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Abstract: Ectothermic animals, such as teleosts, have increasingly been exposed to stressful high-
temperature events due to global warming. Currently, the effects of thermal stress on skeletal muscle,
a key tissue for fish growth, are unknown. This study examined the impact of high-temperature
stress on the skeletal muscle transcriptome of rainbow trout (Oncorhynchus mykiss) in control (15 ◦C)
and high-temperature (20 ◦C) conditions. Additionally, we examined the plasmatic levels of cortisol,
glucose, and creatine kinase activity, and examined oxidative damage and autophagy activation
in skeletal muscle. High-temperature stress induced significant increases in cortisol and glucose
plasmatic levels. Nevertheless, no changes were observed in creatine kinase activity in plasma and
skeletal muscle oxidation. Skeletal muscle RNA was isolated and sequenced using the HiSeq Illumina
platform. A total of 383,796,290 reads were mapped onto the reference rainbow trout genome. The
transcriptomic analysis showed that 293 genes were upregulated in the high-temperature group,
mainly associated with autophagosome assembly, amino acid transport, and the glutamine metabolic
process. On the other hand, 119 genes were downregulated in the high-temperature group, mainly
associated with digestion, proteolysis, and the muscle contraction process. In addition, RT-qPCR
of differentially expressed representative genes and Western blot analysis of LC3-II/LC3-I levels
confirmed skeletal muscle autophagy induced by high temperature. This study sheds light on
intriguing facets of the adaptive response of rainbow trout skeletal muscle to high-temperature stress
and provides significant insights into the physiology of autophagy in teleosts.

Keywords: cortisol; high-temperature stress; autophagy; RNA-Seq; skeletal muscle

Key Contribution: This study evaluates the effects of high-temperature stress on the skeletal muscle
transcriptome of rainbow trout (O. mykiss) and contributes to a better understanding of the potential
role of autophagy as a negative regulator of skeletal muscle atrophy.

1. Introduction

Global warming refers to the ongoing rise in the average global temperature of the
Earth [1]. This phenomenon is exerting an impact on animal populations across the globe,
primarily through chronic temperature increases and a heightened incidence of heat-
waves [2]. Increases in atmospheric temperatures are reflected in higher temperatures of
marine and freshwater habitats, home to a great diversity of living organisms [3]. It is

Fishes 2023, 8, 303. https://doi.org/10.3390/fishes8060303 https://www.mdpi.com/journal/fishes

https://doi.org/10.3390/fishes8060303
https://doi.org/10.3390/fishes8060303
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fishes
https://www.mdpi.com
https://orcid.org/0000-0002-7411-5391
https://orcid.org/0000-0001-7619-046X
https://orcid.org/0000-0002-9402-6695
https://orcid.org/0000-0002-7094-6702
https://doi.org/10.3390/fishes8060303
https://www.mdpi.com/journal/fishes
https://www.mdpi.com/article/10.3390/fishes8060303?type=check_update&version=1


Fishes 2023, 8, 303 2 of 12

projected that, by the end of this century, the mean temperature of the ocean will have risen
by 1–4 ◦C, which will exert negative effects on the physiology of aquatic organisms [3].
Additionally, changes in ocean temperatures will influence the intensity and frequency of
phenomena on the Pacific coast known as El Niño–Southern Oscillation (ENSO) [4]. Given
that fishes are ectothermic organisms, and their body temperature is equivalent to that of
the surrounding water environment, teleosts are particularly vulnerable to the effects of
global warming [5].

The physiological mechanisms that are essential for mounting an adequate response
to temperature stress entail the activation of a well-coordinated network of neuroendocrine
pathways, including the brain–sympathetic–chromaffin (BSC) axis and the hypothalamic–
pituitary–interrenal (HPI) axis, which are responsible for the production of catecholamines
and cortisol, respectively [6]. The secretion of these hormones plays a critical role in reg-
ulating energy metabolism and maintaining an organism’s homeostasis [7]. Specifically,
the cortisol-mediated response in teleosts plays a fundamental role in facilitating energetic
adaptation to temperature stress by enabling long-term glucose metabolism via gluconeo-
genesis and protein catabolism [8].

