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Abstract: The present paper is a sequel to the paper by Karchev (Condensed Matter 20 February
2017). We report the numerical solutions of the system of equations, which describes the
electrodynamics of s-wave superconductors without normal quasi-particles for time-independent
fields and half-plane superconductor geometry. The results are: (i) the applied magnetic field
increases the Ginzburg–Landau (GL) coherence length and suppresses the superconductivity; (ii) the
applied electric field decreases GL coherence length and supports the superconductivity; (iii) if
the applied magnetic field is fixed and the applied electric field increases, the London penetration
depth of the magnetic field decreases. The main conclusion is that by applying electric field at very
low temperature where there are no normal quasi-particles one increases the critical magnetic field.
This result is experimentally testable.
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1. Introduction

The system of Maxwell equations for a relativistically covariant theory of s-wave
superconductivity without normal quasi-particles is derived in [1]. We report the numerical solutions
of the system for time-independent fields and half-plane superconductor geometry. The results are:
(i) the applied magnetic field increases the Ginzburg–Landau (GL) coherence length and suppresses
the superconductivity; (ii) the applied electric field decreases GL coherence length and supports the
superconductivity; (iii) if the applied magnetic field is fixed and the applied electric field increases, the
London penetration depth of the magnetic field decreases. The main conclusion is that by applying
electric field at very low temperature (where there are no normal quasi-particles), one increases the
critical magnetic field. This result is experimentally testable.

The paper is organized as follows: In Section 2, the system of equations obtained in [1] are
rewritten for time-independent fields and half-plane superconductor geometry. In Section 3 we report
the numerical solutions of the system of equations. A summary in Section 4 concludes the paper.

2. The System of Equations

The system of equations which describes the electrodynamics of s-wave superconductors reads
as [1]:
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−→∇ × B = µε
∂E
∂t
− 2e∗2ρ2Q, (1)

−→∇ ×Q = B, (2)
−→∇ · E = −2e∗2ρ2Q, (3)
−→∇Q +

∂Q
∂t

= −E, (4)

µε
∂2ρ

∂t2 − ∆ρ− αρ + gρ3 − e∗2ρ
[
µεQ2 −Q2

]
= 0, (5)

where E is the electric field, B is the magnetic field, and ρ = |ψ| is the local density of Cooper pairs.
The parameter µ is the magnetic permeability, and ε is the electric permittivity of the superconductor.
We assume that they do not change their values when the system undergoes normal-to-superconductor
transition. The parameter

α = α0(Tc − T), (6)

where T is the temperature and Tc is the critical temperature, is positive when the system is in a
superconducting state. The charge of the Cooper pair is e∗.

The vector Q and the scalar Q are supplementary fields. It is important to stress that the
gauge-invariant vector Q and the scalar Q take part in Equations (2) and (4) as a magnetic vector
and electric scalar potentials, while in Equation (1) (−2e∗2ρ2Q) is a supercurrent and in Equation (3)
(−2e∗2ρ2Q) is the density of the superconducting quasi-particles. This dual contribution of the new
fields is the basis of the electrodynamics of superconductors.

We focus on the system of equations with time-independent fields given by

−→∇ × B = −2e∗2ρ2Q, (7)
−→∇ ×Q = B, (8)
−→∇ · E = −2e∗2ρ2Q, (9)
−→∇Q = −E, (10)

∆ρ + αρ− gρ3 + e∗2ρ
[
µεQ2 −Q2

]
= 0. (11)

It is important to note that the system of equations for static electrodynamics does not split into
systems of equations for electric and magnetic fields. One can do this by assuming that Q and Q are
zero in Equation (11) and ρ = ρ0 is a constant. Thus, one arrives at the conclusion that the electric field
also penetrates a certain distance, just as the magnetic field does [2]. This approximation is not correct.

To elucidate the interplay between electric–magnetic fields and superconductivity, we consider
the system of Equations (7)–(11) for fields which depend on the z coordinate only. Then, the system of
equations for the fields Q(z), Q(z) = (0, Qy(z), 0), E(z) = (0, 0, Ez(z)), B(z) = (Bx(z), 0, 0), and ρ(z)
adopts the form

dBx

dz
= −2e∗2ρ2Qy, (12)

dQy

dz
= −Bx, (13)

dEz

dz
= −2e∗2ρ2Q, (14)

dQ
dz

= −Ez, (15)

∆ρ + αρ− gρ3 + e∗2ρ
[
µεQ2 −Q2

y

]
= 0. (16)
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After some calculations, one reduces the system (12)–(16) to a system of equations for Q, Qy,
and ρ:

d2Q
dz2 = 2e∗2ρ2Q, (17)

d2Qy

dz2 = 2e∗2ρ2Qy, (18)

∆ρ + αρ− gρ3 + e∗2ρ
[
µεQ2 −Q2

y

]
= 0. (19)

It is convenient to introduce dimensionless functions f1(ζ), f2(ζ), and f3(ζ) of a dimensionless
distance ζ = z/ξGL, where

ξGL = 1/
√

α (20)

is the Ginzburg–Landau coherence length and

Q(ζ) = −E0ξGL f1(ζ),

Qy(ζ) = −B0ξGL f2(ζ), (21)

ρ(ζ) = ρ0 f3(ζ).

