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Abstract: Antarctic silverfish (Pleuragramma antarcticum) play a crucial intermediary role in connecting
top predators and krill in the food web of the Antarctic Ocean. Despite their crucial role, research on
their abundance is lacking. In this study, we estimated the abundance of juvenile Antarctic silverfish
as foundational data for predicting their abundance. The density of juvenile Antarctic silverfish
was estimated using an acoustic backscattering theoretical model. The mean volume backscattering
strength was used to investigate the vertical and horizontal distributions of juvenile Antarctic
silverfish in the Antarctic Ross Sea. The survey area was located near Cape Hallett, Antarctica, where
Antarctic krill (Euphausia superba), ice krill (E. crystallorophias), and Antarctic silverfish coexist. The
survey was performed four times using the Korean Antarctic research ship, RV Araon (R/V, 7507 GT).
Frame trawls were conducted to identify the length and weight of the target fish species in the survey
area. Captured Antarctic silverfish captured measured 3–9 cm. The maximum target strength (TS)
was −92.93 dB at 38 kHz, −86.63 dB at 120 kHz, and 85.89 dB at 200 kHz. The average TS was
−100.00 dB at 38 kHz, −93.00 dB at 120 kHz, and −106.90 dB at 200 kHz. Most juvenile Antarctic
silverfish were found at a depth of 100 m and were distributed closer to sea ice. Between nearshore
and polynya waters, the fish demonstrated a proclivity for polynya waters.

Keywords: Antarctic silverfish; hydroacoustic; mean volume backscattering strength

Key Contribution: Antarctic silverfish play a crucial intermediary role in the food web of the Antarctic
ecosystem, making it a highly important species. Assessing the resources of Antarctic silverfish
is vital, particularly using underwater acoustics as a technique. Target strength (TS) is a crucial
factor in evaluating resources through acoustics, and we estimated the TS of Antarctic silverfish,
elucidating their spatiotemporal distribution. This paper contributes to a better understanding of the
Antarctic ecosystem.

1. Introduction

Antarctic silverfish (Pleuragramma antarcticum) is an important fish species in the
Antarctic Ross Sea owing to its wide distribution and high abundance, serving as prey
for both marine mammals and birds [1]. It also plays an important role in the food chain
of the Ross Sea by feeding on Antarctic krill (Euphausia superba), linking top predators to
krill [2–4]. Therefore, Antarctic silverfish have a significant impact on the abundance of top
predators and krill in the Antarctic.
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Antarctic silverfish is the only notothenioid species with an entire pelagic life cycle [5].
It also has a larval stage of more than one year, which is longer than that of other fish
species. The larvae are initially distributed in surface waters, and as they mature, they
disperse into deeper waters [6,7].

Antarctic silverfish can be classified into three age groups based on their length [3,8,9].
Specimens between 0.8 and 3 cm in length are classified as post-larvae, and those between
3 and 10 cm in length as juvenile fish. Specimens larger than 11 cm in length are classified as
adult fish. Juvenile Antarctic silverfish is highly abundant in Antarctic waters, accounting
for 98% of the total plankton [10].

The abundance of a target species is generally predicted based on the abundance of its
juveniles. Therefore, estimating the abundance of juvenile Antarctic silverfish is a crucial
factor in predicting the overall abundance of Antarctic silverfish.

Among various methods used to determine the density and distribution of organisms,
the hydroacoustic technique is the most effective method for surveying waters with limited
access and time limits, like those in Antarctica. To extract echo signals from the target fish
species using the hydroacoustic technique, it is important to discern the target strength
(TS) of the target fish species. The acoustic scattering model is most commonly used to
measure the TS of fish species, as this model takes into account several variables, such as
size, swimming angle, size of the swimbladder, and usage frequency, as well as morpho-
logical characteristics of the target fish species. In the acoustic scattering theoretical model
(Kirchhoff–Ray mode), TS can be estimated by calculating the sum of the volumes of the
fish body and swimbladder, approximated as cylindrical shapes. This theoretical model
is a method of estimating acoustic backscatter strength by separating specific anatomical
structures of the target species, which is generally more precise than estimating strength
using only the organism’s shape [11].