Skeletal muscle is considered to be one of the primary tissues impacted by the stress
induced by rising temperatures [8]. Skeletal muscles make up approximately 60% of the
body mass in teleosts, playing a crucial role in their locomotion, metabolism, and growth [9].
The growth of skeletal muscle is a multifaceted process that is coregulated by mechanisms
associated with myoblast proliferation (hyperplasia), increase in muscular fiber size through
protein synthesis (hypertrophy), and muscle protein degradation (atrophy) [10]. Although
several studies have described the physiological and molecular effects of temperature
stress in fish tissues, very few have focused on skeletal muscles [11]. In a recent study
conducted on a marine teleost species, red cusk-eel (Genypterus chilensis), it was found that
thermal stress leads to skeletal muscle oxidation and atrophy [12]. Additionally, RNA-Seq
assays revealed that high-temperature stress induced the expression of various autophagy-
associated genes in the liver of the species [13]. Autophagy is a fundamental cellular
mechanism that plays an essential role in energetic catabolism and the lysosome-mediated
degradation of cell components. It is a highly conserved process that allows the cell to
recycle damaged or unwanted organelles and proteins [14]. In mammalian skeletal muscle,
autophagy has been described as an essential mechanism for maintaining the structure and
proper functioning of this tissue [15]. Skeletal muscle with an impaired autophagy process
can be affected by myopathy disorder, which is related to excessive protein accumulation
in the muscle cells [16]. However, very little is known about autophagy in teleost skeletal
muscles and its regulation by environmental variables such as temperature [17]. In this
study, we evaluated the effects of high-temperature stress on global gene expression in
the skeletal muscle of rainbow trout to comprehend the impact of temperature stress on
skeletal muscle and predict the influence of global warming on the adaptive capability of
fish during their development. The transcriptomic information obtained here enabled us
to identify potential genes and signaling pathways associated with the high-temperature
stress response in rainbow trout.

2. Materials and Methods
2.1. Experimental Thermal Stress Protocol

Juvenile rainbow trout (Oncorhynchus mykiss) (1 year old; 13.22 g ± 1.34; total n = 20)
were obtained from Pisciculture Rio Blanco (V region, Chile). Fish were maintained under
natural temperatures and light:dark photoperiod conditions (15 ◦C ± 1 ◦C and L:D 12:12),
in aerated dechlorinated water, with water turnover of 0.5 L min−1 and fed daily with
commercial pellets containing 45% protein, 22% lipids, 16% carbohydrates, and 17% other
components. Fish were acclimatized for 1 week before the trial and exposed to a thermal
stress protocol previously described [12]. Briefly, this protocol consists of increasing the
temperature over 24 h at a rate of 1 ◦C in 5 h. During the remaining 4 days of the trial,
the control temperature was maintained at 15 ± 1 ◦C (control group; n = 5) and the stress
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temperature at 20 ± 1 ◦C (stress group; n = 5). Biological replicates of the trials were
included. On the fifth day, five individuals per group were sampled. For plasma isolation,
blood samples were collected and centrifuged at 5000× g for 10 min and stored at −80 ◦C.
Finally, sample individuals were euthanized by an overdose of anesthetic (benzocaine,
300 mg/L). Skeletal muscle was collected, frozen in liquid nitrogen, and maintained at
−80 ◦C until further analysis.

2.2. Cortisol, Creatine Kinase Activity, and Glucose Quantification in Blood Plasma

The cortisol plasmatic concentration was quantified using the Cayman Cortisol
ELISA Kit (Cayman Chemical, Ann Arbor, MI, USA; catalog number 500360). The plas-
matic activity of creatine kinase (CK) was quantified using the Abcam Creatine Kinase
Activity Assay Kit (Abcam, Cambridge, UK; catalog number 155901). The glucose plas-
matic concentration was quantified using the Abcam Glucose Uptake Assay Kit (Abcam,
Cambridge, UK; catalog number 136955). The use of these kits in rainbow trout has been
previously verified [18].

