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Abstract: Motivated by diffraction experiments on the
(
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√
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√

3
)

R30◦ reconstructed Si(111)
surface due to deposition of rare earth elements (Dy, Tb) and silicide formation, we analyse the
splitting and non-splitting of superstructure diffraction spots. For this purpose, we model diffraction
patterns for one-dimensional structures generated by the binary surface technique and use supercell
models to keep the analysis simple. Diffraction patterns are calculated in the framework of the
kinematical diffraction theory, and they are analyzed as a function of the domains and domain
boundaries. Basic properties of the diffraction pattern are analyzed for model systems of a two-fold
and a three-fold periodicity. The rules derived from these calculations are applied to the “real-world”
system of Si(111)-
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)

R30◦-RESix (RE = Dy or Tb). Depending on the combination of
domains and domain boundaries of different types, a plethora of different features are observed in
the diffraction patterns. These are analyzed to determine the sizes of both domain boundaries and
domains from experimentally observed splitting of specific superstructure spots.

Keywords: spot-profile analysis; one-dimensional physics; low energy electron diffraction;
binary surface technique; supercell model; domain boundary

1. Introduction

Many surfaces exhibit superstructures formed to minimize their surface energy. Superstructures
are also often formed after deposition of adlayers in the submonolayer regime or even beyond.
However, these superstructures often show defects as point defects, e.g., vacancies, or line defects, e.g.,
domain boundaries. Therefore, it is important to characterize the defect structure of these surfaces.
Here, Scanning Tunneling Microscopy (STM) is a powerful tool to locally study point and line defects,
while diffraction can be used to obtain insight into the defect structure on a global scale.

For instance, Low Energy Electron Diffraction (LEED) is also an extremely well-suited technique
for structural studies [1–3] and to obtain information concerning surface defects. While randomly
distributed point defects cause an increased background intensity, periodically arranged line defects
(e.g., domain boundaries and atomic steps) typically produce complicated diffraction patterns as
will be shown below. Furthermore, it has been demonstrated that the distribution of defects can be
obtained from spot profile analysis (SPA-LEED) in order to learn about the morphology of surfaces [4–7].
This analysis is performed by applying diffraction theory in the kinematic approximation. Accordingly,
it is also easily available for large unit cells.

Spot splitting due to the formation of domain boundaries (DBs) has been reported for metal
covered Si(111) surfaces, e.g., Pb/Si(111) [8,9]. Here, the formation of striped domains and distinct DBs
has been deduced from the splitting of
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3
)

R30◦ superstructure diffraction peaks. Streaked
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superstructure diffraction peaks, however, can be attributed to quasi one-dimensional structures where
atomic wires (domain size one) are separated by DBs [10].

In this work, we investigate the influence of DBs on the splitting of superstructure peaks. For this
purpose, we use the supercell approach combined with the binary surface technique. We demonstrate
that the splitting or non-splitting of various superstructure peaks has to be taken into account to
determine the correct structure of the DBs involved. In addition, we apply our results to analyze
the complex structure of

(
2
√

3 ×
√

3
)

R30◦ reconstructed Si(111) surface due to rare earth silicide
formation where several layers are involved in the formation of the superstructure [11].

2. Results and Discussion

2.1. Methodology

In principle, the intensity of LEED peaks can only be calculated within the full dynamical
diffraction theory taking into account multiple scattering effects [1–3]. In the following, however,
we will study the effect of domain boundaries on the diffraction pattern of surfaces with superstructures
analyzing diffraction spots in the frame of the kinematic diffraction theory. Therefore, the surface
is divided into domains with perfectly arranged unit cells and domain boundaries. It has been
demonstrated that it is appropriate for defective surfaces to use the kinematic diffraction theory if one
considers only diffraction profiles [4–6]. Here, the scattering from one superstructure unit cell within a
domain is integrated into an effective formfactor FSS(E) (column approximation), where E denotes the
electron energy. In principle, the same holds true also for the DBs. Thus, we denote the scattering from
a unit cell of the DB by FDB(E). Therefore, the intensity of a diffracted beam is presented by

