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Abstract: Atomic force microscopy (AFM) in spectroscopy mode receives a lot of attention because of
its potential in distinguishing between healthy and cancer tissues. However, the AFM translational
process in clinical practice is hindered by the fact that it is a time-consuming technique in terms
of measurement and analysis time. In this paper, we attempt to address both issues. We propose
the use of neural networks for pattern recognition to automatically classify AFM force–distance
(FD) curves, with the aim of avoiding curve-fitting with the Sneddon model or more complicated
ones. We investigated the applicability of this method to the classification of brain cancer tissues.
The performance of the classifier was evaluated with receiving operating characteristic (ROC) curves
for the approach and retract curves separately and in combination with each other. Although more
complex and comprehensive models are required to demonstrate the general applicability of the
proposed approach, preliminary evidence is given for the accuracy of the results, and arguments
are presented to support the possible applicability of neural networks to the classification of brain
cancer tissues. Moreover, we propose a possible strategy to shorten measurement times based on the
estimation of the minimum number of FD curves needed to classify a tissue with a confidence level
of 0.005. Taken together, these results have the potential to stimulate the design of more effective
protocols to reduce AFM measurement times and to get rid of curve-fitting, which is a complex and
time-consuming issue that requires experienced staff with a strong data-analysis background.
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1. Introduction

As a matter of fact, tissues grow and remodel themselves in response to various mechanical
and physical forces [1–8]. In physiological conditions, these mechanical cues influence biochemical
reactions in cells, modulating cellular processes such as proliferation, differentiation, and apoptosis,
which are crucial for organ development and maintenance. The way cells sense forces is largely
mediated by the extracellular matrix (ECM), which is an ensemble of extracellular macromolecules
which provide structural and biochemical support for surrounding cells [3,8,9]. ECM composition and
morphology largely depend on its location in organs and tissues, and its properties change in time
due to physiological (e.g., aging [10–12]) and pathological conditions (e.g., cancer [2,5,7,13–21]).
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Healthy tissues are characterized by a mechanical homeostasis, in which forces among cells and
their ECM undergo a dynamical balance. The onset and the development of a wide range of pathologies
is accompanied by a disruption of this physical homeostasis [7,22–25]. Cancer is one of the diseases
that is most affected by such mechanical alterations [4–6,9,13,16–19,21,25–30]. Neoplastic cells are
usually softer than their healthy counterparts, showing also changes in shape and adhesion properties
that are associated with high proliferation rates, loss of differentiation, escape from apoptosis, and high
spreading capability in the case of metastasis [5,31–33]. Conversely, cancer tissues are usually stiffer
than healthy ones, as a direct consequence of an increased deposition of ECM fibrous proteins, such as
collagen, fibronectin, and laminin [13,15,16,21]. This increase in stiffness is a fundamental hallmark of
the pathology and is also one of the main reasons why palpation remains a key tool for the diagnosis
of some tumors.

Mechanical and structural modifications of the samples can be studied by atomic force microscopy
(AFM) in force spectroscopy mode and imaging mode [15–18,21,22,28–30,34–38]. In a force spectroscopy
experiment, AFM collects the so-called force–distance (FD) curves, a plot of the AFM cantilever
deflection as a function of the tip-sample separation. These curves can be mathematically analyzed
to obtain quantitative information about the elastic, viscous, and adhesive behavior of samples.
In this context, one of the most used parameters is Young’s modulus (E), which provides information
on the sample stiffness. Lekka and co-workers performed the first application of this technique to
tissue biopsies for cancer diagnosis and staging, showing that the AFM Young’s modulus allows for
the detection of cancer cells in tissue slices [30]. Plodinec et al. demonstrated that stiffness maps of
human breast biopsies could help in assessing cancer stages [15]. Tian and collaborators performed
indentation-type AFM experiments on liver cancer tissues, revealing that nanoscale tissue elasticity
can help physicians grade pathological states of the liver, distinguishing among normal livers and
those suffering from cirrhosis, hepatocellular carcinoma, and its recurrence [16]. Similarly, we recently
unveiled the nano-mechanical signature of malignant and benign brain cancer tissues [21].

All these results substantially agree with the fact that AFM has the capability of distinguishing
between healthy and cancerous tissues, thus opening wide possibilities for cancer diagnosis and
staging. In this context, AFM could be used in diagnostics in combination with standard methods,
such as histological section analysis. It is worth stressing that AFM has also several advantages over
these methodologies, because this technique yields quantitative results which can be statistically
analyzed [15,19,28,30,39–41].

