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Abstract: In intensive aquaculture, the real-time detection and monitoring of common infectious dis-
ease is an important basis for scientific fish epidemic prevention strategies that can effectively reduce
fish mortality and economic loss. However, low-quality underwater images and low-identification
targets present great challenges to diseased fish detection. To overcome these challenges, this paper
proposes a diseased fish detection model, using an improved YOLOV5 network for aquaculture
(DFYOLO). The specific implementation methods are as follows: (1) the C3 structure is used instead
of the CSPNet structure of the YOLOV5 model to facilitate the industrial deployment of the algorithm;
(2) all the 3 × 3 convolutional kernels in the backbone network are replaced by a convolutional kernel
group consisting of parallel 3 × 3, 1 × 3 and 3 × 1 convolutional kernels; and (3) the convolutional
block attention module is added to the YOLOV5 algorithm. Experimental results in a fishing ground
showed that the DFYOLO is better than that of the original YOLOV5 network, and the average preci-
sion was improved from 94.52% to 99.38% (when the intersection over union is 0.5), for an increase
of 4.86%. Therefore, the DFYOLO network can effectively detect diseased fish and is applicable in
intensive aquaculture.

Keywords: real-time; epidemic prevention; algorithm; target detection; convolution kernel group

1. Introduction

China is the largest consumer of freshwater fish in the world [1,2]. Wild-caught
freshwater fish make up a large portion of freshwater fish consumption [3]. Overfishing
due to consumption of wild-caught freshwater fish destroys biodiversity [4]. In order to
reduce the ecological damage caused by fishing, in 2020, the Chinese Ministry of Agriculture
and Rural Affairs announced the start of a 10-year fishing ban on the Yangtze River [4].
With the implementation of the fishing ban, China’s freshwater fish consumer market is
more dependent on artificial culture. During freshwater aquaculture, fish feed or fertilizer
is put into the water to increase freshwater fish production, but residual fertilizer, fish
feces and other excreta can cause water eutrophication and lead to eco-catastrophe, such
as red tides, so this type of freshwater aquaculture was banned in natural waters. In this
context, the proportion of intensive aquaculture will further increase [5,6]. One study
shows that intensive aquaculture systems will have to predominate [7]. The high-density
stocking and feeding method will inevitably face the problem of excessive multiplication of
viruses, bacteria and fungi, and the accumulation of nitrogen and phosphorus, especially
ammonia and nitrite nitrogen concentrations, making farmed fish more susceptible to
various diseases. One study showed that more than half of production losses in aquaculture
are caused by diseases [8]. At present, fish disease detection mainly relies on manual
methods. However, as light is refracted from the air into water, the human eye observes the
health of fish with difficulty, leading to failure of timely drug administration or adjustment
of breeding programs, missing the best treatment period, and resulting in huge economic
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losses. This is, thus, the technical bottleneck of intensive aquaculture. Therefore, it is
important to study automatic fish disease identification and analysis methods.

With the development of deep learning technology, many researchers have proposed
to identify animal behavior, and animal and plant body surface characteristics based on
video image analysis, so as to identify animals in heat, hunger and disease, and plant
maturity and disease, and great progress has been made in recent years. Chen et al. [9]
proposed a fish species identification system for fish markets that combines state-of-the-art
instance-segmentation methods, with ResNet-based classification. Rauf et al. [10] proposed
a deep learning framework based on a CNN approach for fish species recognition, which
has been shown to achieve state-of-the-art performance through experimental comparisons
with other deep learning frameworks. Qi et al. [11] proposed a novel lightweight convolu-
tional neural network for medicinal chrysanthemum detection. Måløy et al. [12] proposed
a two-stream recurrent network (DSRN) to automatically capture the spatio-temporal
behavior of salmonids as they swim, and the model achieved a prediction accuracy of
80%. Zhang et al. [13] proposed an automated fish population counting method based on
machine vision and a new hybrid deep neural network model to count farmed Atlantic
salmon. Labao and Naval [14] proposed a fish detection system consisting of an ensemble
of region-based convolutional neural networks, that can detect and count fish objects un-
der various benthic backgrounds and illumination conditions. The rapid development of
intelligence has been applied in aquaculture.