I(H, E) = |FSS(E)∑
n

e2πiHrSS(n) + FDB(E)∑
m

e2πiHrDB(m)|2, (1)

assuming a one-dimensional surface for reasons of simplicity. Here, H denotes the scaled lateral
scattering vector H = K‖a/2π with lateral component K‖ of the scattering vector and the fundamental
lateral lattice constant a. The intensity depends on both the form factor of the superstructure (SS) as
well as the DB unit cells and on the arrangement of unit cell positions denoted by rSS and rDB for the
superstructure unit cells and the DB unit cells, respectively. Both positions rSS and rDB introduced in
Equation (1) are integers due to scaling to the lattice constant a.

However, the scattering from the DBs can be neglected for small domain boundary densities.
In this case, the diffraction signal is determined from the interference between the different domains
separated by DBs and Equation (1) can be simplified:

I(H, E) = |FSS(E)|2|G(H)|2, (2)

where
G(H) = ∑

n
e2πiHrSS(n) (3)

denotes the lattice factor. Thus, the intensity distribution can be described by the lattice factor.
Alternatively, the lattice factor can be described by

G(H) = ∑
n

S(D)
n (H) e2πiHrD(n), (4)

where rD(n) denotes the position of the n-th domain (scaled to the lattice constant a) and

S(D)
n (H) =

Nn−1

∑
n=0

e2πiHrss(n) (5)

is the structure factor of the n-th domain assuming that this domain consists of Nn unit cells.
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2.2. Supercell Approach

In the following, we assume that all domains have the same size Nn ≡ N. Of course, this is a very
strong assumption that is never met in real systems. However, it is an approximation of the case where
the mean domain size of the domain size distribution is significantly larger than its variance. Thus, the
structure of the surface can be explained by a periodic arrangement of domains of identical size N and
DBs. Furthermore, the structure factor S(D)

n (H) ≡ S(D)(H) is identical for all domains and Equation
(5) simplifies to

S(D)(H) =
N−1

∑
n=0

e2πiHpn =
1− e2πiHpN

1− e2πiHp , (6)

where p denotes the periodicity parameter introducing the size of the unit cell of the superstructure pa.
The regular and periodic arrangement of the domains and DBs introduces a length of periodicity Γa
that is equivalent to an effective lattice constant of the supercell. Therefore, the diffraction pattern is
described by

|G(H)|2 = |S(D)(H)|2
∞

∑
n=−∞

δ(H − n/Γ). (7)

Assuming a specific width wa (w ∈ N) of the DB, the length of periodicity is Γ = Np + w. Thus,
diffraction peaks appear in reciprocal space at scaled scattering vectors

Hn =
n

Np + w
. (8)

Thus, the distance between adjacent diffraction peaks is ∆H = 1/(Np + w). In addition to the
regular pattern of diffraction peaks, the structure factor |S(D)(H)|2 emphasizes the regions in reciprocal
space close to diffraction peaks at H(nom)

n = n/p expected for ideal surfaces without any structural
defects as, e.g., DBs.

2.3. Binary Surface Technique

Here, we introduce the binary surface technique to treat also surfaces with larger periodicities
than surface unit cells [11,12]. Within this approach, the crystallographic lattice with the lattice constant
a is represented by a one-dimensional binary array with an array length m and with periodic boundary
conditions. Consequently, m·a = lcoh corresponds to the coherence length of the diffraction experiment.

Modelling occupied and unoccupied lattice sites by [1] and [0], respectively, different periodicities
can be modeled. For example, the unit cell of a one-fold periodicity is represented by a simple [1] and
the unit cell of a two-fold periodicity can be represented by either [1 0] or [0 1]. Repetitively appending
one type of unit cell until the maximum array size m is reached creates an array/surface with a perfect
particular periodicity. For instance, the sequences

[1|1|1|1|1|1|1|1|1|1|1|1],
[10|10|10|10|10|10],

show a one- and two-fold periodicity for the array length m = 12. By introducing sequences that break
this translational symmetry, DBs can be modeled. For example, for the surface reconstructed with a
two-fold periodicity, this means introducing an additional [1] or [0] between (similar) adjacent unit
cells. For instance, the sequence