Despite this potential, the AFM translational process into clinical practice is still hindered by the
fact that it is a time-consuming technique in terms of both measurement and analysis [29]. In this paper,
we attempt to address both issues. As far as the problem of analysis times is concerned, we propose
the use of neural networks to classify AFM force–distance (FD) curves in an automated fashion.
We tested this method on a clinically relevant problem, i.e., discriminating different types of surgically
removed brain cancer tissues obtained from patients diagnosed with glioblastoma multiforme, one of
the most frequent malignant brain cancers, which is characterized by a highly aggressive behavior and
an unfavorable prognosis [42]. A second bottleneck of the AFM technique, which is a limitation of its
use in medical practice as a diagnostic tool, is the long time cost of measurements. Here, we discuss
a possible strategy to shorten this time based on the estimation of the minimum number of FD curves
needed to classify a tissue with a 0.005 confidence level, modeling AFM mapping in terms of a binomial
process. These statistical considerations have the potential to boost the translational process of AFM in
clinical practice, because they help define an optimum spatial sampling for FD curves, which allows
reducing experimental time, while simultaneously limiting the loss of accuracy.
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2. Materials and Methods

2.1. Patients Recruitment and Sample Preparation

Fifteen patients with brain cancer, eight of which were diagnosed with glioblastoma multiforme
(GBM), were recruited for the study. Recruitment was carried out with informed consent and was
approved by the institutional review board (Ref. no. 3508 Prot. 1706/15). Human glioblastoma tissues
were obtained after surgical resection and underwent AFM analysis within two hours of removal.
Histological examinations of tissues were systematically compared with AFM outcomes to assess the
presence and the stage of cancer. The direct comparison between FD curves and histological findings
for the data analyzed in the present paper was deeply discussed in Reference [21]. Briefly, immediately
after surgery, brain tissues were divided into classes by expert neurosurgeons and pathologists,
considering also the results of radiological examinations. The same samples were divided in two parts,
one of which underwent AFM analysis with the remaining part used for histological findings. Different
staining techniques were used; specifically, (i) hematoxylin and eosin staining was used to classify
surgically removed tissues into healthy peri-tumoral tissues, necrotic tissues, and tumor non-necrotic
tissues; (ii) Gomori staining was used to assess the overexpression of fibrous proteins, which in turn
was correlated with the stiffening of cancer tissues as quantified by means of Young’s modulus E;
(iii) Alcian-blue staining was used to assess the presence of an increased expression of hyaluronic acid,
which was correlated with an alteration of tissue viscosity. Further and detailed information on the
histological examination of the sample examined in this study can be found in Reference [21].

2.2. AFM Measurements

Immediately after tumor resection, tissue samples were cut in sections with a surgical scalpel.
Specimens were sampled in different positions within the solid tumor, and then immobilized in a Petri
dish with a thin layer of fast-drying dual epoxy bio-compatible glue according to Reference [15].
The presence and the relevance of possible artefacts induced by glue infiltration was discussed in
Reference [21]. All the preliminary steps were performed in a ringer buffer. AFM measurements were
performed in a liquid and at room temperature using a JPK NanoWizard-II microscope coupled with
a ZEISS Axio-Observer Fluorescence Inverted Microscope. GBM tissues were investigated using Si
cantilevers (Mikromash, HQ:CSC38/NO AL) with a spring constant of ~0.05 N/m, which was determined
before each measurement by thermal calibration. An indentation force of 5 nN and a velocity during
indentation of 5 µm/s were adopted. Indentation forces of the same order were used in Reference [15]
for breast cancer tissues and Reference [16] for hepatocellular carcinoma. The problem of the extreme
surface corrugation of postoperative tissues was overcome using an additional piezoelectric actuator
with a z-range of 100 µm [21,37].

2.3. AFM Data Analysis

Two types of data analysis were performed. Firstly, we applied the conventional analysis based
on FD curve-fitting to measure the apparent Young’s modulus E of tissues. Then, we investigated the
feasibility of automated FD curve classification by means of a neural network for pattern recognition.

The apparent Young’s modulus E (referred to in the following as Young’s modulus E) was retrieved
by fitting the Sneddon model for a conical indenter to each FD curve with the JPK data processing
software as follows:

F(δ) =
2 E tan(α)
π(1− v2)

δ2, (1)

where α accounts for the half-aperture angle of the conic tip (equal to 20◦ for the exploited tips), υ is
the Poisson ratio (set at 0.5 considering the material incompressibility), and δ is the indentation depth.
Moreover, the work of adhesion (W) was measured as the area between the approach and retract curves;
W represents the amount of energy dissipated when the tip is completely detached from the sample.
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Because biological samples, as well as complex materials, are characterized by spatially
heterogeneity, their physical and functional properties are better described by nano-mapping rather than
randomly located single-point measurements [15,43–50]. Therefore, in order to take into account the
spatial distribution of E, we acquired stiffness maps of the sample with a typical size of 40 µm × 40 µm;
map resolutions ranged from 1.25 to 5 µm.

Secondly, we applied a pattern recognition neural network-based algorithm, which classifies FD
curves with the aim of avoiding curve-fitting. The algorithm was implemented in Matlab [29,50,51].
For the learning phase, we exploited the Levenberg–Marquardt backpropagation algorithm and a set of
200 FD input profiles whose class memberships were already assigned. The choice of 200 FD profiles
is further commented on in Figure A1. Input profiles were randomly extracted from all the recruited
patients. The selected input profiles were randomly divided into three sets: 70% were used for training,
15% were used to avoid overfitting, and the last 15% were used as an independent test of network
generalization. During the training phase, internal weights of the network were adjusted to minimize
differences between the expected outputs and the network outputs. After the training phase, the network
was exploited to classify unknown experimental FD curves using the feed-forward neural network
(FFNN) algorithm. The FFNN algorithm is composed of three layers: the input, the hidden, and the
output layers, each of which has a different neuron number. Prior to the feed of the NN with FD
curves, we interpolated them in such a way that each curve was composed of 200 points with the same
x-coordinates. Consequently, we chose 200 neurons in the input layer. The number of neurons in the
hidden layer was optimized to minimize computational cost and maximize the training performance,
as well as the correct outputs. We chose to test the performance of this method in distinguishing between
two classes of tissues at a time.