In order to reduce the losses caused by fish infectious diseases, the detection method
should have a high level of real-time. The You Only Look Once (YOLO) series algorithm,
now updated to the fifth generation, is the mainstream single-stage detection algorithm
with high detection accuracy and fast detection speed, which is widely used in various
target detection tasks. Roy et al. [15] proposed a mango detection framework based on
an improved YOLOv4 algorithm, by including DenseNet in the backbone. Fan et al. [16]
proposed a real-time apple defects inspection method based on a simplified YOLOV4 algo-
rithm, using channel pruning and layer pruning methods. Qi et al. [17] proposed a highly
fused and lightweight deep learning architecture, based on YOLO, for tea chrysanthemum
detection. Ge et al. [18] proposed the UW_YOLOv3 lightweight model to solve the prob-
lems of calculating energy consumption and storage resource limitations in underwater
application scenarios. Cai et al. [19] proposed a fish detection method combining YOLOv3
and MobileNetv1, which was used to detect the number of fish within real breeding farms.
Li et al. [20] proposed a real-time fish detection method based on YOLO-V3-Tiny-MobileNet,
using YOLO-V3-Tiny as the baseline, and combined with MobileNet, the method can pro-
vided timely warning to fishing vessel operators. Hu et al. [21] proposed an uneaten feed
pellet detection model, using an improved YOLO-V4 network. Jalal et al. [22] proposed a hy-
brid solution combining optical flow and Gaussian mixture models with YOLO deep neural
network, which achieved 95.47% and 91.2% F-scores for fish detection, while the accuracy
of fish species classification was 91.64% and 79.8%, respectively. Wen et al. [23] proposed a
lightweight YOLOv4 detection algorithm improved by multi-scale feature fusion for dense
silkworm detection. Zhou et al. [24] proposed a marine biometric identification method
based on image enhancement and improved YOLOv4 algorithm. Prasetyo et al. [25] fish
body part detection method, based on YOLOV4-tiny with a wing convolution layer. Abi-
naya et al. [26] proposed a YOLOv4 based fish segmentation detection method to estimate
the fish biomass in an occulted environment. Wang et al. [27] proposed a neural network
based on improved YOLOV5 and SiamRPN++, to detect and track the abnormal behavior
of porphyry seabream. YOLO has been used successfully in many applications for target
detection in aquaculture. However, the original YOLO algorithm still has limitations for
the detection of fish infectious diseases due to the small difference between diseased and
normal fish.

To solve the above problems, this paper proposes a YOLOV5m network-based diseased
fish detection method for intensive aquaculture. The recognition algorithm replaces all
the 3 × 3 convolutional kernels in the backbone network with a convolution kernel group,
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and adds a convolutional block attention module (CBAM), which effectively improves the
detection accuracy of diseased fish. The next sections of this paper are organized as follows:
Section 2 introduces the dataset, the improved algorithm and network; Sections 3 and 4
present the results and discussion; and Section 5 is the conclusion.

2. Materials and Methods
2.1. Dataset

Fish image data were collected in the aquaculture base of Xianning Academy of
Agricultural Sciences, Hubei Province. The shooting scene is as shown in Figure 1.
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Figure 1. The experimental setup of image acquisition.

The acquisition equipment consisted of the GO POR8 motion camera (GO POR, San
Mateo, CA, USA), of which the two-dimensional RGB image resolution was 5650 × 4238 pix-
els, focal length was 2 mm, and exposure time was 1/200 s. In order to reduce the probability
of network model overfitting caused by insufficient diversity of training samples, strong
light and weak light at acquisition time were distinguished by 500–1000 lux and 50–499 lux
of underwater light intensity of the day, respectively. Under strong light and weak light,
fish feature images of 600 mm, 1200 mm and 1800 mm depth of water body were collected.
The dimensions of the barrel and image acquisition are shown in Figure 1. In order to
increase the diversity of the samples, the image samples included two species of fish, red
tilapia and micropterus salmoides, including the different conditions of fish density, growth
phase, temperature and water quality, as well as light conditions such as light and backlight.
Figure 2 shows a group of typical images of fish in complex underwater environments.
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Figure 2. Example images in the underwater environment.

The complex underwater environment of the captive barrel (Fisheries College of
Huazhong Agricultural University, Wuhan, China) and the various underwater electronic
sensors can interfere with the acquisition and transmission of the images, making them
noisy. In order to improve the recognition efficiency of diseased fish, the images need to
be processed for noise reduction. Analysis of the image noise shows that the probability
density function obeys a Gaussian distribution, and the common processing methods are
Gaussian filtering or bilateral filtering. Gaussian filtering has good performance in low-pass
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filtering algorithms, but it only takes into account the spatial position of the pixels, and the
filtering results in the loss of edge information. The edges in this case are the main areas of
color in the image (turbidity of the water, individual body colors of red tilapia, etc.), and
bilateral filtering solves this problem by adding an additional weight to the Gaussian filter.

