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Abstract: The utilization of algae in aquaculture is environmentally friendly, safe, and cost-effective
and can effectively substitute for fish meal and fish oil in aquatic feeds. Incorporating algae as dietary
supplements leads to significant enhancements in aquatic animals’ health and also improves the
aquatic ecosystem. Algae are rich sources of nutrients and serve as the foundational food source in the
aquatic food chain. Currently, 40 different algae species are employed in aquaculture. Furthermore,
algae contributes to elevating the overall quality of aquatic feed products. Aquaculture stands as
the most vital food production sector globally; however, challenges such as infection outbreaks and
aquatic environmental pollution pose significant threats to the sustainable growth of this industry. An
alternative strategy for mitigating environmental issues and improving aquatic production involves
the utilization of algae. The novelty in the applications of algae in aquaculture stems from their
multifaceted roles and benefits, such as their capacity to improve water quality, serve as nutrient-
rich feed supplements, and enhance the overall health and productivity of aquatic species. These
versatile applications of algae represent a fresh and innovative approach to sustainable aquaculture
practices. This review furnishes insights into the use of algae, algae extracts, or components derived
from algae to enhance water quality. Additionally, it covers the utilization of algae-based feed
supplements, boosting of the immune system, enhanced growth performance, and disease resistance
in aquatic animals.

Keywords: algae; water treatment; dietary additives; aquatic animal; aquaculture

Key Contribution: Algae are naturally rich nutrient sources; they are the primary food producer
in the food chain for aquatic animal life, and the algae cultivation method is eco-friendly, non-
toxic, and cost-effective. They have numerous beneficial properties, including immunostimulant,
antioxidant, anti-inflammatory, and antimicrobial activity in aquatic animals, and microalgae convert
atmospheric carbon into high-nutrient products. Algae improve the circular bioeconomy in the
aquaculture industry, and the algae treatment process is a successful method for different types
of wastewater from municipal, industrial, agro-industrial, and livestock sources. Both microalgae
and macroalgae as well as algae-producing components like carbohydrates, lipids, and proteins are
beneficial substances in aquatic feeds and improve the quality of aqua feed, aquatic animal health,
and the aquatic environment.
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1. Introduction

The aquaculture sector plays a crucial role in global food production and holds sig-
nificant economic importance for many countries. Both finfish farming and crustacean
production contribute substantially to the global food supply chain, providing essential
protein sources and supporting livelihoods. As the global population continues to grow,
the aquaculture sector is expected to play an increasingly important role in meeting the
demand for nutritious and sustainable protein sources. Sustainable and responsible aqua-
culture practices are critical for the long-term health of the industry and the environment [1].
Aquatic feeds typically play a crucial role in augmenting aquatic production, with a sub-
stantial portion of fish oil (FO) and fish meal (FM) being used as essential feed ingredients to
meet the dietary requirements of farmed aquatic species. Consequently, there is a growing
imperative to re-evaluate the sustainability of fish farming regarding the consumption of
FM and FO [2]. The utilization of algal technology in aquaculture offers a range of benefits
and represents an alternative approach to enhancing various biological functions. Algae,
including microalgae and macroalgae, can serve multiple purposes in aquaculture systems,
contributing to improved health and environmental conditions. The application of algal
technology in aquaculture aligns with the goals of sustainability, environmental steward-
ship, and improved efficiency within the industry. Research and ongoing developments
continue to explore innovative ways to integrate algal technologies for the benefit of both
aquaculture production and the surrounding ecosystems [3]. Algae, including brown algae
(Phaeophyceae), green algae (Chlorophyceae), red algae (Rhodophyceae), and diatoms
(Bacillariophyceae), can be broadly categorized into two primary types: microalgae and
macroalgae. The distinction between microalgae and macroalgae is primarily based on
size, with microalgae being microscopic and macroalgae being visible without the aid of a
microscope. Both microalgae and macroalgae play important roles in aquatic ecosystems
and have various applications in industries, ranging from food and agriculture to biotech-
nology and environmental management [4]. The distinctive or combined effects of various
algae species contribute to the consistency of protein, lipids, and essential trace minerals
in aquaculture. Some of the commonly used algae species include Tetraselmis sp., Pavlova
sp., Chlorella sp., Isochrysis sp., Chaetoceros sp., Phaeodactylum sp., Skeletonema sp., Thalas-
siosira sp., and Nannochloropsis sp. [5]. Microalgae, as a diverse group of photosynthetic
microorganisms, have played crucial roles (photosynthetic evolution, primary producers,
formation of planktonic ecosystems, biodiversity, carbon fixation, nitrogen fixation, symbi-
otic relationships, biogeochemical cycling, and adaptation to diverse environments) in the
evolutionary history of life on Earth. While their exact evolutionary timeline is complex
and not fully understood, microalgae have significantly contributed to the development
and maintenance of ecosystems. Understanding the evolutionary roles of microalgae is
crucial not only for elucidating the history of life on Earth but also for recognizing their
ongoing ecological importance in contemporary ecosystems and their potential applications
in various industries, such as bioenergy, food, and environmental management. Microalgae
are indeed recognized as an essential and indispensable source of nutrition for fish fry and
larval shrimp in aquaculture. In the context of aquaculture, particularly in hatcheries where
controlled conditions are maintained for the early stages of fish and shrimp development,
microalgae are considered a key component in ensuring successful and healthy aquaculture
production. [6]. Sivaramakrishnan et al. [7] reported that four green algae, Acetabularia ac-
etabulum, Enteromorpha, Halimeda macroloba, and Halimeda tuna, exhibit significant potential
in terms of antioxidant capabilities, immune stimulation, and medicinal applications for
aquatic animals. Algae represent vital natural food sources for aquatic animals, and various
algae species, such as Leptolyngbya valderiana, L. tenuis, Arthrospira maxima, Navicula minima,
Nostoc ellipsosporum, Cytoseira, Ulva, Pavlova, Chaetoceros, Porphyridium, Chlorella, Palmaria,
Gracilaria, and Isochrysis, are promising feed components, enhancing the growth perfor-
mance and immunity of Nile tilapia (Oreochromis niloticus), rainbow trout (Oncorhynchus
mykiss), European seabass (Dicentrarchus labrax), golden gourami (Trichopodus trichopterus),
cichlid (Cichlidae) fish, wag swordtail (Xiphophorus hellerii), orange molly pink zebra, tetras
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(Paracheirodon axelrodi), and prawns (Dendrobranchiata). Therefore, algae biomass serves as
a cost-effective, safe, and environmentally friendly feed ingredient [8], and administrations
of microalgae directly to the rearing water or indirectly by mixing them into the feed has
become a crucial practice for enhancing aquatic animal nutrition [9–11]. Both micro- and
macroalgae are advantageous components in aqua feeds, as they contribute to improving
feed quality, aquatic animal health, and the aquatic environment [12].