[10|10|0|10|10|10|10]

depicts the domain boundary [0] in red. Consequently, the surface is now composed of domains
reconstructed with the two-fold periodicity separated by DBs.
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In this approach, the lattice factor G(H) can simply be calculated as Fourier transform of the
binary array. Thus, the binary surface technique is also well-suited to study randomly distributed
defects. Here, however, we will solely discuss regular arranged domains of distinct size and DBs while
the effect of randomly distributed DBs will be discussed in another paper [13]. In addition, we will
treat here only DBs of the structure [0], [00], etc., for reasons of simplicity.

2.4. Two-Fold Periodicity

As discussed above, the most simple model for researching the effects of domain boundaries on
the diffraction pattern is a surface reconstructed with a two-fold periodicity. Taking a closer look at its
possible binary configurations, it becomes apparent that it is sufficient to assume one type of domain

D1 = [1 0],

and two types of domain boundaries

DB1 = [0] or DB2 = [0 0].

Figure 1a shows the diffraction pattern for a perfect two-fold periodicity (blue). As expected,
a superstructure peak at Hnom

1 = 1/2, induced by the two-fold periodicity, arises. On one hand, a spot
splitting (cyan) of this very peak takes place if DBs of type DB1 (w = 1) are introduced between adjacent
domains (here: N = 3). As mentioned above, strong diffraction peaks are only observed at positions
Hn = n/(2N + 1) with n = N and n = N + 1 due to the structure factor S(D)(H) emphasizing
diffraction peaks close to Hnom

1 = 1/2. Thus, the spot splitting is ∆H = 1/(2N + 1).
On the other hand, the former superstructure peaks (red) reappear at Hnom

1 = 1/2 if DBs of type
DB2 (w = 2) separate domains of two-fold periodicity. Here, the domain boundaries cause the formation
of satellite peaks at ∆H = ±1/(2N + 2) with respect to the original superstructure diffraction peak at
Hnom

1 = 1/2.
This very property of spot splitting of the superstructure peak versus satellite formation is

equivalent to the observation for atomically stepped surfaces. At out-of-phase diffraction condition
K⊥ = 2πn/d, on one hand, one obtains an equally splitted (00) diffraction peak for a regularly stepped
surface with mono atomic steps due to destructive interference between adjacent terraces of width Nt

(in multiples of the lattice constant a). Here, d and K⊥ denote the step height and the vertical scattering
vector, respectively. However, it has to be noted that the spot splitting ∆H here is exactly 1/Nt since
the step height does not contribute because the defect “atomic steps” is perpendicular to the lateral
scattering vector H. In contrast to this, as mentioned above, the width of the DB contributes to the
spot splitting due to its lateral character.

On the other hand, no spot splitting is observed at out-of-phase condition if the surface has atomic
steps of double height 2d since the interference between adjacent terraces is constructive (effective
in-phase condition) in this case. Instead, the (00) diffraction does not show any evidence for the
stepped surface.

These out-of-phase and in-phase characters of atomic steps can also be assigned to the different
DBs. The spot splitting for DB1 is due to destructive interference between adjacent domains while the
sharp peak at the nominal superstructure peak position for DB2 is due to constructive interference.
Therefore, DB1 is an anti-phase domain boundary (APDB) with relative phase shift ∆ϕ1 = 2πw/p = π

while DB2 may be called an in-phase domain boundary (IPDB) due to the relative phase shift ∆ϕ2 =

2πw/p = 2π.
Here, we like to mention that the sharp peak form of all superstructure peaks is caused by our

supercell ansatz. If the domain widths follow some width distribution, these peaks are broadened and
the broadening increases with increasing distance to the nominal superstructure diffraction peak at
Hnom

n = n/p, as will be shown in another contribution [13].
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Figure 1. (a) diffraction pattern of the perfect two-fold periodicity (blue) and after introduction of
domain boundaries DB1 (w = 1, cyan) and DB2 (w = 2, red); (b) diffraction pattern of the three-fold
periodicity for the D1 domain and the domain boundaries DB1 (green), DB2 (red), DB3 (cyan) and the
alternation of DB1 and DB2 (blue); (c) diffraction patterns for the alternation of the domains D1 and
D2 with the domain boundaries DBk = DB1 and DBl = DB1 (blue), DBk = DB2 and DBl = DB2 (black),
DBk = DB1 and DBl = DB2 (red) and DBk = DB2 and DBl = DB1 (magenta).