Photographs taken between 1 July and 31 October were manually checked and invalid
photographs of poor quality were removed. Including 12,045 photographs of rainbow
snapper and 12,317 photographs of micropterus salmoides, 24,362 images were obtained.
As the photographs were taken underwater over a certain period of time, there was
turbidity in the water as the weather and the environment in the captive barrel changed, a
phenomenon that can be likened to taking photographs in the air due to haze, resulting in
poor image characteristics and affecting image quality. Therefore, it is necessary to use a
dark channel defogging method on the collected samples, to saturate the color and increase
the brightness of the photographs to facilitate the identification of lesions on the surface of
the fish. The expression for haze removal using dark channel [28] is shown in Equation (1).

J(x) =
I(x) − A

t(x)
+ A (1)

when the transmittance, t(x), is too small, the value of J(x) will be large and a threshold t(0) is
set to limit J(x), typically taking the value 0.1. Then, there is the Equation (2), shown below.

J(x) =
I(x) − A

max
(

t(x),t0

) + A , (2)

where x is the input pixels, J(x) is the recovered haze-free image, A is the atmospheric
illumination (maximum pixel value), I(x) is the existing images (to be foggy) and t(x) is the
medium transmission rate.

The pathological analysis showed that the main disease of red tilapia was ocular
streptococcal infection, which caused congestion, protrusion and ulceration of pus in the
eyes of red tilapia. The main disease of micropterus salmoides was Nocardia infection,
which caused obvious redness, inflammation, ulceration and necrosis on the surface of the
body of both fish. A comparison of the symptoms of the two species is shown in Figure 3.
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Figure 3. Typical images of fish infection. Note: The infected fish in the figure are inside the Ground
truth box, and normal fish are found outside the Ground truth box.

To further clarify the trend of fish infection with culture time, 25 images of red tilapia
and micropterus salmoides were selected for tagging each day, and a total of 6000 images
were tagged, with 50% of each of the two species. The labelled images were divided into
a train set and a validation set according to 80% and 20%, and another 1000 images were
selected from the images taken as a test set, with 50% of each species. The number of disease
and illness levels for each fish species in the captive barrel was counted, as shown in Table 1.
Three thousand images of red tilapia were marked, of which 785 had eye infections and
213 died, while the remaining healthy fish were marked as normal. Of the 3000 images of
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micropterus salmoides, a total of 2080 fish had surface decay and the remaining healthy
fish were marked as normal.

Table 1. Various state statistics of the fish in the dataset.

Collection Name Red Tilapia Micropterus Salmoides

Eye infections 785 0
Surface decay 0 2080

Died 213 0
Normal 2002 920

Summation 3000 3000

2.2. The Diseased Fish Identification Algorithms

The YOLOV5 network is a current excellent one-stage target detection algorithm, of
which the structure is divided into three parts: backbone, neck and head. The main com-
ponent of YOLOV5 includes Focus, SPP and PANet, where Focus improves the receptive
field through slice and convolution operations, SPP separates the important features of
the context through max pool and convolution operations, and PANet obtains the strong
feature map by integrating different level features.

There are four types of YOLOV5: V5s, V5m, V5l and V5x. Taking speed and accuracy
into account, this paper proposes a diseased fish detection model based on YOLOV5m
(DFYOLO), the network structure is shown in Figure 4.
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it can double down sample feature graph without information loss; SPP is a spatial pyramid pool
structure, and it effectively avoids the problems of image distortion caused by image region cropping
and scaling operation.

The main model improvements of this study are as follows:

1. The implementation of lightweight computing is key to the industrial deployment
of algorithms. In order to achieve lightweight computing, the C3 component is used
instead of the CSPNet [29] component of the YOLOV5 model in this study. As shown
in Figure 5, compared to the CSPNet component, the C3 component removes one
convolution operation after the skip connect, and splices directly with another branch
of the input image after one convolution operation. The C3 component has a similar
effect to the CSPNet component, but with a simpler structure.
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2. As fish activity photos are taken underwater, the scenes in the photos often change
with water quality, lighting and fish conditions, resulting in varying degrees of varia-
tion and obscuration of fish features, and the original YOLOV5 backbone network
is unable to extract clear features. In order to reduce the impact of underwater com-
plexities, this study improves the generalization ability of the network by expanding
the training samples and replacing all 3 × 3 convolutional kernels in the backbone
network with convolutional kernel group (Conv KG), to enhance the network’s ability
to extract features from the photographed fish. Conv KG consists of three parallel
3 × 3, 1 × 3 and 3 × 1 convolutional kernels, which convolve the input image in
the same steps to produce feature maps of the same size and number of channels,
respectively, and the corresponding feature maps are summed to obtain the output
features, as shown in Figure 6. The three parallel convolutional kernels enhance the
network’s ability to extract fish surface features.