Microalgal components offer not only beneficial effects for aquatic animals but also
significant economic and ecological advantages in aquaculture [13]. Microalgal biomass
contains a variety of biochemical components, such as proteins, lipids, carbohydrates,
natural antioxidants, and bioactive products, and these diverse components are harnessed
to develop sustainable aquaculture [14]. Microalgae supplements have been shown to
enhance the growth performance of aquatic animals, and they synthesize a wide array of
beneficial biological elements, including amino acids, vitamins, antioxidants, and pigments,
which are advantageous for the health and growth of aquatic animals [15,16]. Compounds
generated by macroalgae, particularly polysaccharides, can up-regulate the immune sys-
tem and enhance protection against Aeromonas hydrophila, Enterobacter sp., Pseudomonas
aeruginosa, Streptococcus sp., Escherichia coli, Vibrio parahaemolyticus, Vibrio alginolyticus, Vib-
rio cholerae, Yersinia enterocolitica, and Proteus sp. [17]. Astaxanthin synthesized by algae
enhances antioxidant activity in rainbow trout and offers beneficial effects for human
health [18–20]. Furthermore, the inclusion of algae and their various biomolecules, proteins,
peptides, amino acids, fatty acids, sterols, polysaccharides, oligosaccharides, phenolic
compounds, photosynthetic pigments, vitamins, and minerals collectively contribute signif-
icantly to the growth performance, antioxidant activity, and antimicrobial activity, serving
as immune-stimulating agents in both aquatic animals and humans [21,22].

Algae are reported to exhibit antibacterial properties against a wide range of bacteria,
encompassing both Gram-positive and Gram-negative strains [23,24]. Various algal species
synthesize antimicrobial compounds such as short-chain and long-chain fatty acids, which
are effective against pathogenic bacteria, including Vibrio species, Aeromonas species, and
Pseudomonas species, as well as viruses, including influenza B, mumps viruses, herpes simplex
virus type 1 (HSV-1), and even the human immunodeficiency virus type 1 (HIV-1) [25].
Algae-synthesized polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid
(EPA) and sterols, have microbicidal effects against several bacteria, including Gram-
positive strains like Staphylococcus aureus and Streptococcus pyogenes, as well as Gram-
negative genera such as Aeromonas, Pseudomonas, and Vibrio [26–30].

Microalgae cultivation is used in aquaculture wastewater treatment [31,32], as it can
improve water quality [33]. Five marine microalgae strains, Porphyridium aerugineum, Nan-
nochloropsis granulate, Tetraselmis chuii, Botryococcus braunii, and Phaeodactylum tricornutum,
can produce varying levels of essential minerals, including calcium (ranging from 0.26%
to 2.99%), phosphorus (0.73% to 1.46%), magnesium (0.26% to 0.71%), potassium (0.67%
to 2.39%), sodium (0.81% to 2.66%), and sulfur (0.41% to 1.38%). These microalgae strains
produce a total of 26 different chemical compounds, and their biomass plays an important
role in carbon dioxide (CO2) conversion, nutrient recycling, land cultivation, and the reme-
diation of wastewater, demonstrating their significance in environmental recycling [34–37].
The use of algae grown on wastewater for aquafeed applications involves several regula-
tory aspects (wastewater quality standards, nutrient content and composition, microbial
safety, toxic substances, harmful algal blooms, feed safety regulations, environmental im-
pact assessment, labeling and documentation, approval and certification, traceability and
record keeping, and public health and consumer safety), which need to be considered to
ensure both the safety of the aquafeed and the protection of the environment. Regulatory
frameworks can vary by country, and specific guidelines may be provided by relevant
authorities. Below are some general regulatory considerations. It is essential for individuals
or companies engaged in the production of aquafeed using algae grown on wastewater to
familiarize themselves with the specific regulations applicable in their region and to work
closely with relevant regulatory authorities to ensure compliance. Additionally, seeking
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certification from reputable organizations may enhance the credibility and market accep-
tance of such products [37,38]. The present review aims to provide an overview of recent
findings and applications related to the use of both micro- and macroalgae in aquaculture,
including the use of macro- and microalgal extracts as functional feed additives as reported
by Monteiro et al. [39] and the introduction of innovative approaches that can contribute to
the development of sustainable aquaculture.