2.4. Statistics

Statistical analyses were performed using the software package R (3.5.2 release) [52]. E values
were reported as mean ± standard error of the mean (SEM). E distributions were analyzed with the
modified Levene equal variance test (F-test) to determine whether variances in the three classes of
tissues (necrotic and non-necrotic tumor tissues and healthy tissues) were equal. E values were tested
for normality by a visual inspection of the quantile–quantile (QQ) plot followed by a Shapiro–Wilk test.
Welch’s ANOVA, along with a Games–Howell post hoc analysis, was used to assess the presence of
statistically significant differences among the three classes of tissues [53].

The performance of the neural network and Young’s modulus E in discriminating between (i)
non-necrotic GBM and healthy tissues, (ii) necrotic GBM and healthy tissues, and (iii) necrotic and
non-necrotic GBM tissues was evaluated by computing the receiver operating characteristic (ROC)
curve [54]. To this purpose, NN and E outputs were compared to our a priori knowledge based on
the analysis of histological sections. ROC analysis is a widely used technique in the medical field for
evaluating diagnostic tools. It is a two-dimensional graph in which the true positive rate, tp or sensitivity,
is plotted against the false positive rate, f p or 1 − specificity. Mathematically, tp = TP/(TP + FN)

and f p = FP/(FP + TN), where TP indicates a true positive that occurs when a positive instance is
classified as positive; FN indicates a false negative, which occurs when a positive instance is classified
as negative; TN indicates a true negative, i.e., a negative instance that is classified as negative; FP is
a false positive, i.e., a negative instance that is classified as negative.

ROC curves were calculated using the R package pROC [55]. A logistic regression was executed
in order to combine the ROC curves calculated from the approach and retract curves separately with
the neural network approach. For this aim, we used the function glm() from the R package stats [52].
For our purposes, it was useful to calculate the accuracy, referred to as p in the following, which is
an additional statistical metric calculated for ROC curves. Accuracy is defined as p = TP+TN

TP+FN+TN+FP .
For a continuous classifier, such as E, we can calculate a specific accuracy value for each couple of tp
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and fp values, whereas p can be easily derived as a function of the x = FP
FP+TN and y = TP

TP+FN variables
in the ROC curve, by means of Equation (2) [29].

p(x, y) =
Ptot·y + Ntot·(1− x)

Ptot + Ntot
, (2)

where Ptot and Ntot are the total numbers of curves belonging to the positive and negative actual
classes, respectively. For this study, a total of 10,240 FD curves, of which 4352 described necrotic tissues,
4352 described tumor tissues, and the remaining 1536 described healthy tissues, were analyzed using
neural networks.

3. Results and Discussion

3.1. Classification of Brain Cancer Tissues on the Sneddon Model Basis

Glioblastoma multiforme (GBM) is the most common and aggressive type of malignant brain
tumor, characterized by the presence of poorly differentiated neoplastic astrocytes, newly formed tumor
micro-vessels, and necrotic regions. The microvasculature proliferation and the necrotic regions are
specific hallmarks of the pathology [21,42,56,57]. These biochemical and morphological modifications
of tumor microenvironment are also associated with a significant alteration of tissue biomechanics,
which can be investigated by AFM through the acquisition of FD curves.

In Figure 1a–c, we show a set of representative FD approach curves measured on necrotic GBM
tissues (a), healthy peri-tumoral tissues (b), and GBM cancer tissues (c), together with a smoothed curve
of the entire reported dataset. FD curves were randomly selected from our database, according to the
specific tissue type. FD curves acquired in different brain regions appear to be qualitatively different,
unveiling an inhomogeneous mechanical response of the samples. A qualitative analysis of Figure 1
shows that necrotic tissues (a) are softer than healthy peri-tumoral tissues (b), which in turn are softer
than cancer ones.
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Figure 1. Representative force–distance profiles (approach curves) for necrotic glioblastoma multiforme
(GBM) tissue (a), healthy tissues (b), and non-necrotic tumor tissues (c). A smoothed curve of the three
datasets is reported as a continuous gold line.