P ∗ K(1) + P ∗ K(2) + P ∗ K(3) = P ∗ (K(1) + K(2) + K(3)) = P ∗ K, (3)

where P is the input image, K(1), K(2) and K(3) are the 3 × 3, 1 × 3 and 3 × 1 convolution
kernels, K is the equivalent convolution kernel, ∗ is the convolution operation.
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Therefore, the three parallel convolutional kernels are equivalent to a new 3 × 3 con-
volutional kernel with different weights. Compared to the 3 × 3 kernels before the replace-
ment, the trained equivalent convolutional kernel can enhance the extraction of fish surface
features, without increasing the computational effort in the train set.

3. Due to the variable underwater environment and the large variation in the number of
fish in fish photos, which interferes with the original YOLOV5 detection algorithm,
this study adds the attention mechanism module, convolutional block attention
module (CBAM), to the YOLOV5 network (Figure 7). CBAM is a simple, but effective
feed-forward convolutional neural network attention module, which combines the
channel attention module (CAM) and spatial attention module (SAM) [30]. Given
an intermediate feature map, our module sequentially inferred the attention of an
image along two independent dimensions, channel and space, and then multiplied
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the attention map by the input feature map for adaptive feature refinement. Because
CBAM is a lightweight, general-purpose module, it can be seamlessly integrated into
any convolutional neural network architecture with negligible overhead, and can be
trained end-to-end with the underlying convolutional neural network.
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The overall CBAM process is shown in Equations (4) and (5):

F′ = MC(F)⊗ F (4)

F′′ = MS
(

F′
)
⊗ F′ , (5)

where F ∈ RC×H×W is the input feature map, MC ∈ RC×1×1 is the CAM weight data, which
is 1 × 1 × C, F′ is the CAM output, MS ∈ R1×H×W is the spatial attention module weight
data, which is 2 × H ×W and F′′ is the CBAM output.

The channel attention module mainly detects the contour characteristics of the fish
and obtains the main contents of the detection target. Its calculation method is as follows:

MC(F) = σ
(

W1

(
W0

(
Fc

avg

))
+ W1(W0(Fc

max))
)

(6)

In the formula, σ represents the Sigmoid function, W0 ∈ Rc/r×c,W1 ∈ Rc×c/r, two
inputs share the weights W0 and W1, the ReLU activation function is followed by the W0,
Fc

avg, Fc
max, representing features generated using average-pooled and max-pooled, H is the

height, W is the width, C is the number of channels, and r is the rate of reduction.
The introduction of the spatial attention module is to further improve the detection

accuracy of the target fish, and accurately locate the position of target fish. The calculation
method is as follows:

MS(F) = σ
(

f 7×7
([

Fs
avg; Fs

max

]))
, (7)

where Fs
avg and Fs

max represent the features generated using average-pooled and max-pooled
and f 7×7 represents a convolution operation with the filter size of 7 × 7.

2.3. Experimental Environment

In this study, the Darknet framework was used to improve the YOLOV5 network. The
experimental environment is shown in Table 2.

Table 2. The experimental environment.

Configuration Parameter

CPU Intel Core i7-9700 K
GPU Nvidia GeForce RTX 3080 Ti × 2

Operating system Windows 10
Accelerated environment CUDA10.2 CUDNN7.6.5

Development environment Visual Studio 2020
Library Opencv3.4.0

Note: CPU manufactured by Intel Corporation, Santa Clara, CA, USA; GPU manufactured by Nvidia Corporation,
Santa Clara, CA, USA; the operating system is manufactured by Microsoft Corporation, Albuquerque, NM, USA.
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2.4. Performance Evaluation Metrics

In this study, precision (P), recall (R) and mean average precision (mAP) are used as
evaluation indicators for DFYOLO. Precision is the probability of an actual diseased fish
being predicted in all samples predicted to be diseased, which represents the precision of
the predicted outcome for positive samples. Recall is the probability of being predicted
as a diseased fish among the actual diseased fish samples, and it represents the overall
prediction accuracy. It is calculated as shown by Equations (8) and (9).

precision =
TP

TP + FP
(8)

recall =
TP

TP + FN
, (9)

where TP (true positives) is a sample that is correctly identified as abnormal behavior; FN
(false negatives) is a sample that is mistaken as a background; TN (true negatives) is a
sample that is correctly identified as a background; FP (false positives) is a sample that is
misidentified as abnormal behavior.