2. Cultivation Process

The cultivation of algae is the process of growing algae for various purposes, including
food production, biofuel, bioremediation, and pharmaceuticals. Algae can be cultivated
in open ponds, closed bioreactors, or photobioreactors [40]. The cultivation process in-
volves the following elements: strain selection, growth medium, cultivation system, light
and temperature, aeration and mixing, harvesting, and processing. Algae cultivation has
gained attention as a sustainable and environmentally friendly way to produce a wide
range of products with industrial applications, including biofuel production, food and
feed production, wastewater treatment, and pharmaceuticals. Additionally, algae cultiva-
tion can contribute to carbon capture and reduce greenhouse gas emissions when used
for biofuel production, and as a sustainable and versatile practice, algae cultivation has
garnered interest in research and industry for its potential to contribute to a range of sectors.
Advances in cultivation technologies and the exploration of novel algal strains continue
to shape the field, making algae cultivation a promising solution for addressing global
challenges related to food security, environmental sustainability, and renewable energy
production [41–44]. In addition, it is worth mentioning that Silkina et al. [45] displayed that
far-red light adaptation improved phycocyanin, a pigmented protein complex, and xantho-
phyll concentrations compared to white-light conditions in the thermophilic cyanobacteria
Chlorogloeopsis fritschii.

3. Wastewater Management in Aquaculture

Aquaculture produces substantial volumes of wastewater, which contains nutrients,
organic substances, and living organisms. The wastewater contents can vary, influenced by
factors such as the species cultivated, the type of feed utilized, and the methods employed
for water management [42,43,45,46]. The use of algal cultivation for the enhancement of
water quality, especially in reducing Chemical Oxygen Demand (COD), involves consider-
ations of scale application efficiency (system design, nutrient loading rates, algal species
selection, harvesting, and recirculation system), commercial exploitation (nutrient recovery,
aquaculture and agriculture, research and development, public and private partnerships),
and regulatory aspects (water quality standards, environmental permits, biosafety and
health regulations, monitoring and reporting, land use regulations, and product safety).
By addressing the scale application efficiency, commercial exploitation, and regulatory
aspects, the integration of algal cultivation for water quality improvement can be more
effectively implemented and sustained over time. Collaboration with regulatory bodies
and adherence to standards are crucial for the successful and responsible deployment of
algae-based water treatment solutions [32]. Microalgae cultivation has the potential to
improve aquaculture wastewater, as it can affect the excess amount of nutrients such as am-
monia, nitrate, phosphate, and chemical oxygen demand (COD) in order to enhance water
quality. This removal not only benefits water quality but also mitigates the environmental
impact of nutrient-rich effluents when discharged. The harvested microalgae biomass can
serve as a valuable feed source for aquaculture species, or it can be utilized for various
other purposes, making it a cost-effective and environmentally friendly solution for both
wastewater treatment and resource utilization in the aquaculture industry [32,47]. Effective
management of aquaculture wastewater is imperative to mitigate the detrimental effects
on aquatic ecosystems. Employing efficient waste capture, water treatment, and recycling
systems can significantly decrease the discharge of pollutants. In addition, regulatory
measures and adherence to regulation are crucial for ensuring the long-term environmental
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sustainability of aquaculture operations [38,48,49]. Algal biomasses serve a dual purpose
in enhancing the nutritional value of aquatic feed supplements, contributing to both envi-
ronmental sustainability and the efficient utilization of aquaculture resources [50]. The use
of algal technology for removing excess nutrients and dissolved carbon from wastewater
is not a recent development; it was first suggested in the 1950s and has since evolved
and gained prominence as an environmentally friendly and effective method for wastew-
ater treatment and resource re-utilization [51–54]. Microalgae removes biological matter
from wastewater through processes like consumption, adsorption, and biodegradation
through microalgae’s production of extracellular polymers, which can detoxify or modify
pollutants [55–58]. The microalgae Chlorella vulgaris has shown impressive efficiency in
removing total nitrogen (86.1%) and phosphorus (82.7%) from white-leg shrimp (Penaeus
vannamei) farming wastewater [59]. Furthermore, C. vulgaris demonstrated superior growth
in aquaculture wastewater when bicarbonate was used as the carbon source, underscoring
its potential for efficient nutrient removal [60]. The microalgae Scenedesmus sp. is effective
in removing pollutants from wet market wastewater, removing 74.8% of total nitrogen (TN)
and 92.2% of total phosphorus (TP) [61]. The microalgae Spirulina sp. is also utilized for
treating aquaculture wastewater and reducing environmental impact [48].