Abundance estimation of a target species using acoustic techniques can be calculated
by dividing the volume backscattering strength (Sv) collected in the field by the target
strength (TS) of the target species. However, given the diversity of species in the ocean, it
is essential to first identify the target species and then separate their signals for accurate
analysis. There are two methods for separating the signals of the target species: time-varied
threshold (TVT), which uses one frequency, and mean volume backscattering strength
(MVBS), which uses more than two frequencies [12].

In this study, we measured the TS of juvenile Antarctic silverfish using an acoustic
backscattering theoretical model to estimate the spatiotemporal distribution of juvenile
Antarctic silverfish. We utilized MVBS to determine the vertical and horizontal distributions
of juvenile Antarctic silverfish in the Antarctic Ross Sea. We believe this study can provide
foundational data for predicting the abundance of Antarctic silverfish.

2. Materials and Methods
2.1. Survey Regions and Acoustic Data Collection

The study area was in the waters near Cape Hallet, Antarctica, where Antarctic krill
(E. superba), ice krill (E. crystallorophias), and Antarctic silverfish coexist. Furthermore,
the survey area is a known nursery ground for Antarctic silverfish [13]. The survey
was conducted four times: from 16 February to 10 March 2018; 21 December 2018 to
18 January 2019; 3 March to 7 April 2020; and 6 December to 22 December 2020 (Table 1). The
acoustic transects in each survey were 6, 12, 12, and 10, respectively. The Korean Antarctic
research ship, the icebreaker RV Araon (R/V, 7507 G/T), was used for the survey. Acoustic
data were collected while maintaining a vessel speed of 7–10 knots (Figures 1 and 2).
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Table 1. Survey period.

Survey Rounds Survey Period Survey Transects

1st 16 February 2018–10 March 2018 06
2nd 21 December 2018–18 January 2019 12
3rd 3 March 2020–7 April 2020 12
4th 6 December 2020–22 December 2020 10
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2.2. Sample Catch Data

It was necessary to determine the length and weight of the target fish species to
evaluate species density via hydroacoustics. Therefore, quantitative fishing gear to collect
the target fish species in the survey area was required. Since the shape of the net structure
changes depending on the speed of the survey vessel, a small midwater trawl with a frame
trawl of 2 m × 2 m was used. The frame was made of stainless steel with a diameter
of 100 mm. For stable fishing gear deployment, five buoys were installed on the top for
buoyancy, and four 100 kg weights were attached to the lower bar for reinforcing weight
and stability (Figure 3). The net was manufactured in duplicate by using double-walled
nets of approximately 7 m; the outer net protected the inner net from breakage. The mesh
sizes of the inner and outer nets were 5 and 10 mm, respectively. The square frame net was
used as fishing gear to collect fish larvae and specimens.



Fishes 2024, 9, 47 4 of 16
Fishes 2024, 9, x FOR PEER REVIEW 4 of 17 
 

 

 

Figure 2. Location map of the acoustic survey transects in polynya waters. (a) December 2018, (b) 

March 2020, and (c) December 2020. 

2.2. Sample Catch Data 

It was necessary to determine the length and weight of the target fish species to eval-

uate species density via hydroacoustics. Therefore, quantitative fishing gear to collect the 

target fish species in the survey area was required. Since the shape of the net structure 

changes depending on the speed of the survey vessel, a small midwater trawl with a frame 

trawl of 2 m × 2 m was used. The frame was made of stainless steel with a diameter of 100 

mm. For stable fishing gear deployment, five buoys were installed on the top for buoy-

ancy, and four 100 kg weights were attached to the lower bar for reinforcing weight and 

stability (Figure 3). The net was manufactured in duplicate by using double-walled nets 

of approximately 7 m; the outer net protected the inner net from breakage. The mesh sizes 

of the inner and outer nets were 5 and 10 mm, respectively. The square frame net was used 

as fishing gear to collect fish larvae and specimens. 

Figure 2. Location map of the acoustic survey transects in polynya waters. (a) December 2018,
(b) March 2020, and (c) December 2020.

Fishes 2024, 9, x FOR PEER REVIEW 5 of 17 
 

 

 

Figure 3. Frame midwater trawl and attached buoys. 

Collections via the frame trawl were carried out on the Ross Sea ice shelf, located 

offshore of the continental shelf in relatively shallow water with a depth ranging from 600 

to 700 m [14]. A total of eight voyages were carried out between 7 and 16 December 2020 

(Figure 4). While maintaining a vessel speed of 2–3 knots, the net was towed for more than 

30 min, and acoustic data were collected simultaneously. 