In Equations (21), ρ0 =
√

α/g, the applied electric field is E0 = (0, 0, E0), and the applied magnetic
field is B0 = (B0, 0, 0). The representations of the electric and magnetic fields by means of f1 and f2 are
the following:

Ez(ζ) = E0
d f1(ζ)

dζ
,

Bx(ζ) = B0
d f2(ζ)

dζ
. (22)

The system of Equations (17)–(19), rewritten in terms of the new functions, reads:

d2 f1(ζ)

dζ2 =
1
κ2 f 2

3 (ζ) f1(ζ),

d2 f2(ζ)

dζ2 =
1
κ2 f 2

3 (ζ) f2(ζ),

d2 f3(ζ)

dζ2 + f3(ζ) − f 3
3 (ζ) (23)

= − f3(ζ)
[
γE f 2

1 (ζ)− γB f 2
2 (ζ)

]
.

In Equations (23), κ is the Ginzburg–Landau parameter

κ =
λL
ξGL

, (24)

which satisfies κ < 1/
√

2 for type I superconductors and κ > 1/
√

2 for type II ones. The parameters
γE and γB have the representation

γE =
e∗2µεE2

0
α2 , γB =

e∗2B2
0

α2 . (25)
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For semi-infinite superconductors, with a surface of the superconductor orthogonal to the z-axis,
the boundary conditions are given by

d f1(0)
dζ

= 1, f1(∞) = 0,

d f2(0)
dζ

= 1, f2(∞) = 0, (26)

f3(0) = 0 f3(∞) = 1.

3. Numerical Solutions

If neither electric nor magnetic fields are applied, the equation for the dimensionless function
f3(ζ) = ρ(ζ)/ρ0

d2 f3(ζ)

dζ2 + f3(ζ) − f 3
3 (ζ) = 0 (27)

is exactly solvable [3,4], and the solution for z ≥ 0 is

f3(ζ) = f3

(
z

ξGL

)
= tanh

(
z√

2ξGL

)
. (28)

It is more convenient to study a system of first-order differential equations. To this end, we
introduce three new functions (p1(ζ), p2(ζ), p3(ζ)) and rewrite the system (23) in the form

dp1(ζ)

dζ
=

1
κ2 f 2

3 (ζ) f1(ζ), (29)

dp2(ζ)

dζ
=

1
κ2 f 2

3 (ζ) f2(ζ), (30)

dp3(ζ)

dζ
+ f3(ζ) − f 3

3 (ζ),

= − f3(ζ)
[
γE f 2

1 (ζ)− γB f 2
2 (ζ)

]
, (31)

d f1(ζ)

dζ
= p1(ζ), (32)

d f2(ζ)

dζ
= p2(ζ), (33)

d f3(ζ)

dζ
= p3(ζ). (34)

We proceed by numerically solving the system (29)–(34) for κ = 1/3 and different values of
γE and γB. The solutions for the density of Cooper pairs ρ/ρ0 = f3 as a function of z/ζGL are depicted
in Figure 1.

The curve in the middle (black) is the solution (28) when neither electric nor magnetic fields are
applied. It is the reference solution. The two dashed curves below the reference one are solutions when
magnetic field is applied (γE = f1 = p1 = 0), and the two solid line curves above the reference one are
the solutions when electric field is applied (γB = f2 = p2 = 0).

The Ginzburg–Landau coherence length measures the distance over which the superconducting
order parameter increases up to the bulk value, measured from the surface of the
superconductor (z > 0). If we set in Equation (28) z = ξGL (ζ = 1), we obtain f3(1) = 0.6. We can
use this relation as a definition of the GL coherence length ξE

GL when electric field is applied, and ξB
GL

when magnetic field is applied. When electric field is applied, the solution f E
3 (ζ) satisfies f E

3 (ζ
E) = 0.6

for ζE = ξE
GL/ξGL, and when magnetic field is applied, the solution f B

3 (ζ) satisfies f B
3 (ζ

B) = 0.6 for
ζB = ξB

GL/ξGL. The dashed curves in Figure 1 show that ζB = ξB
GL/ξGL > 1, and the GL coherence

length increases whenthe applied magnetic field increases, while ζE = ξE
GL/ξGL < 1 and the GL
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coherence length decreases when the applied electric field increases. Therefore, one concludes that the
applied electric field decreases the GL coherence length, which means that the electric field supports
the superconductivity, while the applied magnetic field increases the GL coherence length, which
means that the magnetic field destroys the superconductivity.