Microalgae biomass and its components, including astaxanthin, phycocyanin, carbo-
hydrates, proteins, lipids, and PUFAs, are effectively employed to remove eutrophication
pollutants from wastewater. The biomass of microalgae species like Chlamydomonas rein-
hardtii, Monoraphidium griffithii, and Selenastrum sp. can be cultivated and recirculated for
use in treating and improving aquaculture wastewater [62]. The use of the microalgae
Chlorella sorokiniana in an aquaculture estuary revealed significant effectiveness in nutrient
removal, as it showed removal rates of 75.6% for ammonium, 84.5% for nitrates, 73.3%
for phosphates, and 71.9% for chemical oxygen demand (COD). [46]. The cultivation
of Chlorella vulgaris from Nile tilapia effluents showed impressive results in terms of re-
ducing nutrient levels and bioremediation efficiency. Microalgae biomass produces an
average nutrient level of 172.91 mg/day for carbohydrates, 141.57 mg/day for proteins,
and 150.19 mg/day for lipids. Furthermore, it achieved exceptional bioremediation effi-
ciency, removing 99.8% of nitrate and 99.7% of phosphate from the tilapia effluents. These
findings highlight the potential use of C. vulgaris in water quality control [63]. Cultivation
of Spirulina platensis in aquaculture wastewater also demonstrated a similar beneficial
effect [64,65]. The use of different algal species in combination has also been revealed to be
effective in bioremediation and biomass production [66–68]. Cultivating microalgae in an
aquaponic system proves beneficial to both fish and plants. Integrated fish and vegetable
farming supports sustainable aquaculture and hydroponic plant growth in a mutually
beneficial ecosystem [69–71] (Table 1).

Table 1. Biochemical composition and removal nutrient efficiency (%) of algae cultivated in wastewater.

Biochemical Composition Nutrient Removal Efficiency
Algae Wastewater

Source
Protein

(%)
Lipid
(%)

Carbohydrate
(%) COD% Nitrate (%) Nitrite

(%)
Phosphate

(%)
Ammonia

(%) References

Chlorella vulgaris
Aquaculture

waste
water

47.5 9.1 19.1 46–76 100 100 63.1–92.2 23.4 [58]

Chlorella sp. Aquaculture
wase water 55.28 10 24.77 46–76 62 82 63.1–92.2 84–96 [72]

Chlorella vulgaris
and Tetradesmus

obliquus
Aquaculture
wastewater 57 8 16.8 94 100 - - 99 [62]

Gracilaria
birdiae

Aquaculture
wase water 12.94 4.82 58.12 78 ~100 93.5 34 [73]

Spirulina platensis Nile tilapia
effluent 56 13 25 87.2 97.5 95 98 98 [63]

Scenedesmus sp. Tilapia 19.5 30.9 35.15 80 77.7 73.8 ~100 88.7 [59]

Abbreviation: COD—Chemical Oxygen Demand.



Fishes 2024, 9, 63 6 of 21

4. Applications of Algae in Aquaculture
4.1. Replacements of Fish Meal and Fish Oil

Algae, particularly microalgae, are essential natural nutritional sources in aquatic
ecosystems and play an important role in the food chain of aquatic animals. The bene-
ficial effects include improved growth performance, modulation of gut microbiota, and
enhanced disease resistance, making them valuable for the aquaculture industry. Further-
more, the substitutions of FM and FO with microalgae contribute to the conservation of
marine ecosystems [74–76]. Dietary additives of algae have demonstrated effectiveness as
immunomodulators by enhancing survival rates of olive flounder (Paralichthys olivaceus)
exposed to Edwardsiella tarda [77]. Micro- and macroalgae used as a feed supplement have
demonstrated positive effects on the green water culture production of various planktivo-
rous species, including Nile tilapia, rohu (Labeo rohita), bighead carp (Hypophthalmichthys
nobilis), catla (Catla catla), and shrimp. Microalgae such as Arthrospira (Spirulina), Chlorella,
Dunaliella, Haematococcus, Isochrysis, Nannochloropsis, Pavlova, and Schizochytrium have estab-
lished themselves as essential nutritional sources, with benefits for aquatic animals [5,18].

4.1.1. Microalgae

In a previous review, Duerr et al. [78] discussed the use of the microalgae Chaeto-
ceros, Thalassiosira, Tetraselmis, Isochrysis, and Nannochloropsis as aquaculture feeds, through
Artemia, rotifers, or Daphnia. The dietary inclusion of microalgae supplements represents an
innovative and sustainable approach in aquaculture and has garnered increasing attention
as an alternative to FM and FO in commercial aquatic feed, enhancing the nutritional value
of the feed and promoting environmental sustainability in aquaculture [79–81], which
moves the industry closer to achieving sustainable aquaculture [82]. Microalgae species
such as Chlorella, Dunaliella, Nannochloropsis, Spirulina, and Scenedesmus are commonly used
in aquaculture as feed supplements to improve the health and growth performance of
aquatic animals [83]. The combination of algae extracts and organic acids has the potential
to partially or completely replace FM and FO in aquafeed [84]. Biomass from species like
Dunaliella spp. can serve as a valuable ingredient in aquaculture feeds, particularly for
Nile tilapia, and its incorporation can partially replace FM, leading to improved growth
and nutrient intake in the cultured species. This practice supports the development of
a more sustainable and environmentally friendly aquaculture industry by reducing the
dependency on traditional protein sources and promoting resource efficiency [85]. In a
subsequent study, it was reported that the incorporation (10%) of Dunaliella sp. in Nile
tilapia diets is safe and economically beneficial, as the additive improved fish health and
growth performance and reduced the supplementation levels of FO and FM in the diets.
This aligns with sustainability goals in aquaculture, emphasizing the responsible use of
resources and reducing the reliance on traditional feed ingredients [5].