2.3. DNA and Protein Oxidative Damage in Skeletal Muscle

DNA oxidative damage and protein carbonylation were determined using the com-
mercially available kits OxiSelect Oxidative DNA Damage Quantification (catalog number
STA-320) and OxiSelect Protein Carbonyl Spectrophotometric Assay (catalog number
STA-310) (Cell Biolabs, San Diego, CA, USA), respectively, following the manufacturer’s
instructions. For further details, see Rivas-Aravena et al. [18].

2.4. Skeletal Muscle RNA Extraction and Sequencing

Total RNA was extracted from the skeletal muscles of both the control and stress
groups using the EZNA Total RNA Kit II (OMEGA Bio-Tek Inc., Norcross, GA, USA).
The RNA concentration was measured using a Qubit 2.0 Fluorometer (Life Technology,
Carlsbad, CA, USA), and RNA integrity was confirmed by capillary electrophoresis using
a Fragment Analyzer Automated CE System (Advanced Analytical Technologies, Inc.,
Ankeny, IA, USA). The ratio of absorbance at 260 nm and 280 nm was used to assess the
purity of RNA. Samples with RQN values of at least 9 were selected for further analysis.
The construction of cDNA libraries was carried out with 1 µg of RNA using the TruSeq RNA
Sample Preparation Kit v2 (Illumina, San Diego, CA, USA). Libraries were sequenced with
the Hiseq technology (Illumina) at Macrogen (Seoul, Republic of Korea) using a paired-end
technique (2 × 150 bp).

2.5. RNA-Seq and GO Analysis

The sequencing reads were processed to remove sequences of low quality (Q20) and
those less than 30 bp in length. To detect differentially expressed genes (DEGs), the reads were
mapped to the last version of rainbow trout (O. mykiss) reference genome by CLC Genomics
Workbench 9.0 (Qiagen, Germantown, MD USA), using default parameters. Gene expression
levels were estimated using the RPKM value (reads per kilobase per million mapped reads).
Genes exhibiting a fold-change value greater than 2.0 and a false discovery rate (FDR) p-value
less than 0.05 were considered as differentially expressed. The identification of DAVID GO
and KEGG enrichment analysis of DEGs was previously described [19].

2.6. RNA-Seq Validation by Real-Time RT-qPCR

All qPCR assays followed MIQE guidelines [20]. Preserved skeletal muscles from
each sampled fish were homogenized, and total RNA was extracted using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA). Isolated RNAs with A260/280 ratios between 1.9 and 2.0
were selected for further processing. Next, 1 µg of RNA from each sample was reverse tran-
scribed into cDNA using the ImProm-II Reverse Transcription System (Promega, WI, USA).
Real-time qPCR was performed using a Stratagene MX3000P qPCR system (Stratagene,
La Jolla, CA, USA) following the procedure described by Rivas-Aravena et al. [18]. The
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list of primers used in this study is provided in Supplementary Table S1. The housekeep-
ing genes used for normalization were β-actin (actβ) and 40S ribosomal protein S30 (fau).
These genes were previously obtained by using the geNorm program, which obtained the
normalization factor and subsequent relative expression levels [18].