The next calculations are achieved for a fixed value of the applied magnetic field γB = 4 and
different electric fields. The result is depicted in Figure 2.

Figure 1. Density of Cooper pairs ρ/ρ0 = f3 as a function of z/ξGL. (i) Dashed lines—when magnetic
field is applied; (ii) Solid lines—when the electric field is applied; (iii) The line in the middle—neither
electric nor magnetic fields are applied.

Figure 2. The dashed lines are the density of Cooper pairs ρ/ρ0 = f3 as a function of z/ξGL for fixed
value of the applied magnetic field and different values of applied electric fields. The solid lines are the
magnetic field in the interior of the superconductor when different electric fields are applied.

The dashed lines correspond to the solutions for the density of Cooper pairs ρ/ρ0 = f3 as a
function of z/ζGL. They show that even in the presence of an applied magnetic field the increase of the
applied electric field decreases the GL coherence length. The solid lines show the magnetic field in the
interior of the superconductor when different electric fields are applied. The curves show that London
penetration for the magnetic field decreases. The main conclusion is that under the application of an
electric field at very low temperatures where there are no normal quasi-particles, the critical magnetic
field is increased. This can be experimentally tested.



Condens. Matter 2017, 2, 31 6 of 7

4. Summary

The superconductor is not an ideal conductor [5]. If we place an ideal metal in a constant magnetic
field at temperature T > Tc and then decrease the temperature to temperatures below Tc, the magnetic
field remains unchanged. On the other hand, if the magnetic field is zero at temperatures above Tc

and we switch it on at temperature T < Tc, it remains zero inside the ideal metal. Therefore, the final
state depends on the order in which actions are taken, while the superconductor expels the magnetic
field and the order of events does not matter. In the present paper, we discuss another important
difference. The normal quasi-particles in an ideal metal completely screen the applied electric field.
When the electrons form Cooper pairs in superconducting state, they permit the penetration of the
applied electric field; further, the electric field decreases the distance over which the superconducting
order parameter increases up to the bulk value (Ginzburg–Landau coherence length). This is our
main result.

The aim of the present paper was to present the results obtained by solving the system of equations,
which describes the electrodynamics of s-wave superconductors without normal quasi-particles
for time-independent fields and half-plane superconductor geometry. The objective was to elucidate the
interplay between applied magnetic and electric fields and superconductivity. The overall conclusion is
that the applied magnetic field destroys the superconductivity while the applied electric field supports
it. The figures show that when the electric field is applied, the density of Cooper pairs ρ(z) increases.
Therefore, if we apply an electric field at low temperature, ρ(z) increases and we can increase the
temperature to decrease ρ(z) to the initial value, but at higher temperature. Hence, by means of an
applied electric field we can increase the temperature without destroying the superconductivity.

The first attempt to detect an electric field in a superconductor was carried out by London [6].
In the London experiment, the capacity of a capacitor with superconducting plates was measured.
At temperatures below the superconducting transition temperature, the change in capacity of the
condenser when the superconductivity is destroyed by magnetic field indicates a penetration of an
electric field in the superconductor. The experiment failed—no change in capacity of the mercury
condenser was observed. A possible explanation is that the critical temperature of mercury is
Tsc = 4.12 K and the experiment was carried out at T = 1.8 K. At this temperature, the density
of normal quasiparticles is still high and they screen the electric field. We hope that the experiment
will be successful if one repeats it at temperatures lower than 1 K.

It is most promising to study the influence of electric field on superconductivity with materials
that possess an insulator–superconductor transition. We can apply an electric field near the critical
superconductor–insulator transition temperature. One example is sulfur hydride [7]. The temperature
dependence of the resistance, measured at different pressures, shows that the material undergoes a
superconductor–insulator transition at 129 GPa.

The London brothers’ theory of superconductivity is an extension of classical electrodynamics [2].
They supplemented the Maxwell system of equations with a set of equations. The generalized
Maxwell–London equations are discussed in [8,9]. The phenomenological Ginzburg–Landau
theory [10] generalizes the London one, including the order parameter. The present paper expands the
GL theory by adding the electric field.

The results raise new questions. For example, the result that the applied electric field increases the
critical magnetic field at low temperature makes important the question of the impact of the electric
field on Abrikosov vortexes [3,11].
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