2.5. Three-Fold Periodicity

In principle, there are six different types of domains within the binary surface technique for the
three-fold reconstructed surface. For reasons of simplicity, however, we only consider two domain
types in the following:

D1 = [1 0 0] and D2 = [0 1 0],

and, from the multitude of domain boundaries, only the types

DB1 = [0], DB2 = [0 0] or DB3 = [0 0 0].

Thus, most notably, the domain boundaries can assume different sizes (w = 1, 2 or 3).
Figure 1b exemplarily shows the diffraction pattern for the domain D1 (here: N = 3) and the

domain boundaries DB1 (green), DB2 (red) and DB3 (cyan). Similar to the former results for the
surface with two-fold periodicity, we obtain split superstructure spots for short and intermediate
DBs, namely DB1 (w = 1, green) and DB2 (w = 2, red), respectively. The magnitude of the splitting
is equal to the value expected by applying Equation (8). For the long boundary DB3 (w = 3, cyan),
however, the superstructure diffraction peak is not split but shows satellites separated as expected
from Equation (8).

In contrast to the spot splitting for the surface with two-fold periodicity, however, the intensities
of both diffraction peaks differ due to different distances to the nominal peak position Hnom

n = n/3
for the surface without domain boundaries. Therefore, the structure factor S(D)(H) of the domain
modifies the intensity of the peaks.
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The distances of these peaks with respect to the nominal peak obtained for the defect-free structure
either exhibit a ratio of 1 : 2 or vice versa depending on the size w of the domain boundary. This can
easily be explained within the supercell model considering, e.g., the peaks close to Hnom

1 = 1/3. Here,
one has to regard the supercell peaks HN and HN+1. For these peaks, the distances ∆HN and ∆HN+1

with respect to H(nom)
1 = 1/3 are

|∆HN+1|
|∆HN |

=
3− w

w
, (9)

which explains the result of |∆HN+1| : |∆HN | = 2 : 1 for w = 1 and 1 : 2 for w = 2 independent of the
individual domain size N for the case at hand.

In addition, Figure 1b shows the case of alternation (blue) of DB1 (w = 1) and DB2 (w = 2) if the
type of domain D1 (N = 3) does not change. It becomes apparent that, in this case, the diffraction peaks
at the nominal positions (Hnom

1 = 1/3 or Hnom
2 = 2/3) are still present while additional satellite peaks

are created due to the presence of domain boundaries. Due to the alternation of the DBs with different
size, the next-next-neighbor domains are shifted relatively by w1 + w2 = 3. Thus, next-next-neighbor
domains interfere constructively.

This means that there are only two types of phase shifts (∆ϕ1 = 2π/3, ∆ϕ2 = 4π/3) for adjacent
domains. Consequently, these two domains cannot interfere completely destructively at the nominal
position of the perfectly three-fold periodicity, and thus an additional peak emerges in the diffraction
pattern. Furthermore, the split peaks are now located at equal distances from the nominal position
and consequently show a mostly symmetric intensity distribution. This is opposed to the situation
for only one type of domain boundary where there are all three types of phase shifts (∆ϕ1 = 2π/3,
∆ϕ2 = 4π/3 and ∆ϕ3 = 2π) that cancel out each other at the nominal spot position.

This effect for alternating DBs can also be treated in a different way. Indicating different DBs by
different colours (green, red) the sequence

[...|100|100|100|0|100|100|100|00|...]

just discussed can also be rewritten as

[...|100|100|100|010|010|010|000|...]

introducing the domain type D2 combined with theDB3. Thus, the length of periodicity is 2Np + w
and one has domain boundaries without anti-phase character. Consequently, there is a diffraction
peak at the nominal position combined with satellites at ∆H = ±1/(2 · 3N + 3) with almost doubled
periodicity length Γ = 2 · 3N + 3.