2.7. LC3 Western Blot Analysis

To validate the effects of high-temperature stress on the induction of autophagy, we
analyzed the levels of the microtubule-associated proteins 1A/1B light chain 3B (LC3)
by Western blot. To extract skeletal muscle proteins, 0.1 g of tissue was homogenized in
1 mL of lysis buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1 mM EDTA,
1% NP-40, and a protease inhibitor cocktail (Calbiochem, Billerica, MA, USA). Pierce BCA
Protein Assay Kit (Thermo Scientific, Rockford, IL, USA) was used for protein concentration
measurement. Then, 50 g of proteins was resolved in SDS-PAGE and analyzed using the
Western blot procedure described by Rivas-Aravena et al. [18]. Antibodies against LC3
(catalog number 12741; dilution 1:2000) and β-actin (catalog number 4967; dilution 1:5000)
were obtained from Cell Signaling Technology (Danvers, MA, USA). After incubation
for 1 h with HRP-conjugated secondary antibodies (dilution 1:2000), membranes were
developed by enhanced chemiluminescence (Amersham Biosciences, Amersham, UK). The
films were scanned and densitometric analysis was carried out with ImageJ [21].

2.8. Statistical Analysis

Based on the raw data, the mean and standard error of the mean (±SEM) were cal-
culated for each indicator. Differences in means among the groups were assessed using
one-way ANOVA, followed by Bonferroni’s post hoc test for multiple comparisons. All sta-
tistical analyses were performed using GraphPad Prism v.8.0 software (GraphPad Software
Inc., La Jolla, CA, USA).

3. Results
3.1. Cortisol, Glucose, and Creatine Kinase Activity Quantification in Plasma, and Oxidation in
Skeletal Muscle Tissue

Blood plasma cortisol and glucose levels significantly increased after five days of
exposure to high temperature in the stressed group (Figure 1a,b). No significant differ-
ences in plasma creatine kinase activity were observed between the control and stressed
groups (Figure 1c).
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Figure 1. Levels of cortisol, glucose, and creatine kinase activity in plasma. (a) cortisol (b) glu-
cose (c) creatine kinase in blood plasma were assessed in juvenile rainbow trout kept under high-
temperature (20 ◦C) stress and optimal temperature (15 ◦C) regime. The results are expressed as
mean and standard error of the mean (±SEM, n = 5 per treatment). Differences between control and
stress groups are shown by * p < 0.05.

To evaluate the skeletal muscle oxidation induced by high temperature, we measured
protein and DNA oxidative damage. Thermal stress did not induce protein carbonylation
and DNA oxidation as compared with the control group (Figure 2a,b).
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Figure 2. Oxidative damage quantification in skeletal muscle. (a) Protein carbonylation (b) DNA
oxidative damage in juvenile rainbow trout kept under high-temperature (20 ◦C) stress and optimal
temperature (15 ◦C) regime. The results are expressed as mean and standard error of the mean
(±SEM, n = 5 per treatment). No statistical differences between groups were detected.

3.2. Transcriptomic Analysis and Pathway Enrichment Analysis

To analyze the effect of high-temperature stress on global gene expression, we per-
formed RNA-Seq analysis. A total of 383,796,290 trimmed reads were mapped in the
rainbow trout reference genome, covering 85.9% of its size. Principal component analysis
(PCA) revealed a high similarity in the biological replicates (Supplementary Figure S1).
Differential expression analysis revealed that 293 genes were upregulated and 119 genes
were downregulated under high-temperature stress (Supplementary Table S2). To ana-
lyze the biological role of the DEGs, GO term enrichment analysis was performed with
the DAVID database. The upregulated DEGs were enriched in biological processes (BPs),
such as autophagosome assembly, amino acid transport, and glutamine metabolic pro-
cess (Figure 3). Gene Ontology (GO) terms for upregulated genes were assigned to RNA
binding and nucleoplasm for molecular function (MF) and cellular component (CC), respec-
tively (Supplementary Tables S3 and S4). Among KEGG pathways, mitophagy—animal,
autophagy—animal, and spinocerebellar ataxia were over-represented (Table 1).

Fishes 2023, 8, x FOR PEER REVIEW 5 of 12 
 

 

temperature (20 °C) stress and optimal temperature (15 °C) regime. The results are expressed as 
mean and standard error of the mean (± SEM, n = 5 per treatment). Differences between control and 
stress groups are shown by * p < 0.05. 