4.1.2. Macroalgae

The incorporation of macroalgae as a feed additive in an 8-week feeding trial at a
dosage of 1000 mg led to significant improvements in growth, antioxidant capacity, and
pigmentation in electric yellow cichlid (Labidochromis caeruleus) [78]. The combination
of dietary supplements containing macroalgae species such as Ulva spp., Gracilaria spp.,
and Fucus spp. at concentrations ranging from 2.5% to 7.5% yielded several positive
effects in European sea bass (Dicentrarchus labrax). One of the significant outcomes is the
potential to replace traditional feed ingredients FM and FO [86]. The incorporation of algae
supplements not only enhances the health and performance of aquaculture species but also
contributes to making aquaculture practices more sustainable by reducing the industry’s
reliance on marine resources. This aligns with the growing emphasis on environmentally
responsible aquaculture [84,85,87]. In a previous study with Nile tilapia, the dietary effect
of ulvan extract from the green algae Ulva clathrata revealed that administration increased
hematocrit, phagocytic activity, and white blood cells. However, no significant effect was
displayed for growth performance, hemoglobin, red blood cell count, total serum protein,
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albumin, and globulin in the dietary levels as a result of the ulvan extract [87,88] (Figure 1,
Table 2).
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Figure 1. Applications of algae in aquaculture. Algae play diverse and significant roles in aqua-
culture, contributing to water quality management (nutrient removal, BOD, CO2 sequestration,
and bioremediation) and acting as valuable feed supplements (natural nutrition source of omega-3
fatty acids, pigments, and carotenoids) and providing enhanced growth and reproduction, artemia
enrichment, biofloc technology, seedling production, and sustainable practices for aquatic animals.
The integration of algae in aquaculture demonstrates its versatility in addressing multiple challenges,
from water quality management to providing essential nutrition for aquatic animals. Research and
ongoing developments continue to explore ways to optimize the use of algae for sustainable and
efficient aquaculture production.
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Table 2. Algae is used as a dietary feed supplement in aquaculture and its effects on aquatic animals.

Algae Algae (Family) Mode of Algae
in Aqua Feed

Aquatic
Organisms
(Scientific

Name)

Aquatic
Organisms

(Common Name)
Dietary Inclusion
Level (g/kg or %)

Replaced
Ingredients Beneficial Effects References

Arthrospira
platensis Microcoleaceae Whole Macrobrachium

rosenbergii Giant river prawn 50% FM
Increased growth

performance and feed
conversion efficiency

[89]

Arthrospira
platensis Microcoleaceae Whole Oreochromis

niloticus Nile tilapia 10% FM Improve growth rate and
digestive enzyme activity [90]

Chlorella
vulgaris Chlorellaceae Whole

Carassius
auratus
gibelio

Carp 0.4–2.0% FM

Enhanced
immunoglobulin (Ig) M

and D, interleukin-22
(IL)-22, and chemokine

(C-C motif) ligand 5
(CCL-5)

[91]

Chlorella vulgaris Chlorellaceae Whole M. rosenbergii Giant river prawn 4–8% FM

Enhanced growth rate,
immune system, and disease

resistance against
pathogens

[92]

Dunaliella salina Dunaliellaceae Whole Penaeus monodon Black tiger shrimp 10% _ Improved growth rate [93]

Gracilaria fisheri Gracilariaceae P. monodon Giant tiger prawn 100–200 µg/ml FM
-

Enhanced immune system
and increased resistance

against white spot syndrome
virus

[94]

Gracilaria arcuata Gracilariaceae O. niloticus Nile tilapia 20% FM Enhanced growth
performance [95]

Nannochloropsis
oculata

Monodopsidaceae
and

Thraustochytriaceae
LEA O. niloticus Nile tilapia 33–100% PR

Enhanced growth rate and
nutritional quality of farmed

fish
[96]

Pyropia
spheroplasts Bangiaceae Whole Apostichopus

japonicus
Japanese sea

cucumber 50 g/kg - Improved growth rate and
feed conversion efficiency [97]

Sargassum wightii Sargassaceae Penaeus
monodon Giant tiger prawn 400 mg/L - Better growth rate and

increased disease resistance [98,99]

Spirulina sp. Spirulinaceae Whole Cyprinus carpio Common carp 5 g/kg - Higher growth rate and feed
conversion ratio [100]
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Table 2. Cont.

Algae Algae (Family) Mode of Algae
in Aqua Feed

Aquatic
Organisms
(Scientific

Name)

Aquatic
Organisms

(Common Name)
Dietary Inclusion
Level (g/kg or %)

Replaced
Ingredients Beneficial Effects References

Scenedesmus
obliquus Scenedesmaceae Whole and LEA Anarhichas

minor Spotted wolffish 4% PR Increased growth
performance and skin color [101]

Schizochytrium
sp. Thraustochytriaceae Whole Salmo salar Atlantic salmon 100–150 g/kg FO

Enhanced growth
performance, fillet quality,

nutrient retention efficiency,
and blood chemistry

[102]

Schizochytrium
sp. Thraustochytriaceae Whole Oncorhynchus

mykiss Rainbow trout NM - Better replacement of FM and
FO [103]

S. platensis Microcoleaceae Whole Pterophyllum
scalare Angel fish 5 g/kg FM Better nutrient additives for

fish growth [104]

S. platensis Microcoleaceae Whole and LEA O. niloticus Nile Tilapia 5–10 g/kg PR Better growth and immunity
promoter [105]

S. platensis Microcoleaceae Whole Trachinotus
ovatus Silver fish 5% FM

Improved growth, body
composition and feed

utilization
[106]