As just introduced, not only the domain boundaries can be alternated but the domains themselves
as well

[...| D1(N1) | DBk | D2(N2) |DBl |...].

To keep it simple, Figure 1c shows only D1 alternating with D2 for every combination of the domain
boundaries DB1 (w = 1) and DB2 (w = 2) with themselves and each other. If both domain boundaries
exhibit equal length (e.g., DBk = DBl = DB1 (w = 1), see Figure 1c, blue), the magnitude of the spot
splitting decreases to half of the previous value. This also reflects the doubled periodicity induced by
alternating different domains.

If domain boundaries of different sizes are alternated, however, an additional effect occurs. If we
assume in the following the alternating domains D1 (blue) and D2 (black) as well as domain boundaries
DBk = DB1 (w = 1, green) and DBl = DB2 (w = 2, red) for example (see Figure 1c, red), the following
sequence is found in the binary array:

[...|100|100|100|0|010|010|010|00|...] .
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Alternatively, this very sequence can be rewritten by rearranging the domain and
domain boundaries:

[...100|100|100|00|100|100|100|0|...] .

This means that the two-domain two-domain-boundary model decomposes into a one-domain
two-domain-boundary model with the following configuration Di = Dj = D1 (w = 1), DBk = DB2

and DBl = DB2 (w = 2). Consequently, the diffraction pattern is analogous to the diffraction pattern
depicted in Figure 1b, blue. If we consider the configuration Di = D1 (blue), Dj = D2 (black), DBk = DB2

(w = 2, green) and DBl = DB1 (w = 1, red) (see Figure 1c, magenta)

[...|100|100|100|00|010|010|010|0|...] ,

you can find the following equivalent expression

[...|100|100|100|000|100|100|100|...] ,

with identical domains D1 and DBk = DB3 (w = 3). This means that the second domain boundary DBl
vanishes and the first domain boundary DBk is commensurable with the three-fold periodicity (e.g.,
no phase shift), explaining nicely that a quasi-perfect three-fold periodicity can be observed in the
diffraction pattern even though domain boundaries are present.

2.6.
(

2
√

3 ×
√

3
)

R30◦ Reconstruction

In this section, the diffraction pattern of the
(

2
√

3 ×
√

3
)

R30◦ reconstruction of (Dy, Tb) on
Si(111) [11] will be discussed as an example demanding a detailed analysis in the framework presented
above since the effective unit cells are too large to perform standard diffraction analysis.

The atomic structure of the reconstruction is rather complex (see Figure 2 as analyzed in [11]
combining density functional theory (DFT), STM and LEED. It is composed of three Si layers:
one buckled Si bilayer (Si1, Si2), and two silicene-like (hexagonal, flat) layers (Si3, Si4) that host
a network of Si vacancies. The three Si layers are separated by rare earth layers. Experimental
evidence shows that the Si3 layer exhibits a

(√
3 ×

√
3
)

R30◦ reconstruction and the Si4 layer exhibits

a
(

2
√

3 ×
√

3
)

R30◦ reconstruction due to periodically arranged Si vacancies. The Si4 layer has one

vacancy per
(

2
√

3 ×
√

3
)

R30◦ unit cell while the Si3 has two. Additionally, the vacancies in both
layers are not collinearly arranged (cf. colored positions in Figure 2).

There is evidence that two different types of domains alternate across the 2
√

3-direction of
the unit cell. Indeed, DFT calculations show that there are four stable structure models (e, f , q,
r, see Figure 2) with different arrangements of the vacancies but comparable formation energies.
The models (e, f ) represent one type of domain D1 and models (q, r) the other type D2. Furthermore,
the two different types of domains are separated by DBs because a splitting of odd order diffraction
spots in 2

√
3-direction is observed when LEED experiments are performed. As compared to a perfect

silicene layer, the DFT calculations additionally predict a tensile strain of the silicene-like Si3 and Si4
layers of the unit cell in 2

√
3-direction due to the Si vacancies. This strain can only be compensated

if the density of vacancies is decreased, resulting in a formation of DBs containing no vacancies.
Furthermore, STM experiments show that the growth in