To evaluate the skeletal muscle oxidation induced by high temperature, we 
measured protein and DNA oxidative damage. Thermal stress did not induce protein 
carbonylation and DNA oxidation as compared with the control group (Figure 2a,b). 

 
Figure 2. Oxidative damage quantification in skeletal muscle. (a) Protein carbonylation (b) DNA 
oxidative damage in juvenile rainbow trout kept under high-temperature (20 °C) stress and optimal 
temperature (15 °C) regime. The results are expressed as mean and standard error of the mean (± 
SEM, n = 5 per treatment). No statistical differences between groups were detected. 

3.2. Transcriptomic Analysis and Pathway Enrichment Analysis 
To analyze the effect of high-temperature stress on global gene expression, we 

performed RNA-Seq analysis. A total of 383,796,290 trimmed reads were mapped in the 
rainbow trout reference genome, covering 85.9% of its size. Principal component analysis 
(PCA) revealed a high similarity in the biological replicates (Supplementary Figure S1). 
Differential expression analysis revealed that 293 genes were upregulated and 119 genes 
were downregulated under high-temperature stress (Supplementary Table S2). To 
analyze the biological role of the DEGs, GO term enrichment analysis was performed with 
the DAVID database. The upregulated DEGs were enriched in biological processes (BPs), 
such as autophagosome assembly, amino acid transport, and glutamine metabolic process 
(Figure 3). Gene Ontology (GO) terms for upregulated genes were assigned to RNA 
binding and nucleoplasm for molecular function (MF) and cellular component (CC), 
respectively (Supplementary Tables S3 and S4). Among KEGG pathways, mitophagy—
animal, autophagy—animal, and spinocerebellar ataxia were over-represented (Table 1). 

 
Figure 3. Gene enrichment analysis of biological processes (BPs). The graph indicates the −log10(p-
value) enriched BPs of upregulated genes between the control and stress groups with p-values < 
0.05. 

  

Control Stress
0

2

4

6

Pr
ot

ei
n 

C
ar

bo
ny

l (
nm

ol
/m

g)
(a)           (b)             

Control Stress
0.0
0.5
1.0
1.5
2.0
2.5

AP
 s

ite
s 

pe
r 

10
5

bp

0 1 2 3 4

autophagosome assembly
amino acid transport

glutamine metabolic process
rRNA processing
late nucleophagy

mitochondrial outer membrane permeabilization
positive regulation of macroautophagy

mitophagy
negative regulation of apoptotic process

reticulophagy

-Log10(P Value)

Figure 3. Gene enrichment analysis of biological processes (BPs). The graph indicates the −log10(p-value)
enriched BPs of upregulated genes between the control and stress groups with p-values < 0.05.

The downregulated differentially expressed genes (DEGs) were enriched in biological
processes (BPs) such as digestion, proteolysis, and muscle contraction (Figure 4). The Gene
Ontology (GO) terms for downregulated genes were assigned to serine-type endopeptidase
activity and cytosol for molecular function (MF) and cellular component (CC), respectively
(Supplementary Tables S5 and S6). The KEGG pathways assigned to the differentially
expressed genes (DEGs) included pancreatic secretion, protein digestion and absorption,
and adrenergic signaling in cardiomyocytes (Table 2).
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Table 1. Enriched KEGG pathways of upregulated DEGs in rainbow trout skeletal muscles.