 

Figure 4. Location map of the frame midwater trawl stations conducted in the Ross Sea. 

2.3. The Kirchhoff–Ray Mode (KRM) 

The Kirchhoff–Ray mode (KRM) model was applied to estimate the acoustic scatter-

ing intensity of Antarctic silverfish in the Antarctic Ross Sea. The KRM model (Equations 

(1) and (2)) can identify and quantify the shape of the fish body to estimate acoustic scat-

tering strength [15]. 

𝐿𝐹𝐼𝑆𝐻 = 𝐿𝐵𝑂𝐷𝑌 = 𝑓(𝑓𝑟 , 𝜃𝑡𝑖𝑙𝑡 , 𝑆𝑏 , 𝜌𝑤 , 𝜌𝑏 , 𝑐𝑤, 𝑐𝑏) (1) 

𝑇𝑆 = 10 log10|𝐿𝐹𝐼𝑆𝐻|2 (2) 

where fr is the frequency, θtilt is the angle between the body axis and the incidence angle, 

Sb is the body shape of the fish approximated as a cone, ρw is the density of the medium 

(seawater), ρb is the density of the fish body, cw is the velocity of sound of the medium 

(seawater), and cb is the velocity of sound of the fish body. 

Figure 3. Frame midwater trawl and attached buoys.

Collections via the frame trawl were carried out on the Ross Sea ice shelf, located
offshore of the continental shelf in relatively shallow water with a depth ranging from
600 to 700 m [14]. A total of eight voyages were carried out between 7 and 16 December
2020 (Figure 4). While maintaining a vessel speed of 2–3 knots, the net was towed for more
than 30 min, and acoustic data were collected simultaneously.
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2.3. The Kirchhoff–Ray Mode (KRM)

The Kirchhoff–Ray mode (KRM) model was applied to estimate the acoustic scattering in-
tensity of Antarctic silverfish in the Antarctic Ross Sea. The KRM model (Equations (1) and (2))
can identify and quantify the shape of the fish body to estimate acoustic scattering strength [15].

LFISH = LBODY = f ( fr, θtilt, Sb, ρw, ρb, cw, cb) (1)

TS = 10log10|LFISH |2 (2)

where fr is the frequency, θtilt is the angle between the body axis and the incidence angle,
Sb is the body shape of the fish approximated as a cone, ρw is the density of the medium
(seawater), ρb is the density of the fish body, cw is the velocity of sound of the medium
(seawater), and cb is the velocity of sound of the fish body.

The TS using the KRM model calculates the posture angle from −60◦ to 60◦ at 1◦

intervals. The maximum and average values of TS were evaluated; the average values
(Equations (3) and (4)) were calculated using the probability density function (PDF), while
assuming an average posture angle and standard deviation of −5◦ and 15◦, respectively,
for common fish. The TS of each posture angle calculated every 1◦ was replaced by the
scattering cross-section, multiplied by the PDF of the posture angle of −5 ± 15◦, and then
the average TS was calculated using the sum [16]:

σbs =
∫ π/2

−π/2
σ(θ) f (θ)dθ (3)

TSavg. = 10log10 σavg. (4)

where σ(θ) is the backscattering cross-section at each swimming angle θ, and f(θ) refers
to the frequency of occurrence of each swimming angle. Additionally, the TS relation for
Antarctic silverfish can be expressed by Equations (5) and (6). Equation (6) assumes that
the reflection intensity is proportional to the second power of the length:

TS = alog10 L + b (5)

TS = 20log10L + TS10 (6)

where a is a slope, b is an intercept, and L indicates length (cm).
The KRM model estimates acoustic scattering strength by calculating the sum of the

approximate volumes of the fish body and the swimbladder. However, in the case of
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Antarctic silverfish, the formula for the swimbladder was removed when applying the
model, as this species does not have a swimbladder [13]. For the density and sound velocity
ratios of the target species, this study utilized the findings of a previous study, which were
1.012 and 1.015, respectively [17].