FD approach curves can be analyzed with Equation (1) to obtain the apparent Young’s modulus
E, which gives quantitative information on the sample stiffness. A box-plot analysis of the E values
calculated from the entire database of FD curves is shown in Figure 2a. Welch’s ANOVA for
unequal variances reveals that E values differ significantly in the three tissue types (F[2,760] = 711.19,
p < 2.2× 10−16. A Games–Howell post hoc analysis confirms that cancer tissues are stiffer than healthy
tissues (p < 1× 10−6), which in turn are stiffer than necrotic ones (p < 1× 10−6). This result suggests
that the Young’s modulus E can be used as a promising biomarker for the classification of brain cancer
tissues. We assessed the performance of the Young’s modulus E as a brain cancer biomarker evaluating
the receiver operator characteristic (ROC) curve. The ROC curve is a technique to visualize classifiers
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based on their performance, widely used in the medical field to evaluate and compare diagnostic tools.
As previously described in Section 2.4, ROC curves are two-dimensional graphs in which sensitivity,
also referred to as true positive (TP) rate, is plotted against 1− specificity, which is the false positive
(FP) rate. As specificity ranges between 0 and 1, ROC curves are usually also reported in terms of
sensitivity as a function of specificity, inverting the x-axis. In the present paper, the latter notation is
used. Figure 2b shows the ROC plots for the classification of FD curves according to the corresponding
E values measured on GBM necrotic and healthy tissues (gold continuous line), tumor and healthy
tissues (orange continuous line), and necrotic and tumor tissues (brown continuous line). The diagonal
line represents the y = x curve, which is the expected performance for a completely random classifier.
For all the datasets, ROC curves rapidly increase for low values of the x-axis, showing that the Young’s
modulus E is a brain cancer biomarker with good classification ability. A widely used statistical metric
for the quantitative evaluation of a ROC curve is the so-called area under the curve (AUC).
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Figure 2. Box-plot analysis of the Young’s modulus (E) values calculated for the three tissue types (a);
receiver operator characteristic (ROC) plots for the classification of force–distance (FD) curves according to
the corresponding E values (b). The diagonal line represents the expected performance for a completely
random classifier.

By definition, AUC values lie in the range [0, 1], where 1 corresponds to an ideal classifier;
in general, the higher the AUC value is, the better the classifier performance is. Large AUC values
were measured for the three binary classification problems, i.e., 0.797 for healthy versus cancer tissues,
0.922 for necrotic versus healthy tissues, and 0.831 for necrotic versus tumor tissues.

Further information on the biomechanical response of tissues can be inferred from the analysis of
the entire indentation cycle (Figure 3). This information includes AFM hysteresis (H), which represents
percentual energy dissipated during indentation, and work of adhesion (W), which represents the
amount of energy dissipated when the tip is completely detached from the sample. W is determined as
described in the Section 2.3, and it is schematically represented in Figure 3. In Figure A2, we report the
W box plot for the three different classes of tissues. We found no such marked differences as in the case
of Young’s modulus E, suggesting that the use of E is preferable for diagnostic purposes.
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3.2. Automated Classification of Brain Cancer Tissues Using a Neural Network Approach

Figure 2 suggests that AFM is a promising tool for brain cancer diagnosis and tissue classification.
However, many factors still hinder the translational process of AFM in diagnostic practice. Among
these factors, a central role is played by AFM curve-fitting, which is a complex, time-consuming issue
that requires specialized personnel with a solid physical and mathematical background.

Since differences in mechanical properties translate into different shapes of FD curves, in a recent
paper, we used neural networks for the automated classification of brain cancer tissues [29]. This method
was applied to the same classification problems discussed in Figure 2b, with the aim of avoiding
single-curve fitting. This approach has several advantages over the classical curve-fitting method.
In particular, it is able to provide a direct classification of the measured tissues according to the tissue
type, namely, healthy, necrotic, and non-necrotic tumor tissue. Moreover, while the Sneddon model
takes into account only a small portion of the approach curve, neural networks for pattern recognition
consider the entire force–distance cycle shown in Figure 3, including not only the approach curve (gold
continuous line) but also the retract curve (orange continuous line), which is potentially a valuable
source of clinical information. In a previous paper, we tested the performance of the neural network in
discriminating among different tissue types, using the approach and retract curve separately. In this
work, we combine the information coming from two curves in order to increase the effectiveness of the
method. As described in the Section 2.4, we used a logistic analysis of the results to combine information
from approach and retract curves in a single ROC plot.

In Figure 4, we show ROC curves for the classification of (a) GBM necrotic and non-necrotic
tumor tissue, (b) healthy and tumor tissues, and (c) necrotic and healthy tissues. ROC plots calculated
using the approach and the retract curves separately are shown as continuous gold and orange lines,
respectively. ROC curves obtained combining the approach and retract profiles are shown as brown
continuous lines. One can note that the combined ROC curves have a very large AUC, i.e., 0.895 for
healthy versus cancer tissues, 0.988 for necrotic versus healthy tissues, and 0.987 for necrotic versus
tumor tissues.

In Figure 5, we report a stem plot summarizing AUC values for the different classification
approaches, namely those based on the Sneddon model and on the neural network. Taken together,
the results in Figure 5 show that (i) the neural network approach exhibits a superior classification
capability to the Sneddon model approach; (ii) the combination of the approach and retract curves by
means of a logistic analysis improves the classification performances.
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3.3. Determination of the Most Efficient AFM Sampling for the Classification of Brain Cancer Tissue

As stated above, the translational process of the AFM in cancer diagnostics is still hindered by
the fact it is a time-consuming technique in terms of both measurement and analysis times. In the
previous section, we showed that the use of neural network has the potential to help getting rid of the
manual fitting for FD curves, thus dramatically reducing the time spent for data analysis.

In this section, we discuss a possible strategy to evaluate the minimum number of FD curves
needed to properly classify a given scanning area, with a predetermined level of accuracy. Considering
a recent seminal work in statistical methods for biomedical science, we chose a 0.005 confidence level,
instead of the typical 0.05 level, which is associated with poor experimental reproducibility [58].

We started by trying to assess the class membership of a given tissue using a single-point
measurement, acquired in a random location within a selected 40 µm × 40 µm area. For the sake
of simplicity, let us assume that we have a tumor tissue and that we have two possible algorithm
decisions: the correct one (tumor tissue) and the incorrect one (normal tissue).