S. platensis Microcoleaceae Whole C. carpio Koi carp 5% FM Stimulation of the immune
system [100]

Tisochrysis lutea Isochrysidaceae - Sparus aurata Gilthead seabream 5% - Higher growth rate, nutrient
utilization, and survival rate [107]

Ulva rigida Ulvaceae - Mugil cephalus Common grey
mullet 10 mg/kg -

Enhanced growth response,
and antioxidant and immune

stimulation
[108]

Abbreviation: Penaeus monodon—P. monodon, Cyprinus carpio—C. carpio, Oreochromis niloticus—O. niloticus, Salmo salar—S. salar, Pseudodiaptomus hessei—P. hessei, gram—g,
microgram—µg, milligram—mg, kilogram—kg, milliliter—ml, Immunoglobulin—Ig, interleukin—IL, fishmeal—FM, fish oil—FO, lipid-extracted microalgae—LEA, not mention—NM,
larval food—LF, protein—PR, digestible protein—DP, apparent digestibility coefficients—ADC.
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4.2. Treatment of Aquatic Animal Diseases

The administration of microalgae meal in a 70-day feeding trial with post larval stage of
Pacific white shrimp (Litopenaeus vannamei) revealed significant positive impact on disease
resistance against V. harveyi infection and various immune parameters, total hemocyte count,
phenoloxidase activity, superoxide dismutase activity, and bactericidal activity [109–112].
Polysaccharides derived from the tropical brown algae Turbinaria ornata demonstrated potent
antibacterial activity against A. hydrophila, P. aeruginosa, Streptococcus sp., Yersinia enterocolitica,
Enterobacter sp., Proteus sp., V. cholerae, V. parahaemolyticus, V. alginolyticus, and E. coli. These
findings displayed the potential of algae-derived compounds in combating bacterial infections
and promoting the health of aquatic animals [111,113–115]. Various techniques are available
for the extraction of polysaccharides from seaweeds, including hot water extraction, enzymatic-
assisted extraction, microwave-assisted extraction, and ultrasonic-assisted extraction. Each
of these methods has advantages and may be chosen based on the specific requirements of
the polysaccharide extraction process [112,116]. Scenedesmus quadricauda, a green alga, is not
only a good antioxidant but has also demonstrated bactericidal activity against bacteria like
Staphylococcus aureus and P. aeruginosa. Additionally, the biomass of S. quadricauda is a rich
source of protein, making it suitable for use as a feed supplement in aquatic animal’s diets and
is a valuable resource for enhancing the nutritional quality of the feeds and promoting health
and growth of aquatic species [117]. The dietary incorporation of microalgae such as Sargassum
cinereum, Padina gymnospora, and Gracillaria folifera has demonstrated significant antibacterial
activity against Pseudomonas spp. in Mozambique tilapia (Oreochromis mossambicus), and
these species are important due to their antibacterial and antiviral properties [118,119]. The
dietary incorporation of P. gymnospora polysaccharide at various concentrations (0.01, 0.1, and
1.0%) showed that inclusion at 0.1% and 1.0% levels increased the production of antibodies
and improved the resistance of common carp (Cyprinus carpio) against A. hydrophila and E.
tarda. This highlights the potential of P. gymnospora polysaccharides as a beneficial dietary
supplement by enhancing the immune response and disease resistance in aquatic species [120].
The dietary inclusion of various algae compounds, including polysaccharides, fatty acids,
phlorotannins, pigments, lectins, alkaloids, terpenoids, and halogenated compounds, sig-
nificantly enhanced the antioxidant capacity, immune response, survival rate, and infection
resistance against pathogens in Mozambique tilapia [113,121]. Supplements of Azolla pinnata
and Nannochloropsis oculata, used in the remediation of environmental pollutants are reported
to improve antioxidant capacity, growth performance, immune system function, survival rates,
and disease resistance in Nile tilapia [114]. The combination of dietary additives of Chlorella
and Spirulina has demonstrated protective effects against A. hydrophila infection in Nile tilapia
as these algae-based additives improved the immune response and disease resistance of the
fish, contributing to their health and survival [122]. In contrast, dietary supplementation of
Dunaliella salina at a dosage of 300 mg/kg for 8 weeks did not lead to changes in phenoloxi-
dase activity and hemocyte count, but administration increased protection against White Spot
Syndrome Virus (WSSV) in juvenile black tiger shrimp (Penaeus monodon) compared to control
groups. This suggests that D. salina supplementation may not have direct effects on certain
immune parameters but can still enhance the shrimp’s resistance to specific pathogens like
WSSV [9].