Since contour data are required to use the KRM model, photographs were taken by
enumerating Antarctic silverfish. The pictures of the samples were analyzed using a digitizing
software program (Getdata Ver. 2.26, https://getdata-graph-digitizer.software.informer.com;
accessed on 14 December 2023) to collect body shape coordinates by dividing the sides of the
fish body into 0.2 mm intervals. This information was applied in the KRM model.

2.4. Data Processing

Acoustic data acquired through a scientific echosounder often include various acoustic
noises, leading to the degradation of the normal echo signal. The noise in the acoustic data
of this study included background, transient, and impulse noises (Figure 5). Background
noise occurs when the survey depth is out of the detection range of the used frequency, and
the acoustic intensity is relatively strong. Noise was removed by considering the values of
the data samples in the horizontal and vertical ranges. Background noise was removed
by converting the value of the data sample to −999 dB if the signal-to-noise ratio (SNR)
value was greater than the threshold value(δ) when artificial noise was subtracted from the
data sample in the specified area; this method is called TVT (Table 2). The SNR at the ping
(i) and range sample (j) is defined as follows:

SNR(i, j) = Sv, corr(i, j)− Snoise(i, j)

i f SNR(i, j) ≤ thresholdSNR′ (7)

Fishes 2024, 9, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 5. Examples of noise processing in the echogram. The intensity is indicated by the color, 

with red representing high intensity and blue indicating low intensity. 

Table 4. Impulse noise parameters. 

Frequency 200 kHz 

Exclude above Surface 

Exclude below Bottom 

Exclude below threshold (dB at 1 m) −150 

Vertical window units Samples 

Vertical window size (samples) 3 

Horizontal size (pings) 3 

Threshold (dB) 10 

Noise sample replacement value Mean 

The frequency difference was the difference in the MVBS. The acoustic backscatter 

strength of the target species was extracted to obtain a positive value; low frequencies 

were subtracted from high frequencies. The acoustic scattering strength of the scatter pre-

dicted by the KRM model was calculated to be −92.69 dB at 120 kHz and −90.46 dB at 200 

kHz when considering the minimum length (3 cm), and −69.95 dB at 120 kHz and −70.72 

dB at 200 kHz when considering the maximum length (9 cm). Therefore, the MVBS200kHz–

120kHz range of Antarctic silverfish in the echograms of the two frequencies received from 

the same seawater volume was from 2.23 to −0.77 dB. The frequency difference was ap-

plied to the results of the collections in December 2020. The acoustic backscatter strength 

of Antarctic silverfish was greater at 200 kHz than at 120 kHz. 

To calculate the MVBS200kHz–120kHz within the same seawater volume after removing 

the noise from the sea surface and seafloor, the cell size (width × length) per frequency 

was applied to 1 ping × 1 m and integrated to generate a new echogram. A data range 

bitmap that set the frequency difference range of Antarctic silverfish was created. A mask 

operator was used to separate the echo signal from Antarctic silverfish by superimposing 

Figure 5. Examples of noise processing in the echogram. The intensity is indicated by the color, with
red representing high intensity and blue indicating low intensity.

https://getdata-graph-digitizer.software.informer.com


Fishes 2024, 9, 47 7 of 16

Table 2. Background noise parameters.

Frequency 120 kHz 200 kHz

Horizontal extent (ping) 20 20
Vertical units samples samples

Vertical extent (samples) 5 5
Vertical overlap (%) 0 0

Maximum noise (dB) −125 −250
Minimum SNR 10 10

Transient noise is electrical noise caused by various on-board electrical equipment and
is characterized by a regular drizzling pattern [18]. Transient noise was removed as follows:
when a range of ~7 pings in the horizontal direction of the data sample was set, and the
median value of the area was subtracted from the center data sample in the specified area,
the noise was removed if the value was greater than the threshold value (Table 3).

Svi,j −
∼

Svm,n > δ. (8)

Table 3. Transient noise parameters.

Frequency 120 kHz

Exclude above Fixed depth surface exclusion at 10 m
Exclude below Minimum integration stop depth

Exclude below threshold (dB at 1 m) −170
Vertical window units Samples

Vertical window size (samples) 5
Horizontal size (ping) 7
Vertical size (samples) 9

Calculations per sample 63
Percentile 50

Threshold (dB) 10
Noise sample replacement value Percentile

percentile 10

Impulse noise occurs due to interferences from acoustic equipment installed on other
ships and is characterized by irregular, thick rain patterns. Impulse noise was removed
using the following process: after each sample value of the horizontal range variations was
subtracted from the central data sample of the specified area, a value was obtained. If the
value was greater than the threshold value, the noise was removed; this method is called
the two-sided comparison method (Table 4).