The classification algorithms (either the one based on the Sneddon model (Figure 2) or the one
based on neural networks (Figure 3)) will give us the proper diagnosis with a probability p and the
incorrect one with a probability 1 − p, provided that we are making our decision on a single trial
basis. This probability can be calculated directly from the ROC curve associated with the selected
classification process. To clarify this point, it is useful to define the accuracy, a statistical metric
that can be derived from the confusion matrix discussed in Section 2.4. Mathematically, accuracy
is defined as p = (TP + TN)/(TP + FN + TN + FP). This quantity represents the overall rate of
success of the algorithm classification and, thus, we can associate it to the probability value we are
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looking for. Similarly, 1 − p = (FP + FN)/(TP + FN + TN + FP) is the overall error rate of the classifier.
The quantities of p and 1 − p can be calculated directly from the ROC curves of Figures 2 and 3 for
the Sneddon model and the neural network model, respectively. Like other ROC-based statistics,
accuracy depends on the selected threshold that, in turn, is associated with a couple of x- and y-values,
where x = 1 − specificity and y = sensitivity. As discussed in Section 2.4, p(x,y) can be calculated
according to Equation (2). In Figure 6a, we show p as a function of 1− specificity for the ROC curves in
Figure 2b, which evaluate the E performance in the classification of necrotic and healthy tissues (gold
continuous line), tumor and healthy tissues (orange continuous line), and necrotic and tumor tissues
(brown continuous line). Similar curves are shown in Figure 6b for the three ROC plots obtained by
combining the approach and the retract curves. Provided that the threshold which maximizes accuracy
is chosen, we can associate a probability of success p to each classification process that is equal to the
corresponding maximum value, pmax, in Figure 5. These maximum values are summarized in Table 1.
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Table 1. Minimum number of curves necessary to assign a correct outcome is shown, with the
corresponding pmax shown in brackets.

Model Healthy vs. Tumor Tissues Necrotic vs. Tumor Tissues Healthy vs. Necrotic Tissues

Sneddon model 29 (0.73) 7 (0.92) 13 (0.83)
Neural Network 13 (0.85) 5 (0.96) 5 (0.96)

Once we assign the probability values, we can go back to our task, i.e., to assign the proper class
membership to a tumor tissue when two algorithm decisions are possible (tumor and healthy tissues).
Moreover, let us choose the neural network approach to solve this problem instead of the Sneddon
model one. For this classification problem (tumor vs. normal tissues using neural networks), p = 0.85
(Table 1) and, thus, on a single curve basis, we would obtain a correct diagnosis in approximately 85%
of the analyzed scanned areas and the wrong diagnosis in the remaining 15% of cases. As a matter of
fact, probability of failure is far above the prefixed 5%� level; therefore, we cannot make a decision using
a single AFM FD curve. Thus, we increase the number of curves, which also increases measurement time,
considering three FD curves instead of a single one. In this case, we have the following four possible
outcomes: (i) each of the three FD curves is classified as a “tumor”; (ii) two out of three are classified
as “tumor” and one out of three as “normal”; (iii) one out of three is classified as “tumor” and two as
“normal”; (iv) all three points are classified as “normal”. With these possible outcomes, assigning the
class membership to the 40 µm × 40 µm scanned area is not straightforward, and it depends on the
assignment strategy. We propose assigning the class membership to the predicted class that has the
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majority of assignments. Using this method, in cases (i) and (ii), we get a correct diagnosis (tumor),
while, in cases (iii) and (iv), we get the incorrect one (normal). It is easy to see that the probability
of getting the proper diagnosis is equal to the probability of at least two successes; the probability of
getting an incorrect diagnosis is equal to the probability of at least two failures. The calculation of such
probabilities is straightforward if one considers that we have n = 3 independent trials (i.e., we can acquire
three independent FD curves), trials are identical, and each trial has a given probability of success pmax

(which can be derived from Figure 5 under the aforementioned hypotheses) and a given probability of
failure, 1− pmax. An experiment which satisfies this design is referred to as a binomial experiment and,
thus, probabilities can be calculated using the formula P(x) = Cx

npx
max·(1− pmax)

n−x, where P(x) is the
probability of having x success with n independent trials, pmax is the probability of a success, 1− pmax is
the probability of a failure, and Cx

n represents the possible combinations of x elements out of n.
In our case, the probability of an incorrect assignment is equal to the probability of having

three failures plus that of having two failures and one success; numerically, this can be represented
as P(incorrect diagnosis) = C0

30.850
·(1− 0.85)3 + C1

30.851
·(1− 0.85)2

∼ 0.001. This probability is still
above the prefixed confidence level (0.005). However, it is lower than the one obtained with a single-point
measurement, suggesting that the more trials there are, the lower the probability of failure is. Proceeding
by induction, we can easily figure out that, for an odd number of trials n = 2m + 1, the probability
of an incorrect diagnosis is the cumulative binomial probability F(x) of at most x = m + 1 successes,
for m ∈ N. We chose to investigate only an odd number of trials, because, for an even number, we cannot
assign a unique diagnosis outcome when successes are equal to failures.