√
3-direction is only limited by the step

edges. Consequently, the structure exhibits striped domains with a high aspect ratio, making it
a quasi-one-dimensional structure. Combining all information given above, it can be postulated that
the spot splitting is explained by a supercell of the following structure

[...|D1(e/ f , N1) |DB1 |D2(q/r, N2) |DB2|...] ,
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meaning that a domain of D1 (either e or f ) of a size N1 alternates with a domain of D2 (either q or
r) of a size N2. Additionally, the two types of domains are separated by DBs where a transition from
one type of domain to the other (D1 → D2) does not necessarily have to be the same as the reversed
transition (D2 → D1), resulting in two different domain boundaries DB1 and DB2.

Figure 2. (a) Schematic display of the structure model of the
(

2
√

3 ×
√

3
)

R30◦ reconstruction.
There are four different energetically favorable models (e, f , q, r) that belong to two different types
of domains. The models e and f make up the first type of domain where the vacancies in the Si3
and Si4 layer are located underneath Si atoms in the Si2 layer, whereas the models q and r make up
the second domain where the vacancies in the Si3 and Si4 layer are located underneath Si atoms in
the Si1 layer. Both models exhibit different structural motives in Scanning Tunneling Microscopy
(STM) measurements [11], which are indicated here by green triangles and red hexagons. The binary
sequences after the projection onto the relevant crystallographic axis of the different models for the layer
Si3 and Si4 are given reflecting the fact that the Si3 layer exhibits a (

√
3×
√

3) periodicity and the Si4
layer exhibits a (2

√
3×
√

3) periodicity. (b,c) example of two potential supercells [...|e|DB1|q|DB2|...]
incorporating different sizes of DBs. (b) w(DB1) = 1 and w(DB2) = 2 and (c) w(DB1) = 4 and w(DB2)

= 5. For reasons of better visibility, the supercells only contain one unit cell of the model e and q,
respectively. However, in principle, the supercell can contain multiple unit cells of either model and
the domain sizes can be obtained from the superstructure peak splitting.
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However, experimentally, neither the width nor the exact orientation of the different types of
domains to each other can be determined by STM. Additionally, the size of the supercell (multiple
2
√

3 unit cells) makes DFT calculations prohibitive. Thus, in order to gain a deeper insight into the
arrangement of the two types of domains, kinematical diffraction simulations are performed.

Since both the Si bilayer (Si1, Si2) and the rare earth layer exhibit a 1 × 1 reconstruction, they
do not contribute to the superstructure diffraction peaks and can consequently be ignored for their
analysis. The two-dimensional atomic structure of the

(√
3 ×

√
3
)

R30◦ reconstructed Si3 layer and

the
(

2
√

3 ×
√

3
)

R30◦ reconstructed Si4 layer can be transformed into one-dimensional structures by

projecting them onto the crystallographic axis of the 2
√

3-direction (see Figure 2), in which the two
types of different domains (separated by DB) alternate. However, in order to be able to account for
the different positions of the vacancies in the unit cell for both types of domains, the lattice constant a
must be chosen equal to the lateral distance between Si atoms rows in Si(111), i.e., a = a0

√
3/3 (with

a0 = 3.84). Figure 2 shows the sequences of binarizations used to perform these calculations.
In order to generate the general diffraction pattern of this two layered structure, the vertical phase

shift needs to be taken into account by

|G(H, L)|2 =
∣∣GSi3(H) + GSi4(H) exp(2πiL)

∣∣2 . (10)

Here, G(H, L) is the lattice factor as a function of out-of-plane scattering vector K⊥ = 2πL/d (where
d is the layer spacing), and GSi3 and GSi4 are the lattice factors (Fourier transforms) of the binary
arrays of the respective layers. However, for the following only, calculations for integer values of L
are performed. Hence, the diffraction pattern equates to the absolute square of the sum of both of the
Fourier transforms due to constructive interference between domains

|G(H)|2 =
∣∣GSi3(H) + GSi4(H)

∣∣2 . (11)

The simplest way to have D1 and D2 alternate is to alternate only two models that belong to
different types of domains separated by two types of anti-phase domain boundaries creating the
following type of supercell

[...|D1(e, N1) |DB1 |D2(q, N1) |DB2|...].