KEGG Pathway p-Value Upregulated Genes

Mitophagy—animal 1.45 × 10−4 mapk10, bnip3l, bnip3, ubc, atg9a, ulk1, rab7a
Autophagy—animal 9.89 × 10−4 mapk10, bnip3, atg9a, ulk1, raf1, rab7a, atg4d, atg2b

Spinocerebellar ataxia 1.07 × 10−3 mapk10, por, psmd11, psmd2, psmd3, atp2a2, ulk1, atg2b
Protein processing in ER 2.99 × 10−3 mapk10, hsp90ab1, hspa1l, canx, cul1, plaa, cryaa

Alzheimer’s disease 1.05 × 10−2 mapk10, gsk3b, por, psmd11, cdk5, psmd2, psmd3, atp2a2, ulk1, raf1, atg2b
Antigen processing 1.12 × 10−2 hsp90ab1, hspa1l, hspa4, canx, rfxap

ErbB signaling pathway 1.50 × 10−2 mapk10, map2k4, gsk3b, myc, raf1
Pathways of neurodegeneration 1.70 × 10−2 mapk10, gsk3b, por, psmd11, cdk5, psmd2, ubc, psmd3, atp2a2, ulk1, raf1, atg2b

Legionellosis 2.58 × 10−2 hspa1l, rab1b, bnip3, eef1a2
mTOR signaling pathway 3.05 × 10−2 gsk3b, cab39, ulk1, raf1, lpin1, wdr24
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Figure 4. Gene enrichment analysis of biological processes (BPs). The graph indicates the −log10(p-value)
enriched BPs of downregulated genes between the control and stress groups with p-values of <0.05.

Table 2. Enriched KEGG pathways of downregulated DEGs in rainbow trout skeletal muscle.

KEGG Pathway p-Value Downregulated Genes

Pancreatic secretion 1.10 × 10−10 prss1, cela2a, cpb1, ctrb2, ctrb1, amy1c, atp2a1, cel, prss3, prss2
Protein digestion and absorption 2.35 × 10−6 prss1, cela2a, cpb1, ctrb2, ctrb1, prss3, prss2

Adrenergic signaling in cardiomyocytes 2.59 × 10−3 cacnb1, tpm3, atp2a1, scn1b, myh7
cGMP-PKG signaling pathway 3.82 × 10−3 atp2a1, vdac1, raf1, prkg1, myh7

Influenza A 4.15 × 10−3 prss1, vdac1, raf1, prss3, prss2
Cardiac muscle contraction 4.57 × 10−3 cacnb1, tpm3, atp2a1, myh7

Hypertrophic cardiomyopathy 5.03 × 10−3 cacnb1, tpm3, atp2a1, myh7
Dilated cardiomyopathy 6.02 × 10−3 cacnb1, tpm3, atp2a1, myh7
Diabetic cardiomyopathy 4.37 × 10−2 atp5f1b, atp2a1, vdac1, sdha

Chemical carcinogenesis—ROS 5.51 × 10−2 atp5f1b, vdac1, sdha, raf1

3.3. RNA-Seq Result Validation by Real-Time RT-qPCR and Western Blot

For real-time RT-qPCR validation, we selected four upregulated genes associated
with autophagy (mapk10, bnip3, atg9a, and raf1) and four downregulated genes related
to protein digestion (prss1, cela1, ctrb2, and prss2) (Supplementary Figure S2). The gene
expression fold-changes measured by these two methods (RNA-Seq and RT-qPCR) were
highly correlated, with a significant R2 value of 0.86 (p-value, 0.0001). Finally, to verify
the presence of autophagy in skeletal muscle, we analyzed the LC3-II/LC3-I levels. We
found that LC3-II protein was significantly upregulated in the stressed group (Figure 5a),
measuring 2.1-fold that of control conditions (Figure 5b).
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4. Discussion