In Figure 7, we plot the probability of an incorrect diagnosis as a function of the acquired number
of curves calculated using pmax from Table 1 for the Sneddon model (blue continuous line) and for the
neural network (gold continuous line). Analysis of Figure 7 allows determining the minimum number
of FD curves needed to assign the class membership with a 0.005 confidence level. Basically, we chose
the minimum number of curves for which the probability to make a mistake was lower than 0.005,
which is represented by a dashed horizontal line in Figure 6. The minimum number of curves needed
is summarized in Table 1, which confirms that the neural network approach has superior classification
ability with respect to the Sneddon model approach, thus allowing us to assign tissue membership with
a significantly lower number of measures. Moreover, the automated classification of FD curves with
the neural network algorithm has the further advantages of being operator-independent and providing
a direct diagnosis, instead of giving a physical parameter that needs to be further interpreted.

Taken together, the data shown in Figure 7 and Table 1 have the potential to dramatically shrink
the time needed to classify a tissue according to its pathological state, making AFM competitive with
the analysis of conventional histological sections. To give an example, a typical 40× histological section
has an area of approximately 0.4× 0.3 mm2; if we consider the problem of healthy vs. tumor tissue,
to cover the area mentioned above, approximately 75 maps of 40 × 40 microns are required, and, for each,
nine curves are required, for a total of 75 × 9 = 675 FD curves. Considering also an average piezo
excursion of 30 microns, which is used to compensate for the high corrugation of surgically removed
tissues, and a piezo scanning speed of 5 µm/s, it is possible to estimate an acquisition time of 4050 s.
In this regard, it is worth stressing that, while histology needs extensive tissue preparation, AFM
allowed us to measure tissue slices immediately after surgical resection, without any pre-processing step.
As a further advantage, data acquired with AFM can be automatically analyzed by our neural network
approach, which produces an immediate result in the form of a direct analysis instead of giving physical
parameters or images that need to be further interpreted by experienced pathologists or data analysts.
The estimated time, which is competitive with the time spent in the pre-processing of histological sections,
could be further reduced using high-speed atomic force microscopes, which are currently available on
a commercial basis.
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4. Conclusions

Atomic force microscopy in force spectroscopy mode has great potential in cancer diagnostics,
being able to distinguish healthy from pathological tissues according to their mechanical properties.
However, the translation process of AFM in clinical practice is hindered by the fact that AFM is
a time-consuming technique in terms of measurements and analyses. In this study, we attempted
to overcome these limitations using two different strategies. With the aim of cutting the time spent
analyzing AFM force–distance curves, we tested the possible applicability of neural networks for
pattern recognition in the classification of brain cancer tissues. Different tissue types were classified
according to the shape of the entire force–distance cycle. The classification performances of the
algorithm were evaluated by ROC curves and systematically compared with the performances of
the Young’s modulus E. Preliminary evidence was reported for the accuracy and precision of the
method, and arguments were presented for the preference of neural networks over the conventional
methods based on curve-fitting. The former indeed showed comparable or larger AUC values with
respect to the latter. This is probably because the Young’s modulus E was obtained taking into account
only a portion of the approach curve, while the neural network considered the entire approach and
retract curves. However, it is important to stress that more complex and comprehensive models are
required to demonstrate the general applicability of our conclusions to the field of AFM-based cancer
diagnostics; thus, such conclusions are valid only for the particular classification proposed. In order to
reduce experimental time, we evaluated the minimum number of FD curves needed to classify a given
tissue region with a 0.005 confidence level, in the cases of the neural network and the Young’s modulus
E. Again, we showed evidence that fewer curves are needed when using the neural network.

Taken together, these results have the potential to promote a shortening of the time spent during
measurements and analyses, thus boosting the use of AFM in diagnostics.
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improvement in the algorithm performance. Moreover, at this size, a small variability of the results
is observed.

Condens. Matter 2019, 3, x FOR PEER REVIEW  12 of 15 

 

diagnostics; thus, such conclusions are valid only for the particular classification proposed. In order 
to reduce experimental time, we evaluated the minimum number of FD curves needed to classify a 
given tissue region with a 0.005 confidence level, in the cases of the neural network and the Young’s 
modulus E. Again, we showed evidence that fewer curves are needed when using the  
neural network. 

Taken together, these results have the potential to promote a shortening of the time spent during 
measurements and analyses, thus boosting the use of AFM in diagnostics. 

Author Contributions: Conceptualization, G.C. and T.E.S.; data curation, T.E.S. and V.P.; formal analysis, G.C. 
and E.M.; investigation, G.C., A.M., T.E.S., M.N., and E.M.; supervision, G.C., M.P., and M.d.S.; writing—review 
and editing, G.C. 

Funding: The Italian Ministry of Health (“Progetto Giovani Ricercatori 2014–2015”, Grant No. GR-2016-
02363310) is gratefully acknowledged. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix  

 
Figure A1. AUC (b) of the ROC curves obtained comparing the neural network (NN) outputs with 
the expected values upon varying the number of the curves in training set. The higher the training set 
size is, the lower the variability is; for training sets larger than N = 200, there is no significant 
improvement in the algorithm performance. Moreover, at this size, a small variability of the results is 
observed. 

 
Figure A2. Box-plot analysis of the work adhesion values calculated for the three tissues. No 
statistically significant difference among the three tissue types was found. 

References 

Figure A2. Box-plot analysis of the work adhesion values calculated for the three tissues. No statistically
significant difference among the three tissue types was found.