4.3. Growth Promoters

The dietary incorporation of Spirulina sp. at levels ranging from 5% to 15% in a 60-day
feeding trial involving juvenile giant freshwater prawn (Macrobrachium rosenbergii) resulted
in enhanced growth performance, reduced mortality, and significantly improved feed
utilization. This indicates the potential of Spirulina sp. as a valuable dietary supplement for
improving the health and overall production efficiency of the prawns in aquaculture [96].
Spirulina used as a feed supplement is known to be a valuable protein source, and in
common carp, its inclusion in the diet has revealed improved growth and increased body
weight by more than 25% vs. the control group. [93,123]. The dietary incorporation of
Spirulina at levels ranging from 5% to 20% significantly enhanced the survival rate, growth,
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and feed intake of juvenile Pacific white shrimp and revealed a positive impact on the
health and production efficiency of shrimp in aquaculture [124]. In an 11-week study using
juvenile Pacific white shrimp, the partial replacement of FM with S. platensis resulted in
a significantly improved growth response. This suggests that incorporating S. platensis
into the diet can be an effective strategy to enhance the growth performance of shrimp in
aquaculture and reduce the dependency of FM [6,100]. The dietary incorporation of the
microalgae Scenedesmus almeriensis at various combinations (ranging from 0% to 39%) in a
45-day experiment had a significant positive impact on the growth, body composition, gut
microbiota composition, and production of short-chain fatty acids in gilthead sea bream
(Sparus aurata) juveniles [125]. The single or combined dietary inclusion of Isochrysis galbana,
Pavlova lutheri, and Chaetoceros muelleri significantly enhanced the growth performance
and survival of grooved carpet shell (Ruditapes decussatus) larvae well as the biochemical
and fatty acid composition during the larval development and underscore the value of
algae-based dietary supplements in promoting the health and development of aquatic
larvae in aquaculture [10]. The dietary incorporation of the macroalgae Gracilaria arcuata as
feed supplement, 10, 20 and 30% to African catfish (Clarias gariepinus) revealed significantly
lower growth, feed utilization, feed intake, and protein efficient ratio at 20 and 30% inclusion
vs. control group and 10% inclusion [126]. In contrast, a later study, using G. arcuata
at different levels (20, 40, and 60%) in a 12-week trial with Nile tilapia led to a 20%
improvement in growth, enhanced body composition, and increased feed intake compared
to control-fed fish [127,128]. In a 60-day feeding trial, the use of flocculated algae-enriched
live feed Artemia franciscana resulted in improved growth, survival rates, maintenance of
gut microbiota composition, increased villi length, enhanced digestive enzyme activities,
improved feed conversion ratio, feed consumption ratio, and better nutrition indices
compared to the control group and indicated that the use of algae-enriched live feed
can have multiple beneficial effects on the growth, health, and overall performance of
catla [129]. Dietary incorporation of different algae or single alga such as A. pinnata,
C. vulgaris, S. platensis, and Scenedesmus spp., as well as their extracts, are revealed to
be nutrient-rich feed sources for aquatic animals. These feed supplements can partially
replace FO and FM, as they significantly improve antioxidant capacity, immune response,
nutrient utilization, body weight, and growth performance of aquatic animals and highlight
the potential of algae-based feed supplements by enhancing health and production of
aquatic species [95,115,130]. Dietary inclusion of the microalgae Pyropia yezoensis extract
at different combinations (ranging from 0 to 20 g/kg) in a 9-week feeding trial with
olive flounder revealed that a 15% dietary inclusion notably enhanced weight gain, feed
efficiency, and immunity and increased the level of PUFAs [92]. Dietary supplementation
of red seaweed (Gracilaria pygmaea) at a level of 90 g/kg (GL-90) significantly improved
the growth performance of rainbow trout fry [131]. However, the supplementation did
not reveal a significant effect on antioxidant responses and digestive activities. Dietary
inclusion of 3% Arthrospira platensis significantly improved the growth of Nile tilapia, but
administration did not modulate the gut microbiota [132]. Dietary additives of microalgae
Spirulina and Schizochytrium, used as replacements for FM, FO or plant oil, significantly
improved fish growth and maintained fillet quality and displayed the potential of using
these microalgae as sustainable alternatives in aquafeeds to enhance fish growth and the
quality of fillets while reducing reliance on traditional protein sources like FM and FO [133].
Dietary supplementation of Sargassum ilicifolium (10%) during an eight-week feeding
trial with great sturgeon revealed several positive effects, including enhanced growth
performance, hematological parameters (red blood cells (RBCs), white blood cells (WBCs),
and hemoglobin levels), immune responses (respiratory bursts, complementary activities,
and immunoglobulin M, lysozyme, and serum total protein levels), and defense against
Y. ruckeri and highlight the potential of S. ilicifolium as a valuable dietary supplement for
improving the health and growth performance of great sturgeon [134]. Dietary inclusion of
macroalgae Gracilaria vermiculophylla at a level of 5% in a 91-day feeding trial improved the
growth performance of rainbow trout, enhanced the innate immune response, and resulted
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in the highest peroxidase, complement, and lysozyme activity [135]. Dietary incorporation
of fucoidan-rich algae Sargassum wightii extract at various concentrations (1, 2, 3, and 6%)
in a 45-day trial experiment using sutchi catfish (Pangasianodon hypophthalmus) fingerlings
showed that dietary supplementation at 2% notably reduced stress levels, increased the
survival rate against A. hydrophila, and enhanced immune parameters such as lysozyme
activity and respiratory burst activity [136,137]. In a study with Nile tilapia, brown algae
Padina pavonica was administrated at 2, 4, 6, and 8 g/kg for 45 days, and growth was
improved at 8 g/kg inclusion [138]. Furthermore, the study revealed higher values of
hematological and biochemical parameters with the 8 g/kg inclusion diet.