Svi,j − Sv(i+n), j > δand

Svi,j − Sv(i−n), j > δ (9)

Table 4. Impulse noise parameters.

Frequency 200 kHz

Exclude above Surface
Exclude below Bottom

Exclude below threshold (dB at 1 m) −150
Vertical window units Samples

Vertical window size (samples) 3
Horizontal size (pings) 3

Threshold (dB) 10
Noise sample replacement value Mean
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The frequency difference was the difference in the MVBS. The acoustic backscatter
strength of the target species was extracted to obtain a positive value; low frequencies were
subtracted from high frequencies. The acoustic scattering strength of the scatter predicted
by the KRM model was calculated to be −92.69 dB at 120 kHz and −90.46 dB at 200 kHz
when considering the minimum length (3 cm), and −69.95 dB at 120 kHz and −70.72 dB at
200 kHz when considering the maximum length (9 cm). Therefore, the MVBS200kHz–120kHz
range of Antarctic silverfish in the echograms of the two frequencies received from the
same seawater volume was from 2.23 to −0.77 dB. The frequency difference was applied
to the results of the collections in December 2020. The acoustic backscatter strength of
Antarctic silverfish was greater at 200 kHz than at 120 kHz.

To calculate the MVBS200kHz–120kHz within the same seawater volume after removing
the noise from the sea surface and seafloor, the cell size (width × length) per frequency
was applied to 1 ping × 1 m and integrated to generate a new echogram. A data range
bitmap that set the frequency difference range of Antarctic silverfish was created. A mask
operator was used to separate the echo signal from Antarctic silverfish by superimposing
the echoes that matched the cell size with 120 kHz frequency at 200 kHz. Matched echoes
were considered to be fish.

To estimate the density of juvenile Antarctic silverfish using acoustics, volume backscat-
tering strength (Sv) data extracted from the scientific echosounder at 1 n.mile intervals were
converted to nautical area scattering coefficients (NASCs). The relationship for converting
Sv to NASC can be found in Equation (10):

NASC = 4π18522
∫ r2

r1

Svdr (10)

Since the NASC value is the linear sum of the signals received from aquatic organisms
in the water volume, the density of the target organisms (ρ, g/m2) can be calculated by
dividing the average NASC value in the obtained seawater volume by the TS of the target
fish; the TS and backscattering cross-section according to the length (L, mm) of the target
organisms can be expressed in Equations (12) and (13), respectively:

NASC = ρ·TS (11)

TS = 20log(L) + TSmm (12)

σ = 4π10
TS
10 (13)

Additionally, the length (L, mm)–weight (w, mg) relationship of the target organism
can be found in Equation (14):

ω = αLb (14)

Here, the backscattering cross-section and length–weight function of the target organ-
ism were obtained from the catch data collected at the same time as the acoustic survey. The
density of the target species (ρ) (Equation (15)) can be calculated by dividing the average
NASC within the seawater volume at 1 n.mile intervals by the backscattering cross-section
(σ) of the target species and multiplying it by its weight. The remainder on the right side of
Equation (15), except for NASC, is the conversion factor (CF) that calculates density from
acoustic data, considering the backscattering cross-section and length–weight of the target
species. Average values were utilized for the backscattering cross-section and weight of the
target species.

ρ =

(
NASC

σ

)
·ω =

αLb

4π10TS/10 · NASC (15)
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The average target species density (ρ) of the entire survey area represents the weighted
mean of the average density data per vessel, as shown in Equation (16):

ρ =
∑N

i=1 ρ·ni

∑N
i=1 ni

(16)

where ρi is the mean density of the ith vessel, ni is the number of the ith vessel (elementary
distance sampling unit, EDSU), and N indicates the number of vessels.