References

1. Pickup, M.W.; Mouw, J.K.; Weaver, V.M. The extracellular matrix modulates the hallmarks of cancer.
EMBO Rep. 2014, 15, 1243–1253. [CrossRef]

2. Shieh, A.C. Biomechanical forces shape the tumor microenvironment. Ann. Biomed. Eng. 2011, 39, 1379–1389.
[CrossRef]

3. Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular Matrix degradation and remodeling in development
and disease. Cold Spring Harb. Perspect. Biol. 2011, 3, a005058. [CrossRef]

4. Lopez, J.I.; Mouw, J.K.; Weaver, V.M. Biomechanical regulation of cell orientation and fate. Oncogene 2008, 27,
6981–6993. [CrossRef]

5. Kumar, S.; Weaver, V.M. Mechanics, malignancy, and metastasis: The force journey of a tumor cell. Cancer
Metastasis Rev. 2009, 28, 113–127. [CrossRef]

6. Ingber, D.E. Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and
cardiovascular physiology. Circ. Res. 2002, 91, 877–887. [CrossRef]

7. Ingber, D. Mechanobiology and diseases of mechanotransduction. Ann. Med. 2003, 35, 564–577. [CrossRef]

http://dx.doi.org/10.15252/embr.201439246
http://dx.doi.org/10.1007/s10439-011-0252-2
http://dx.doi.org/10.1101/cshperspect.a005058
http://dx.doi.org/10.1038/onc.2008.348
http://dx.doi.org/10.1007/s10555-008-9173-4
http://dx.doi.org/10.1161/01.RES.0000039537.73816.E5
http://dx.doi.org/10.1080/07853890310016333


Condens. Matter 2019, 4, 58 13 of 15

8. Frantz, C.; Stewart, K.M.; Weaver, V.M. The extracellular matrix at a glance. J. Cell Sci. 2010, 123, 4195–4200.
[CrossRef]

9. Badylak, S.F.; Gilbert., T.W. Extra cellular matrix as a biological scaffold material Structure and function.
Acta Biomater. 2009, 5, 1–13. [CrossRef]

10. Abrass, C.K.; Adcox, M.J.; Raugi, G.J. Aging-associated changes in renal extracellular matrix. Am. J. Pathol.
1995, 146, 742–752.

11. Kragstrup, T.W.; Kjaer, M.; Mackey, A.L. Structural, biochemical, cellular, and functional changes in skeletal
muscle extracellular matrix with aging. Scand. J. Med. Sci. Sports 2011, 21, 749–757. [CrossRef] [PubMed]

12. Jacob, M.P. Extracellular matrix remodeling and matrix metalloproteinases in the vascular wall during aging
and in pathological conditions. Biomed. Pharmacother. 2003, 57, 195–202. [CrossRef]

13. Ciasca, G.; Papi, M.; Minelli, E.; Palmieri, V.; De Spirito, M. Changes in cellular mechanical properties during
onset or progression of colorectal cancer. World J. Gastroenterol. 2016, 22, 7203–7214. [CrossRef] [PubMed]

14. Businaro, L.; De Ninno, A.; Schiavoni, G.; Lucarini, V.; Ciasca, G.; Gerardino, A.; Belardelli, F.; Gabriele, L.;
Mattei, F. Cross talk between cancer and immune cells: Exploring complex dynamics in a microfluidic
environment. Lab Chip 2013, 13, 229–239. [CrossRef] [PubMed]

15. Plodinec, M.; Loparic, M.; Monnier, C.A.; Obermann, E.C.; Zanetti-Dallenbach, R.; Oertle, P.; Hyotyla, J.T.;
Aebi, U.; Bentires-Alj, M.; Lim, R.Y.H.; et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol.
2012, 7, 757–765. [CrossRef] [PubMed]

16. Tian, M.; Li, Y.; Liu, W.; Jin, L.; Jiang, X.; Wang, X.; Ding, Z.; Peng, Y.; Zhou, J.; Fan, J.; et al. The nanomechanical
signature of liver cancer tissues and its molecular origin. Nanoscale 2015, 7, 12998–13010. [CrossRef] [PubMed]

17. Palmieri, V.; Lucchetti, D.; Maiorana, A.; Papi, M.; Maulucci, G.; Calapà, F.; Ciasca, G.; Giordano, R.;
Sgambato, A.; De Spirito, M. Mechanical and structural comparison between primary tumor and lymph
node metastasis cells in colorectal cancer. Soft Matter 2015, 11, 5719–5726. [CrossRef] [PubMed]

18. Palmieri, V.; Lucchetti, D.; Maiorana, A.; Papi, M.; Maulucci, G.; Ciasca, G.; Svelto, M.; De Spirito, M.;
Sgambato, A. Biomechanical investigation of colorectal cancer cells. Appl. Phys. Lett. 2014, 105, 123701.
[CrossRef]

19. Lekka, M. Discrimination Between Normal and Cancerous Cells Using AFM. Bionanoscience 2016, 6, 65–80.
[CrossRef] [PubMed]

20. Li, C. Tumor Microenvironment and Pancreatic Cancer. Mol. Biol. Open Access 2012, 01, e104. [CrossRef]
21. Ciasca, G.; Sassun, T.E.; Minelli, E.; Antonelli, M.; Papi, M.; Santoro, A.; Giangaspero, F.; Delfini, R.;