In the present study, we investigated the effects of high-temperature stress on the global
gene expression response in the skeletal muscle of rainbow trout (O. mykiss). The effect of
temperature stress on fish physiology is an important research focus in the face of ongoing
global warming and its potential impact on freshwater and marine aquaculture [22]. The
ability of fish to cope with temperature variations is related to their phenotypic plasticity, that
is, different phenotypes triggered by variable environmental conditions. In this sense, the
acclimatization process mediated by transcriptional changes is essential for the implementation
of an ad hoc metabolic, neuroendocrine, and immunological response to climate change [23]. In
the present study, we found that the applied stress protocol resulted in a significant increase
in the blood plasma levels of cortisol and glucose, reaching concentrations of approximately
110 ng/mL and 59 mg/dL, respectively. These results are consistent with those previously
reported to date in multiple other teleost fishes [24–28]. For instance, studies conducted
on adult rainbow trout (O. mykiss) have shown that sudden increases in temperature can
induce a similar rise in glucose and blood plasma cortisol levels [26–28]. This contrasts with
studies where the temperature was gradually increased [29]. In a recently published article,
it was determined that a similar protocol of gradually increasing temperature induced an
increment in cortisol and plasma glucose levels in the red cusk-eel (G. chilensis), a marine
teleost [12]. Considering that cortisol has been described as a potent catabolic hormone,
inducing muscle atrophy in vertebrates [19,30], we quantified plasma creatine kinase and
oxidative damage in muscle tissue as indicators of skeletal muscle atrophy. Interestingly,
our results showed that high-temperature stress did not elevate the levels of blood plasma
creatine kinase and oxidative damage markers in skeletal muscle tissue. This observation
contrasts with the findings of thermal stress studies on red cusk-eel (G. chilensis), which
reported an increase in skeletal muscle oxidative damage and an upregulation in the
expression of several genes associated with muscle atrophy [12]. Similarly, in the African
sharptooth catfish (Clarias gariepinus), it was reported that the long-term exposure to high-
temperature stress has a negative consequence on skeletal muscle growth performance
and structural integrity [31]. In Atlantic salmon (Salmo salar), thermal stress has been
shown to cause skeletal muscle discoloration and loss of skeletal muscle integrity [32],
while in gilt-head seabream (Sparus aurata), exposure to high temperatures induces an
inflammatory and oxidative response in red muscle [33]. To gain further insights into the
molecular mechanisms underlying these responses, we conducted RNA-Seq analysis in the
present study.

Differential expression analysis revealed that upregulated genes were mainly associ-
ated with autophagosome assembly and mitophagy. The obtained results were validated
by RT-qPCR analysis of selected genes and LC3 I/II Western blot, confirming that tempera-
ture stress induces autophagy in rainbow trout skeletal muscle. Autophagy is a catabolic
mechanism that is fundamental for physiological balance and responsible for the delivery
of cytoplasmic components to the lysosomes for digestion [34]. Autophagy is triggered by
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various stimuli, including lack of nutrients, reactive oxygen species (ROS), endoplasmic
reticulum stress, and the presence of microorganisms [35]. Although various reports in
teleosts have investigated autophagy in processes such as reproduction [36–38], hepatic
metabolism [13,39,40], and immune response to infections [41,42], there is limited evidence
of the role of autophagy in skeletal muscle catabolism. Studies of fine flounder (Paralichthys
adspersus) have shown that stress induced by high-density farming can upregulate the
expression of genes involved in the autophagy process, which is believed to be a protective
mechanism against apoptosis regulated by the ubiquitin–proteasome pathway [43]. Similar
findings were reported in red cusk-eel (G. chilensis), where it was demonstrated that expo-
sure to handling stress increased the expression of genes associated with autophagy and the
ubiquitin–proteasome pathway [44]. In rainbow trout (O. mykiss), it was determined that
infectious pancreatic necrosis virus (IPNV) infection induced a dynamic response between
autophagy and the proteasomal pathways in skeletal muscle [45]. Furthermore, autophagy-
mediated skeletal muscle atrophy has been found to be induced by intensive exercise in
zebrafish (Danio rerio) [46]. Among the genes with differential expression validated by
RT-qPCR are mapk10, bnip3, atg9a, and raf1. Mapk10, also known as Jun Kinase 3 (JNK3),
encodes for a serine/threonine-protein kinase involved in various processes such as cell dif-
ferentiation, apoptosis, and autophagy [47]. In fish, its expression has been related to stress
due to hypoxia and salinity in Asian seabass (Lateolabrax maculatus) [48]. Bnip3, also known
as BCL2/adenovirus E1B protein-interacting protein 3, regulates apoptosis, modulating
the permeability of the outer mitochondrial membrane [49]. It has also been described that
bnip3 is also a potent inducer of autophagy in many tissues [49]. Its overexpression in skele-
tal muscle induced by starvation was reported in the fine flounder (P. adspersus) [50]. Atg9a,
also known as autophagy-related protein 9A, encodes for a lipid scramblase involved in au-
tophagosomal membrane expansion, directly regulating autophagy [51]. Gene expression
analysis showed that cadmium presence in water induced atg9a gene expression, positively
modulating autophagy in the liver tissue of Chinese ink carp (Procypris merus) [40]. Raf1
encodes for the RAF proto-oncogene serine/threonine-protein kinase, which acts as a
critical regulator of autophagy and the link between the membrane-associated Ras GTPases
and the MAPK/ERK signaling pathway [52]. In Chinese rare minnows (Gobiocypris rarus),
the chemical compound Carbamazepine increases its expression, inducing DNA damage
and apoptosis in the liver [53]. To our knowledge, there are no previous reports linking the
expression of these genes with high-temperature stress and autophagy in lower vertebrates.

