changing, however, the power law of the sector fields.

We finally need to re-insert the coupling to the slave-particle gauge field A and to the spinon.
Preliminarily, we remark that in the 1D systems of the radial sector fields, because of the appearance of the
factor sgn(xθ

⊥) with sgn(0) = 0, all the local gauge-invariant correlation functions not involving gauge
strings are unmodified by the coupling to the Chern-Simons fields. Since the leading term of the effective
action of the slave-particle gauge field obtained integrating the sector fields has as coefficient polarization
bubbles that are gauge-invariant without gauge strings, its scaling behavior is the same of a fermionic
system without Chern-Simons couplings.

In the Coulomb gauge, the Coulomb interaction of the scalar component is screened by the finite
density of holons. The dominating term is then that of the transverse field AT , with correlator given for
ω, |~k|, ω/|~k| ∼ 0, by

〈AT AT〉(ω,~k) ∼ (−χ|~k|2 + iκ
ω

|~q| )
−1, (29)
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where χ ≡ χ⊥ is the diamagnetic susceptibility, and κ the Landau damping. This behavior
dominates at large scales over the Maxwellian term due to the massive spinons, destroying confinement,
as anticipated [42]. Nevertheless the attraction generated by AT in the spinon-holon pairs is sufficient to
produce near the Fermi surface a resonance with the quantum numbers of the hole. Thus, in 2D a true
spin-charge separation is not realized in this approach.

Unfortunately, a perturbative treatment of gauge fluctuations would be insufficient to get a resonance
out of a spinon and a holon, but a possible way out is to implement the binding using an eikonal
approach [38]. The eikonal resummation is obtained by treating first AT as an external field, using the
Gorkov approximation for the holon and expanding the correlation function of the spinons in terms of
first-quantization Feynman paths. One then integrates out AT to obtain an interaction between these
paths and the straight path of the Gorkov approximation, interaction which is then treated in the eikonal
approximation. Finally, a Fourier transform is performed to get the retarded correlation function.

Plugging as typical energy scale Max(T, ω), the transverse gauge propagator has a typical momentum
scale: the so-called Reizer [43] momentum, Q(T, ω) ≈ (κMax(T, ω)/χ)1/3. It turns out numerically that
in the PG “phase” the spatial Fourier transform is dominated by a nontrivial complex |~x|-saddle point
precisely near the inverse Reizer momentum, due to the effect of gauge fluctuations [38]. Below this
momentum scale, or alternatively beyond the inverse momentum scale in space, there is an effective
attraction mediated by AT between opposite charges relative to the slave-particle U(1) group, yielding in
particular a hole resonance. The main effect of the complex saddle point in the retarded hole correlator
is to induce a shift in the mass of spinons, ms → Ms(T, ω) ≈ (m2

s − icMax(T, ω)/χ)1/2, where c is a real
constant O(1), which in turn adds to the chemical potential of the holon. Since in the range considered
T, ω << ms, the real part of Ms ≈ ms essentially renormalizes the chemical potential and the imaginary
part introduces a dissipation Γ(T, ω), proportional to Max(T, ω).

A last effect that we need to consider in the PG “phase” is the attraction between the holons, and, as
a consequence of the binding to spinons, between the holes due to the attraction between the attached
antiferromagnetic spin vortices centered on opposite Néel sublattices. Such attraction mathematically is
generated from the term (16) averaging the spinons:

∫
d2xVm

µ Vm
µ 〈s∗αsα〉 ∼ ∑i,j(−1)|i|+|j|h∗i hih∗j hj∆−1

(2)(i− j),
where ∆(2) denotes the 2 D lattice laplacian. This attraction induces the formation of charge pairs, the spin
degrees of freedom being still unpaired above a crossover spin-pairing temperature. The non-vanishing
density of charge pairs is described by a d-wave order parameter, ∆h, the modulus of which (up to its
d-structure) we can keep constant near the Fermi surface, but in which the phase is strongly fluctuating,
since the charge pairs are not condensed. In fact, the field describing the phase fluctuations has a gap,
which we denote by mφ(T) decreasing with T, that modifies the standard BCS form of self-energy near the
hole Fermi surface to