4.4. Immunostimulants

Algae feed supplements in aquatic animals play an important role in enhancing the im-
mune system and infection resistance against viral pathogens. These supplements contain
various bioactive compounds and nutrients that can bolster health and promote the disease
resistance of aquatic animals [139–141]. Dietary incorporation of algae-derived astaxanthin
at a concentration of 80 mg/kg improved hemolymph immunological indices, including
total hemocyte counts, phagocytic activity of hemocytes, serum anti-superoxide radical
activity, serum phenoloxidase activity, serum antibacterial activity, and serum bacteriolytic
activity and disease resistance against WSSV, in Pacific white shrimp during a 4-week
trial [142], showing the immunomodulatory and disease resistance-enhancing properties
of astaxanthin derived from algae. Dietary incorporation of 5% S. platensis and Cladophora
in a 60-day experiment significantly improved the immune system response in various fish
species, including Nile tilapia, rainbow trout, channel catfish, and great sturgeon [143–146].
This improvement was evidenced by changes in parameters such as RBC and WBC counts,
serum bacterial activity, phagocytosis, and lysozyme activity. In addition to immune system
enhancement, the dietary supplementation also led to improved growth performance and
infection resistance in these fish species, highlighting the potential of algae-based dietary
supplements in enhancing the overall health and disease resistance of various fish species.
In an 8-week feeding trial, dietary incorporation of Laurencia caspica extract at a concen-
tration of 1.5% significantly improved the immune system of rainbow trout by improving
immune gene expression, including IL-1β, lysozyme II, Complement C3, and TNF-α [147].
Furthermore, the supplementation of L. caspica extracts improved resistance towards A.
hydrophila infection. A recent study by Khanzadeh et al. [148] revealed significantly higher
effects of L. caspica extract on immunoglobulin M and complement 3 as well as increased
activity of alkaline phosphatase and alanine aminotransferase in Nile tilapia. Furthermore,
extract administration considerably improved the survival of the fish challenged with
Streptococcus agalactia. Dietary supplementation of sulphated polysaccharides derived from
green algae, specifically Codium fragile, resulted in the upregulation of immune-related gene
expression in olive flounder, increased expression of genes associated with the immune
response, including TNF-α, IFN-γ, IL-1β, IL-8, and enhanced lysozyme activity [149,150].
The dietary supplementation of green microalgae Chlorella vulgaris (10%) in a Nile tilapia
diet revealed several beneficial effects, particularly when the fish was exposed to arsenic,
as the supplementation resulted in enhanced serum biomarkers such as aspartate amino-
transferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), creatinine,
and urea [151]. Additionally, the immune gene expression was significantly upregulated,
with TNF-α increasing 14-fold, TGF-β1 increasing 13-fold, and IL-1β increasing 7-fold,
indicating the algae’s ability to mitigate the negative impact of arsenic exposure in Nile
tilapia [152]. Regarding the administration of S. platensis, a recent study [105] revealed
that the supplementation in a Nile tilapia diet improved interleukin 10, lysozyme activity,
complement 3, and IgM serum levels, as well as survival against A. hydrophila infection.

4.5. Rotifers and Algae

According to Gilbert [153], rotifers are subdivided into four categories as defined by
types of food ingested: (1) nanoplankton, (2) microplankton, (3) 5–50 µm algae, and (4) 5–
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250 µm algae. Larval rearing of marine fish, for example, turbot (Scophthalmus maximus)
and Atlantic halibut (Hippoglossus hippoglossus), can result in a bottleneck, and at this early
life stage, it is important to transfer essential nutrients from algae to live food [154]. The
reference to Yan et al. [155] likely provides valuable insights into the specific methodologies,
experimental setups, and findings related to using rotifers for toxicity testing of harmful
algae. Authors interested in this topic can benefit from consulting these papers to gain
a deeper understanding of the experimental protocols, data interpretation, and potential
applications of rotifer-based toxicity testing in the context of harmful algal blooms.

5. Conclusions

Microalgae have garnered attention for their potential benefits in aquaculture, con-
tributing to various aspects of fish health and overall industry sustainability (as a growth
enhancer, immunostimulant, antioxidant, and source of disease resistance). Incorporat-
ing microalgae into aquaculture practices aligns with the broader goals of sustainable
and responsible aquaculture, addressing both economic and environmental considera-
tions [155–159]. Microalgae in aquaculture practices offer a holistic approach to water
quality management, nutrient cycling, and environmental sustainability. These organisms
contribute to creating a more balanced and self-regulating aquatic ecosystem within aqua-
culture systems [160]. Consequently, microalgae play a pivotal role in supporting the early
life stages of aquatic organisms in aquaculture. Their nutritional content, suitability for
larviculture, and contribution to sustainable feed production make them a valuable compo-
nent in the cultivation of various species, ultimately contributing to the overall success and
sustainability of aquaculture operations [133,161–188] and contributing to the conservation
of marine biodiversity. Microalgae also help alleviate the pressure on wild fisheries, support
lower trophic levels, and reduce the ecological footprint of aquaculture operations, all of
which are essential for maintaining the health and diversity of marine ecosystems. Another
benefit of microalgae via biotechnology is decrease in the production cost by producing
biomass using wastewater under the phytoremediation process. Microalgae’s phytoreme-
diation capabilities offer a cost-effective and sustainable solution for managing aquaculture
wastewater. Microalgae biomass offers a wide range of positive impacts on aquaculture,
spanning from the improvement of aquatic animal health to enhancing the quality of aqua
feeds and wastewater treatment. It is important to note that specific regulations can vary
between region and country. Aquaculture operators and scientists should be aware of and
comply with local regulations to promote the responsible and environmentally friendly use
of algae in aquaculture. The use of algae and algae-derived components in aquaculture
is indeed a promising avenue for the future, contributing to more sustainable and envi-
ronmentally responsible practices while simultaneously improving aquatic feed quality
and animal health. This aligns with the growing emphasis on responsible and ethical food
production, essential for meeting the increasing global demand for seafood.
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