In LEED experiments, one observes that only peaks of odd order are split (see Figure 3a, cf. [11]).
Therefore, taking into account our previous considerations, it can be deduced that the combined size
w1 + w2 of the domain boundary must be an odd multiple of a0

√
3 since one would observe a splitting

of the even order superstructure spots otherwise. Translated to the binary description, this means that
the width of the complete domain boundary wtot must be equal to

wtot = w(DB1) + w(DB2) = 6N + 3, N ∈ N . (12)

However, a priori, there is no knowledge about the size of the individual domain boundaries.
Therefore, on one hand, Figure 3a shows the experimentally received diffraction pattern. On the other
hand, Figure 3b–e show the diffraction patterns for the coherent superposition of the layers Si3 and Si4
for N1 = N2 = 3 and w = 3, 9 for all possible domain boundaries.



Condens. Matter 2017, 2, 7 10 of 13

Figure 3. (a) experimentally observed diffraction pattern along the 2
√

3-direction; (b–e) diffraction
pattern of the four models (e↔ q, e↔ r, f ↔ q, f ↔ r) for all possible combinations of the anti-phase
domain boundaries DB1 and DB2 for w(DB1) + w(DB2) = 3 or 9. The lateral scattering vector H
is given in units of the silicon substrate. This means that the nominal first order diffraction spot is
located at 1/(2

√
3) = 0.2887. Consequently, peaks of higher order are located at multiples of this alue.

Additionally, only a part of the diffraction pattern is displayed for reasons of better visibility.

In total, five different features can be identified in the diffraction patterns. Feature 1 corresponds
to the split first order, feature 4 to the second order spot and feature 5 to the split third order spot of
the base (2

√
3 ×

√
3) periodicity. Features 2 and 3 can be interpreted as the first order (feature 3) and
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second order (feature 2) satellites of the second order diffraction spot. Their positions can be explained
by the average periodicity of the supercell

Γ = N(D1)2
√

3 + w(DB1)
√

3/3 + N(D2)2
√

3 + w(DB2)
√

3/3 (13)

via Equation (8). Table 1 exemplarily shows the assignment of the different features observed in
Figure 3 for the respective models (α through o) for the combination of the models e and q.

Table 1. Assignment of the five features observed in the simulated diffraction patterns (see Figure 3b)
of the 14 models (α through o) for the combination of model e and q. Additionally, the width of both
types of the DBs is displayed for the different models.

Feature Experimental α β γ δ ε ζ η θ ι κ λ µ ν o

1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

2 5 5 5 5 5 3 3 3 3 3 3 3 3 3 3

3 5 3 5 3 3 3 3 3 3 5 3 3 5 3 3

4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

w(DB1) - 0 1 2 3 0 1 2 3 4 5 6 7 8 9
w(DB2) - 3 2 1 0 9 8 7 6 5 4 3 2 1 0

Comparing the experimental features (cf. Figure 3a) to the features observed in the simulated
diffraction patterns (cf. Figure 3b), it becomes obvious that only model β shows the observed diffraction
pattern analogous to the experimental diffraction pattern (only splitting of odd order spots, no
additional features). Taking a look at the particular binary configuration for Si3

[...101101|1|011011|011011|011011|11|101101|101101...],

[...10110|110110|110110|110110|111|110110|110110|1...],

and Si4

[...110111|1|101111|101111|101111|11|110111|110111...],

[...11011|111011|111011|111011|111|111011|111011|1...],

it can be found that, for this particular arrangement of domain boundaries and domains, the binary
sequences decomposes into simpler systems. For the Si3 layer, one receives a

√
3 reconstructed array

with only one domain and a commensurate domain boundary explaining a diffraction pattern that is
very close to a

√
3 periodicity. For the Si4 layer, one receives a 2

√
3 reconstructed array with a single

domain and one type of DB resulting in a symmetric splitting of (basically only) odd order diffraction
spots. For every other combination of domains and domain boundaries, only either the binary sequence
of layer Si3 or Si4 or none of them decompose into a one-domain one-domain-boundary system. Hence,
their diffraction patterns exhibit additional features that are in stark contrast to the experimental
findings.