Σ(ω,~k) ≈ |∆h(~k, T)|2

ω−ωh(~k)−ms + iΓ(ω, T)
[1−

mφ(T)√
−(ω + iΓ(ω, T))2 + (ωh(~k) + ms)2 + mφ(T)2

], (30)

where ∆h(~k) is the d-wave holon-pair order parameter and ωh(~k) the holon dispersion [44]. Hence, finally
the retarded hole correlator near the Fermi surface in the PG “phase” is given by

GR(ω,~k) ≈ Z(~k)
√

msκ

ω−ωh(~k)−ms + iΓ(ω, T)− Σ(ω,~k)
, (31)

with Z(~k) = 1 − (cos kx − cos ky)/(
√

2(cos kx
2 + cos ky

2)) the direction-dependent wave-function
renormalization constant arising from the mentioned matrix element due to the π-flux.
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The independence of the numerator of Equation (31) from T and ω is due to the semionic nature of
the holons. If the effect of the b field is neglected, as in the more approximate treatment of Reference [44],
there is a dependence in the form Max(T, ω)1/6, which actually disagree with experimental data in the
cuprates. Let us just mention that, since the π-flux is no more felt by physical holons, in the SM “phase”
Z(~k) is absent and the holon dispersion is the tight-binding one.

6. Comparison between 1D and 2D

The spin-charge gauge approach to the t-J model outlined in the previous sections allows a unified
treatment of the one- and two-dimensional cases. Its justification in terms of optimization of energy is the
same in both. Furthermore the charge carriers in 1D and 2D obey an exclusion statistics with parameter 1/2,
as a consequence of the no-double occupation constraint, though the origin of this property is somewhat
different. In 1D, it originates from the cancellation of the spinon Fermi momenta in the two chiralities
due to the spin string where the constraint is used. In 2D, it arises from the incompressibility of the holon
fluid due to the Coulomb interaction generated by the spinons, remnant of the Gutzwiller constraint at
large scales.

However, as we have seen, the final physical result of this approach are quite different in the two
cases. In 1D, spinon and holon are decoupled, both exhibiting semionic braid statistics, furthermore the
spinon is gapless. In 2D, spinon and holon are bound together at low energy, the exchange statistics of the
quasi-particle bounded together are bosonic and fermionic for the spin and charge degrees of freedom,
respectively. Furthermore the spin carriers are gapped. Let us trace the origin of these differences.

First of all, in 1D a gauge field has no transverse component, while in 2D it does have one.
The disappearance of this degree of freedom in 1D w.r.t. 2D induces the following effects in one-dimension:
BT =0, hence there is no Hofstatder mechanism generated by Bm and the holon does not have a Dirac
structure; VT=0, hence there is no spinon mass generation, which in 2D is generated by the "magnetic" field
strength of V; AT=0, hence spinons and holons are decoupled, whereas in 2D the transverse slave-particle
gauge field is able to introduce a weak binding. In fact, the other natural possible source of binding is
the Coulomb interaction mediated by the scalar component of the slave-particle gauge field, but it is
screened. In 2D, this occurs trivially because of a Fermi surface of finite length of the holons; in 1D if one
considers the CP1 non-linear sigma model describing the large-scale behavior of spinons we have seen
in Equation (14) that it has a Θ-angle of π. Precisely at this value of Θ in 1D there are two degenerate
ground states connected by a parity transformation (see, e.g., Reference [30]) as in the Heisenberg chain.
Kinks interpolating between the two destroy the Coulomb attraction generated by Aµ, which would be
massless since the global O(3) spin symmetry is unbroken, in agreement with the Mermin-Wagner theorem.
A hedgehog gas discussed in Reference [29] would appear in 2D instead of the Θ-term, actually inducing
confinement, but it disappears when we add the holons [42] and, therefore, will not be considered here.

Finally, in 2D, w.r.t. 1D in the considered approximation, including the interaction with the spin gauge
field v, the braid statistics of the quasi-particle charge carriers is modified from semionic to fermionic
because the finite density of semionic holons introduce a renormalization of the effective Chern-Simons
coefficient for the charge and spin gauge fields b and v at large scales, a phenomenon discussed also in
Reference [33], which has no analogue in 1D.