3. Results

A distribution survey of Antarctic silverfish was performed using a frame trawl in the
Antarctic Ross Sea in December 2020. The individuals captured in the fishing gear were
juvenile Antarctic silverfish. Antarctic silverfish were most abundantly caught at station 5,
with a total of 46 individuals. (Table 5). The catch ratio of Antarctic silverfish was >53% at
station 1 (Figure 6). The variation in the lengths of the fish obtained using the fishing gear
is shown in Figure 6. Antarctic silverfish caught had a length of 3–9 cm. Fish with a 5 cm
body length were found in the highest proportion, accounting for approximately 53% of
the captured fish, whereas 6 cm fish were captured in the lowest proportion (Figure 7).

Table 5. Trawl time, station, location, number caught, and catch rate.

Station Date
(DD.MM.YYYY)

Latitude
(◦)

Longitude
(◦)

Number Caught
(N)

Antarctic Silverfish Ratio
(% by Number)

1 12.07.2020 74◦56.9′ S 164◦06.8′ E 15
53.3
333

3
2 12.09.2020 74◦48.2′ S 166◦00.4′ E 106
3 12.11.2020 74◦34.0′ S 171◦00.1′ E 123 15.4
4 13.12.2020 77◦22.4′ S 176◦17.9′ E 155 1.3
5 14.12.2020 75◦26.4′ S 176◦17.9′ E 150 30.7
6 14.12.2020 74◦31.5′ S 179◦11.0′ W 103 1.0
7 15.12.2020 76◦40.0′ S 179◦11.9′ W 7 14.3
8 16.12.2020 77◦41.6′ S 179◦00.3′ W 28 21.4
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53.3 

333 

3 

2 12.09.2020 74°48.2′ S 166°00.4′ E 106  

3 12.11.2020 74°34.0′ S 171°00.1′ E 123 15.4 

4 13.12.2020 77°22.4′ S 176°17.9′ E 155 1.3 

5 14 .12.2020 75°26.4′ S 176°17.9′ E 150 30.7 

6 14 .12.2020 74°31.5′ S 179°11.0′ W 103 1.0 

7 15 .12.2020 76°40.0′ S 179°11.9′ W 7 14.3 

8 16 .12.2020 77°41.6′ S 179°00.3′ W 28 21.4 
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The maximum TS of Antarctic silverfish, calculated from the theoretical model of
hydroacoustic scattering in line with their variation in posture angle [−45◦ to +45◦], refers
to the highest value between such posture angles of −45◦ to 45◦; the average TS is the value
calculated using PDF for a posture angle of −5 ± 15◦ [16]. The relationship between the
total length and maximum TS of Antarctic silverfish was as follows:

TS = 52.13log10 TL − 119.00 at 38 kHz,
TS = 52.10log10 TL − 112.67 at 120 kHz
And TS = 46.32log10 TL − 107.24 at 200 kHz

The relationship between the total length and average TS was as follows:

TS = 47.74log10 TL − 118.44 at 38 kHz,
TS = 47.65log10 TL − 115.43 at 120 kHz
And TS = 41.37log10 TL − 110.21 at 200 kHz

The maximum TS of the reference TS, which was calculated with the frequency-specific
TS proportional to the second power of length, was −92.93 dB at 38 kHz, −86.63 dB at
120 kHz, and −85.89 dB at 200 kHz; the average TS of Antarctic silverfish was −100.00 dB
at 38 kHz, −93.00 dB at 120 kHz, and −106.90 dB at 200 kHz.

The vertical distribution of the NASC values for Antarctic silverfish in the nearshore
waters of the Antarctic Ross Sea is shown in Figure 8. The detection range at a frequency of
200 kHz was considered in 10 m intervals from a depth of 15 m to a depth of 155 m. The
vertical distribution in February 2018 showed low NASC values in all water layers. The
vertical distribution in December 2018 showed the highest value of 4.29 m2/nm2 at a depth
of 25 m. The NASC values in March 2020 were highest at the surface with 8.3 m2/nm2,
but NASC values lowered with increasing depth. The values in December 2020 were
highest at the surface, and higher values were found at depths of 50 and 60 m. Most high
NASC values were found within 20 m. The vertical distribution of NASC values of the
Antarctic silverfish in the polynya area in the Antarctic Ross Sea was as follows: strong
NASC values were found at the surface in December 2018; in March 2020, NASC values
tended to increase with depth. NASC values in December 2020 were found to be high at a
depth of 20 m and higher at depths of 50 and 80 m. Both nearshore and polynya waters
showed a strong distribution at the surface.