Interestingly, temperature-induced autophagy is a phenomenon that has been reported
in mammalian skeletal muscle models. In wild boar (Sus scrofa), it has been reported that
short-term temperature stress results in apoptosis and autophagy in skeletal muscle [54].
Similarly, it has been reported that in rat (Rattus norvegicus) skeletal muscle, the autophagy
pathway is activated in response to temperature stress, as a compensatory mechanism for
muscle atrophy induced by tendon cutting [55]. In mice (Mus musculus), temperature stress
treatment rescues denervation-induced mitophagy (autophagy in mitochondria) and the
consequent skeletal muscle atrophy [56]. Further, in cell models of mammalian skeletal
muscle (C2C12 myotubes), it was reported that acute heat exposure induced autophagy re-
sulting in an elevation in AMPK, Beclin-1, and LC3 II levels, similar to our observations [57].
In recent years, evidence has emerged showing that autophagy is a fundamental mecha-
nism of the cellular redox balance, acting in the molecular responses to reactive oxygen
species (ROS) [58]. Reactive oxygen species (ROS) are produced during mitochondrial ATP
production, which can cause mitochondrial damage, triggering further cell apoptosis [59].
To prevent apoptosis, dysfunctional mitochondria are eliminated through mitophagy, a
selective process of autophagy that targets mitochondria [60]. Surprisingly, we did not
detect oxidative damage in the muscle tissue of fish subjected to high-temperature stress.
However, we did observe an over-representation of biological processes related to mi-
tophagy and negative regulation of apoptosis, indicating that autophagy in teleost skeletal
muscle is a protective mechanism against oxidative damage induced by temperature stress.
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5. Conclusions

In the present study, we demonstrated that temperature stress induces autophagy in
the skeletal muscle of O. mykiss. Considering the absence of protein carbonylation and
DNA oxidation in skeletal muscle and the absence of skeletal muscle atrophy markers in
plasma, we propose that autophagy acts as a negative regulator of damage in this tissue,
inducing the mitophagy process and inhibiting cell apoptosis.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/fishes8060303/s1. Figure S1: Principal component analyses (PCAs)
of cDNA libraries; Figure S2: RT-qPCR validation of selected differentially expressed genes in the
skeletal muscle rainbow trout in response to high-temperature stress. Table S1: Primer sequences used
in qPCR analysis; Table S2: List of DEGs in control vs. stress groups; Table S3: Molecular function (MF)
of differentially upregulated genes; Table S4: Cellular component (CC) of differentially upregulated
genes; Table S5: Molecular function (MF) of differentially downregulated genes; Table S6: Cellular
component (CC) of differentially downregulated genes.
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