De Spirito, M. Nano-mechanical signature of brain tumours. Nanoscale 2016, 8, 19629–19643. [CrossRef]
[PubMed]

22. Guo, Q.; Xia, Y.; Sandig, M.; Yang, J. Characterization of cell elasticity correlated with cell morphology by
atomic force microscope. J. Biomech. 2012, 45, 304–309. [CrossRef] [PubMed]

23. Fomovsky, G.M.; Thomopoulos, S.; Holmes, J.W. Contribution of extracellular matrix to the mechanical
properties of the heart. J. Mol. Cell. Cardiol. 2010, 48, 490–496. [CrossRef] [PubMed]

24. Augat, P.; Simon, U.; Liedert, A.; Claes, L. Mechanics and Mechano-Biology of fracture Healing in Normal
and Osteoporotic Bone. Osteoporos. Int. 2005, 16, S36–S43. [CrossRef] [PubMed]

25. Rocco, P.R.M.; Negri, E.M.; Kurtz, P.M.; Vasconcellos, F.P.; Silva, G.H.; Capelozzi, V.L.; Romero, P.V.; Zin, W.A.
Lung tissue mechanics and extracellular matrix remodeling in acute lung injury. Am. J. Respir. Crit. Care Med.
2001, 164, 1067–1071. [CrossRef] [PubMed]

26. Suresh, S.; Spatz, J.; Mills, J.P.; Micoulet, A.; Dao, M.; Lim, C.T.; Beil, M.; Seufferlein, T. Reprint of: Connections
between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomater.
2015, 23, S3–S15. [CrossRef] [PubMed]

27. Florenzano, F.; Veronica, C.; Ciasca, G.; Ciotti, M.T.; Pittaluga, A.; Olivero, G.; Feligioni, M.; Iannuzzi, F.;
Latina, V.; Sciacca, M.F.M.; et al. Extracellular truncated tau causes early presynaptic dysfunction associated
with Alzheimer’s disease and other tauopathies. Oncotarget 2017, 8, 64745–64778. [CrossRef] [PubMed]

28. Minelli, E.; Sassun, T.E.; Papi, M.; Palmieri, V.; Palermo, F.; Perini, G.; Antonelli, M.; Gianno, F.; Maulucci, G.;
Ciasca, G.; et al. Nanoscale mechanics of brain abscess: An Atomic Force Microscopy study. Micron 2018,
113, 34–40. [CrossRef]

29. Minelli, E.; Ciasca, G.; Sassun, T.E.; Antonelli, M.; Palmieri, V.; Papi, M.; Maulucci, G.; Santoro, A.;
Giangaspero, F.; Delfini, R.; et al. A fully-automated neural network analysis of AFM force-distance curves
for cancer tissue diagnosis. Appl. Phys. Lett. 2017, 111, 143701. [CrossRef]

http://dx.doi.org/10.1242/jcs.023820
http://dx.doi.org/10.1016/j.actbio.2008.09.013
http://dx.doi.org/10.1111/j.1600-0838.2011.01377.x
http://www.ncbi.nlm.nih.gov/pubmed/22092924
http://dx.doi.org/10.1016/S0753-3322(03)00065-9
http://dx.doi.org/10.3748/wjg.v22.i32.7203
http://www.ncbi.nlm.nih.gov/pubmed/27621568
http://dx.doi.org/10.1039/C2LC40887B
http://www.ncbi.nlm.nih.gov/pubmed/23108434
http://dx.doi.org/10.1038/nnano.2012.167
http://www.ncbi.nlm.nih.gov/pubmed/23085644
http://dx.doi.org/10.1039/C5NR02192H
http://www.ncbi.nlm.nih.gov/pubmed/26168746
http://dx.doi.org/10.1039/C5SM01089F
http://www.ncbi.nlm.nih.gov/pubmed/26083581
http://dx.doi.org/10.1063/1.4896161
http://dx.doi.org/10.1007/s12668-016-0191-3
http://www.ncbi.nlm.nih.gov/pubmed/27014560
http://dx.doi.org/10.4172/2168-9547.1000e104
http://dx.doi.org/10.1039/C6NR06840E
http://www.ncbi.nlm.nih.gov/pubmed/27853793
http://dx.doi.org/10.1016/j.jbiomech.2011.10.031
http://www.ncbi.nlm.nih.gov/pubmed/22115064
http://dx.doi.org/10.1016/j.yjmcc.2009.08.003
http://www.ncbi.nlm.nih.gov/pubmed/19686759
http://dx.doi.org/10.1007/s00198-004-1728-9
http://www.ncbi.nlm.nih.gov/pubmed/15372141
http://dx.doi.org/10.1164/ajrccm.164.6.2007062
http://www.ncbi.nlm.nih.gov/pubmed/11587998
http://dx.doi.org/10.1016/j.actbio.2015.07.015
http://www.ncbi.nlm.nih.gov/pubmed/26235344
http://dx.doi.org/10.18632/oncotarget.17371
http://www.ncbi.nlm.nih.gov/pubmed/29029390
http://dx.doi.org/10.1016/j.micron.2018.06.012
http://dx.doi.org/10.1063/1.4996300


Condens. Matter 2019, 4, 58 14 of 15
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