The horizontal distribution of the fish is shown in Figures 8 and 9, where the color of
the circle indicates the size of the NASC (Figures 9 and 10). In February 2018, NASC values
in the Ross Sea were generally low in intensity. The NASC values for juvenile Antarctic
silverfish in the Ross Sea in December 2018 were stronger near the sea ice, and the strongest
intensity was found near −75◦ latitude and 172◦ longitude. The NASC values for juvenile
Antarctic silverfish in the Ross Sea in March 2020 were generally low, similar to the values in
December 2018. The horizontal distribution of juvenile Antarctic silverfish in the Ross Sea
in December 2020 was mostly even, and a strong intensity was found between −74◦ and
−75◦ latitude. The distribution of juvenile Antarctic silverfish was stronger in December
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compared with February and March. The horizontal distribution of juvenile Antarctic
silverfish in the polynya waters in December 2018 was found to be mostly low, with higher
intensity in the north of the survey area. In March 2020, the horizontal distribution of
juvenile Antarctic silverfish in the polynya waters was largely in the north of the Drygalski
Trough, located at −75◦ latitude and 163–164◦ longitude. In December 2020, the horizontal
distribution of juvenile Antarctic silverfish in the polynya waters showed a strong intensity
near −78◦ latitude and 168–176◦ longitude, while the average NASC of the fish species per
vessel was generally even.
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2018, (b) December 2018, (c) March 2020, and (d) December 2020.
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In February 2018, the average density of the fish species in the nearshore waters of
the Antarctic Ross Sea was 0.004 (g/m2). In December 2018, the average density of the fish
species was 0.058 (g/m2) in the nearshore waters of the Antarctic Ross Sea and 0.008 (g/m2)
in the polynya waters. In March 2020, the average density of the fish species in the Antarctic
Ross Sea was 0.029 (g/m2) in the nearshore waters and 1.468 (g/m2) in the polynya waters,
confirming that the density was 50 times higher in the polynya waters than in the nearshore
waters. In December 2020, the average density of the fish species in the Antarctic Ross Sea
was 0.269 (g/m2) in the nearshore waters and 0.337 (g/m2) in the polynya waters. Higher
densities were found in the polynya waters compared with nearshore waters, except in
December 2018.

4. Discussion

Based on the same length, juvenile Antarctic silverfish have similar acoustic backscatter
strength to Antarctic krill and show similar primary distribution depths to ice krill [19]. The
current study examined post-larval Antarctic silverfish of 3–10 cm in length. The lengths of
the collected krill were substantially different from those of Antarctic silverfish, and the
acoustic scattering strengths were therefore also assumed to differ substantially (Table 6).
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Table 6. Length distribution of Antarctic krill, ice krill, and Antarctic silverfish, sampled in Decem-
ber 2022.

Antarctic Krill
(Euphausia superba)

Ice Krill
(Euphausia

crystallorophias)

Antarctic Silverfish
(Pleuragramma

antarcticum)

Minimum length (cm) 3.14 1.77 3.42
Maximum length (cm) 4.95 3.92 9.40
Average length (cm) 4.10 2.79 4.83
Standard deviation 3.24 4.51 0.96

By comparing the MVBS (200–120 kHz) difference in the range 3–5 cm, where the
lengths overlapped, the difference of MVBS (200–120 kHz) between Antarctic silverfish and
Antarctic krill (E. superba) became similar as the lengths increased (Figure 11). Therefore,
future studies should be conducted on the acoustic backscatter strength of Antarctic silver-
fish, Antarctic krill, and ice krill to develop algorithms that can more clearly distinguish
the three species. Additionally, krill are characterized by large-scale clustering, whereas
juvenile Antarctic silverfish tend to be more dispersed [20,21]. Therefore, studies of their
clustering or dispersion patterns may also be helpful in distinguishing them.
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The fishing gear used in the December 2018 survey was a frame trawl, which is
designed to prevent the net from being damaged by vessel speed and currents. The length
of Antarctic silverfish caught in this survey was 3–9 cm. Unlike previous studies focusing
on post-larval and adult Antarctic silverfish, this study only targeted juvenile fish [22].
However, it was not easy to handle large sampling equipment, such as frame trawls, and
move to target depths in Antarctic waters [23]. In the future, frame trawls may need to be
equipped with real-time monitoring depth sensors to determine depth movements.