We close this section noticing that, whereas the string approach of Weng [8,45] in 1D is quite similar
to the one reviewed here, in 2D the two approaches are instead quite different, in spite of some surviving
similarities as the π-flux, the spin-vortices, not generating, however, a charge-pairing mechanism, the
appearance of an half-filling RVB structure playing a role in some aspect analogous to the “spurious”
holon bands, and the recently advocated resonance nature of the hole [46]. In fact, the two approaches give
rise to different phase diagrams of the crossovers in the δ-T plane. In particular in Weng’s string approach
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there is no analogue of the pseudogap crossover line T∗ crossing the superconducting dome. Furthermore,
no fractional Haldane statistics appears in the string approach in 2D, at odds with its appearance in 1D.

7. Relevance for the Cuprates

In this section, we briefly outline properties of hole-doped cuprates that found a natural explanation
within the spin-charge gauge approach to the 2D t-J model presented above, in particular due to the
composite nature of the hole. Of course to describe at least semi-realistically the cuprates we need to
add to the t-J Hamiltonian at least a next-nearest-neighbour hopping term, with coefficient denoted by t′,
but it does not modify qualitatively the general features previously discussed [44]. We also remark that,
according to the observations made in Section 5, for the physical quantities not involving directly the hole
resonance, one can consider still valid the computations made in a previous approximate treatment where
the 1/2 Haldane statistics was assumed, but the effect of the b field was somewhat inconsistently neglected.

We have seen that the 1/2 Haldane statistics of charge carriers is strictly linked to the presence of
the charge vortices, converting spinless fermions into semions. In turn, due to the fermionic statistics
of the hole, the charge vortices imply the presence of the antiferromagnetic spin vortices that provide
a somewhat novel mechanism of superconductivity. In fact, in this approach superconductivity arises
through a three-step mechanism.

(1) At a temperature, denoted by Tph, charge pairing occurs as a consequence of the Kosterlitz-Thouless
like attraction between antiferromagnetic spin vortices centered on holons, corresponding to empty sites
in the t-J model, on opposite Néel sublattices. From the explicit expression (30) and (31) of the hole
Green function, since the value of mφ decreases with T, one finds that lowering the temperature there
is a gradual reduction of the spectral weight on the Fermi surface at small frequency as we move away
from the diagonals of the Brillouin zone, due to the d-wave structure of ∆h(~k). Simultaneously at larger
frequencies we have the formation and increase of two peaks of intensity precursors of the excitations in the
superconducting phase [44]. Thus, the main effect of charge-pairing is the generation of a phenomenology
of Fermi arcs near the diagonals, qualitatively consistent with ARPES experiments in underdoped cuprates
(see, e.g., Reference [47])

(2) At a temperature denoted by Tps, lower than Tph, using the holon-pairs as sources of attraction, the
slave-particle gauge attraction between holon and spinon induces the formation of short-range spin-singlet
(RVB) spinon pairs. Hence, below Tps there is a finite density of hole pairs.

(3) Finally, at an even lower temperature, Tc, the hole pairs become coherent and a d-wave hole
condensate (in BCS approximation) appears, leading to superconductivity.

Hence, in the δ-T phase diagram of the present approach to the 2D t-J model, besides the
antiferromagnetic transition not considered here, there is a phase transition, the superconducting one, and
three crossovers corresponding to charge-pairing, spin pairing and transition from a “Dirac” Fermi surface
to a tight-binding one due to an effective “melting” of the π-flux. A comparison of the emerging structure
of the phase diagram with experimental data in hole-doped cuprates is given in Figure 1. The theoretical
computations in the result presented in Figure 1 are performed with experimental inputs for one doping
to fix parameters that are then used consistently in all the calculations in each “phase”. Tph and Tps are
evaluated solving gap equations in Mean-Field approximation, see Reference [13].
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Figure 1. (a) Theoretically derived phase diagram from Reference [48]: holon pairing temperature Tph
(yellow line) , spinon pairing temperature Tps (red line) , Tc (green line). The Nèel temperature (dot-dashed
line) is qualitative from experiments not derived theoretically. (b) Experimental data for Tc (yellow squares)
and onset of Nernst signal (green diamonds) in LSCO from Reference [49], “low pseudogap” (red triangles)
in LSCO from Reference [50] and “high pseudogap” (blue circles) in YBCO from Reference [51].