The interference between both layers also plays a significant role. Due to the lateral displacement
of the vacancies in both layers (Si3, Si4), an intensity asymmetry of the first order and fifth order (split)
spots is induced [11].

Analyzing all diffraction patterns of the other combinations of models in the same fashion, only
one additional model agreeing with the experimental evidence can be found, model β (cf. Figure 3d)
for the combination of models f and r, which, incidentally, exhibits the same anti-phase boundaries as
for the combination of models e and q.

This means that, in order to explain the experimental diffraction pattern, only the anti-phase
domain boundaries DB1 = [1] and DB2 = [1 1] may be present. Additionally, only transitions from e
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↔ q and transitions from f ↔ r may occur, leading to the interpretation that these transitions must
be energetically more favorable than the other possible transitions. However, it is difficult to assess
this hypothesis by conventional methods (e.g., DFT) due to the large unit cells involved. Having
identified the most probable structure of the supercell, the mean domain size Γsc of the supercell can
be determined from the spot splitting ∆H

Γsc = N1 + w1 + N2 + w2 = 11 (14)

given in unit cells of the 2
√

3 periodicity, agreeing nicely with the experimental evidence obtained by
STM. The analysis can be refined if one takes into account domain size distributions to analyze the
profiles of the split superstructure spots as presented elsewhere [13].

Additionally, we like to mention that our calculations are on the same footing as the kinematical
diffraction theory calculations for the Pt(111)-

(√
3 ×

√
3
)

R30◦-Xe system with domain walls [14].
Here, different diffraction patterns are reported for the striped domains depending on the width of
the domain walls/boundaries. However, in contrast to the Xe/Pt(111) system, where the DBs are not
orientated alongside either

√
3-direction, the DBs in the system at hand are orientated alongside the√

3-direction of the unit cell. Consequently, the diffraction patterns studied here only show non-integer
diffraction spots along the 2

√
3-direction. This result is opposed to the situation for the Xe/Pt(111)

system, where additional triangularly arranged triplet diffraction peaks are reported surrounding
the

(√
3 ×

√
3
)

R30◦ diffraction peaks. Similar effects of triangularly arranged diffraction split
peak triplets are also reported for Pb/Si(111) [8,9]. Additionally, we like to emphasize that the
diffraction pattern of the Si(111)-

(
2
√

3 ×
√

3
)

R30◦-RE12Si21 is more complicated compared to

Pt(111)-
(√

3 ×
√

3
)

R30◦-Xe by the fact that different types of DBs alternate, increasing the number
of possible diffraction spots observed.

3. Conclusions

Calculating diffraction patterns and applying the binary surface technique, we were able to show
the influence of domain boundaries on the diffraction pattern for selected structures. Motivated by
the formation of striped domains, these calculations were performed for one-dimensional systems
in the framework of the kinematical diffraction theory using the supercell approach. Depending
on the width of the domain boundaries and combining different types of domains and domain
boundaries, a plethora of different features can be observed in the diffraction patterns. The analysis of
the diffraction pattern obtained from these binary sequences lastly enabled us to identify the structure
and width of the domain boundaries of the

(
2
√

3 ×
√

3
)

R30◦ reconstruction of rare-earth silidices
(Dy, Tb) on Si(111). Future works will consider the distribution of domain widths and study the effect
on spot profiles.

Part of this work has been presented at the international conference on Atomically Controlled
Surfaces Interfaces and Nanostructures ACSIN2016 held in Frascati, Rome Italy from 9 Oct 2016 to 15
Oct 2016 [15].
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Abbreviations

The following abbreviations are used in this manuscript:

LEED Low energy electron diffraction
SPA-LEED Spot-profile analysis-Low energy electron diffraction
DB Domain boundary
APDB Anti-phase domain boundary
SS Superstructure
STM Scanning tunneling microscop
DFT Density functional theory
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