In a previous study by La Mesa et al. [3] that targeted Antarctic silverfish and estimated
acoustic scattering intensities, the fish were divided into adult fish and larvae to estimate
the acoustic scattering features; however, as the sample size employed in the current study
corresponds to the size classified as fish larvae in the previous study, only acoustic scattering
features of fish larvae were compared. In previous studies, the body shape of Antarctic
silverfish is described as a spherical shape based on body depth, and the current study
extended this into a cylindrical shape for body depth and width. The ratio of body width
to depth of the Antarctic silverfish was approximately 0.08; since body width is relatively
small, we assumed that there would be a large difference in acoustic scattering intensities. A
previous study and the present study showed that acoustic scattering intensities increased
in line with higher frequencies, which is a feature of fish species without a swimbladder [21].

O’Driscoll et al. [21] indicated that adult Antarctic silverfish are mainly distributed
at depths of 100–400 m, whereas juvenile fish are mainly distributed in shallow waters at
a depth of 80 m. Since echo signals were identified by applying the acoustic backscatter
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strength of juvenile Antarctic silverfish in the current study, we assumed that the echo
signals did not appear in deeper waters.

Vacchi et al. [10] showed that Antarctic silverfish spawn near sea ice. In the present
study, a large number of fertilized eggs of Antarctic silverfish were found near Terra
Nova, the survey area. Antarctic silverfish were found to be distributed near sea ice. The
phenomenon is speculated to be due to the fact that this research was conducted during
the Antarctic summer when Antarctic silverfish is attracted by the influx of phytoplankton
caused by warmer temperatures and melting sea ice.

Polynya is a geographical term indicating an ice-free area in polar oceans where
sea ice is present and remains ice-free almost all year round. In this area, the biomass
growth and primary production of phytoplankton increase due to the restrictions from
physical phenomena such as wind, glaciers, and heat. In the survey area, the Terra Nova
Bay polynya and the Ross Ice Shelf polynya are formed, which may explain the high
distribution of Antarctic silverfish near polynya. Furthermore, both the Ross Ice Shelf
polynya and Terra Nova Bay polynya are reported to produce the maximum amount of sea
ice in March [24], which may explain the high fish distribution near the polynya in March
2020. In other survey periods, such as February and December 2018, the sea ice area in
the Antarctic Ross Sea was the least developed of the corresponding months from 1981 to
2010 [25]. In particular, the sea ice rarely developed in February compared with December,
which may explain the low density of Antarctic silverfish due to less development in its
spawning ground.

5. Conclusions

In this study, the vertical and horizontal distribution of juvenile Antarctic silverfish
was investigated using the MVBS method. The study area encompassed regions where
Antarctic silverfish coexist with Antarctic krill and ice krill. The frequency range applied
was based on the estimated acoustic backscattering strength of Antarctic silverfish using the
KRM. The analysis of the acoustic backscattering strength of juvenile Antarctic silverfish
using the KRM model revealed that as the frequency increased, the TS also increased.
For species like Antarctic silverfish, which lack swimbladders, the swimming angle is an
essential variable influencing TS. However, research on the swimming angle of juvenile
Antarctic silverfish is currently limited. Therefore, it is essential to investigate the swimming
angle of Antarctic silverfish schools in the future. The spatiotemporal distribution results
indicate that they predominantly inhabit the upper 80 m of the water column, with higher
intensity observed near ice-covered areas. Antarctic silverfish is a species known to spawn
near ice, suggesting a need for specific research on the relationship between Antarctic
silverfish and sea ice in the future. This study estimated the TS of Antarctic silverfish, and
it confirmed that the difference in MVBS between Antarctic krill and ice krill is distinct.
Despite these differences, the echogram analysis still occasionally misidentified krill as
Antarctic silverfish. However, the distribution patterns of Antarctic silverfish and krill were
markedly different. Consistent with the findings of the previous study, this study similarly
reveals that krill forms schools, while juvenile Antarctic silverfish exhibit a dispersed
distribution pattern [21]. Although an analyst can manually exclude krill based on these
patterns, problems arise due to notable variations in results depending on the analyst.
Therefore, it is necessary to develop algorithms for the precise determination of Antarctic
silverfish distribution patterns in the future. We believe this study can offer foundational
data on the abundance of juvenile Antarctic silverfish.
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