The comparison between the experimental data and the theoretical curves suggests the identification
of Tph with the “upper pseudogap temperature” corresponding, for example, to the deviation from linearity
of the in-plane resistivity (see, e.g., Reference [52]). This crossover line does not cross the superconducting
dome and the interpretation in terms of charge-pairing shares some analogy with Uemura’s approach [53],
at odds instead with the RVB interpretation (see, e.g., Reference [54]) in terms of spin-pairing. Similarly
Tps appears to be identifiable with the onset of magnetic-field induced diamagnetic and Nerst signals
due to vortices [49], appearing in the presence of “preformed hole pairs”, in agreement with many
other interpretations. The line of “melting” of the π-flux is seen to correspond to the "lower pseudogap
temperature" marked, for example, by the inflection point in the in-plane resistivity [52]. It crosses the
superconducting dome as advocated in many approaches based on the existence of a critical point (see, e.g.,
Reference [55]). The only experimentally observed crossover that is completely missed in this approach is
the onset of charge-density waves peaked around δ = 1/8 (see, e.g., Reference [56]); we conjecture that this
is due to a contribution of the oxygen orbitals in the cuprates not taken into account by the t-t′-J model.

Besides the structure of the phase diagram there is another general feature of data of the cuprates
that found a natural explanation within our approach [48]: a non Fermi-liquid universality [57] of many
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suitably normalized experimental curves, indicating an independence of details of the Fermi surface.
In fact, if the quantity we compute in the spin-charge gauge approach depends essentially on spinons and
holons by themselves and not on the hole as a resonance and if the spinon contribution is the dominating
one, universality is a natural consequence of the fact that the spinon propagator does not depend on details
of the Fermi surface. The first of the above requirements holds if the Ioffe-Larkin composition rule [42] is
valid. Both the requirements are satisfied, for example, in the case of in-plane resistivity and superfluid
density in the PG “phase”. In fact, the theoretically derived universality curves are in a quite satisfactory
also quantitative agreement with the corresponding experimental data, as shown in Figure 2, with the
experimentally observed “3/2” critical exponent for the superfluid density [58] well reproduced, due to
the 3DXY nature of the spinon-triggered superconductivity transition [59].

a

b

Figure 2. (a) The normalized in-plane resistivity ρn theoretically calculated, including a holon contribution
with relative weight r w.r.t. the spinon contribution, from Reference [48], compared with experimental
data from Reference [52]. The discrepancy at low T might be due to the missing account of holon and
spinon pair formation in the above treatment. (b) The normalized superfluid density ρs from Reference [48],
compared with experimental data for underdoped (LSCO, YBCO) and optimally doped (BSCCO, YBCO)
samples, from Refs. [58,60,61].

Among other experimental features of cuprates that find a natural explanation are crossovers
appearing in transport quantities in the PG “phase” and the emergence of Fermi arc phenomenology,
briefly discussed in the previous section. Concerning the first feature, examples are the metal-insulator
crossover of the in-plane resistivity [48,62] and the peak in the 63(1/T1T) spin-lattice relaxation rate [63].
Both are interpreted as due to the competition between the spinon gap dominating at lower T and the
dissipation growing with T introduced by the coupling of the spinons to the slave-particle gauge field.
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We are presently analyzing [37] within this approach another quite remarkable feature of the cuprates:
the coexistence of the non-Fermi liquid character of many quantities with a Fermi-liquid-like behavior of
other quantities, in particular in the SM phase, as, for example, for the uniform magnetic susceptibility.
We conjecture that this occurs because, in these last cases, the dominant contribution comes from the hole
resonance and not from the spinons.

The above overlook to the comparison between the theoretical scheme sketched in this review and
experimental data in the cuprates shows that, although exhibiting an admittedly complicated structure,
the approach based on the 1/2 exclusion statistics for the charge carriers of the 2D t-J model is able to
explain naturally many unusual features of the hole-doped cuprates.
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