Average precision (AP) refers to the area under the P–R curve, for which the calculation
formula is shown by Equation (10). AP50 is the mean of precision under different recall
values when IOU (intersection over union) = 0.5. AP50:95 is the mean of the ten values of
AP50, AP55 . . . , AP90, AP95, for which the calculation formula is shown by Equation (11).
The mAP refers to the average of the AP values of the two species, micropterus salmoides
(MS) and red tilapia (RT). The calculation formula is shown by Equation (12).

AP =
∫ 1

0
P(R)dR (10)

AP50:95 =
1
10

(AP50 + AP55 + . . . + AP90 + AP95) (11)

mAP =
1
2
(APMS + APRT) (12)

3. Results
3.1. Training Result

The training results of DFYOLO are shown in Figure 8. After 475 times epoch, the loss
value dropped to 0.027. The accuracy of DFYOLO was 99.75%, the recall was 99.31% and
the mAP50 was 99.38%. From the training results, the model has convergence with high
accuracy and check-all rates, as well as low loss value.
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3.2. Identification Results under Various Varieties

The images of red tilapia and micropterus salmoides were randomly collected at the
same light intensity and water depth, and entered into DFYOLO. The monitoring results
are shown in Figure 9. When red tilapia were close to the camera and the sides and their
heads were fully displayed, no missed detections occurred; the micropterus salmoides that
had their side torsos fully displayed in the image were able to be detected in their entirety,
with no missed detections.
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3.3. Identification Results under Various Environments

The images of red tilapia and micropterus salmoides were randomly selected at
500–1000 lux (strong light) and 50–499 lux (weak light), respectively, and input into DFY-
OLO. The monitoring results are shown in Figure 10, and there were no missed detections,
indicating that DFYOLO can adapt to the different lighting conditions common in the
breeding process.
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Figure 10. Monitoring effect at different light conditions.

The monitoring results for different water depths are shown in Figure 11. The images
taken at 600 mm depth had the best detection results, because there were fewer fish in the
upper layer and fewer fish adhered to the images; the images taken at 1200 mm depth
had no missed detection, which was slightly less effective than those taken at 600 mm
depth; the images taken at 1800 mm depth had missed detection of individual fish, as
shown by the pink dashed circle in Figure 11, indicating that DFYOLO had better detection
at different shooting depths. This shows that DFYOLO has a good monitoring effect at
different shooting heights.



Fishes 2023, 8, 169 10 of 14

Fishes 2023, 8, x FOR PEER REVIEW 10 of 15 
 

 

  
(a) Strong light  (b) Weak light 

Figure 10. Monitoring effect at different light conditions. 

The monitoring results for different water depths are shown in Figure11. The images 
taken at 600 mm depth had the best detection results, because there were fewer fish in the 
upper layer and fewer fish adhered to the images; the images taken at 1200 mm depth had 
no missed detection, which was slightly less effective than those taken at 600 mm depth; 
the images taken at 1800 mm depth had missed detection of individual fish, as shown by 
the pink dashed circle in Figure 11, indicating that DFYOLO had better detection at 
different shooting depths. This shows that DFYOLO has a good monitoring effect at 
different shooting heights. 

   
(a) 600 mm (b) 1200 mm (c) 1800 mm 

Figure 11. Monitoring effect at different water depth. 

3.4. Contrast to Mainstream Target Detection Networks 
In order to verify the detection performance of the improved algorithm in this paper, 

the DFYOLO proposed in this study was compared with the mainstream target detection 
models SSD, Faster‐R CNN, YOLOv3 and YOLOv4, and the five metrics of Occupy 
Memory, FPS, Recall, Precision and mAP50, were used to evaluate and compare the 
mainstream detection algorithms. The comparison experimental parameters are shown in 
Table 3. 

Table 3. Parameter settings for different detection networks. 

Method Batch Size Learning Rate Epoch Momentum Weight Decay 
SSD 16 0.001 475 0.9 0.0005 

Faster‐RCNN 16 0.001 475 0.9 0.0005 
YOLOv3 16 0.001 475 0.9 0.0005 
YOLOv4 16 0.001 475 0.9 0.0005 
YOLOV5 16 0.01 475 0.9 0.0005 
DFYOLO 16 0.01 475 0.9 0.0005 

Figure 11. Monitoring effect at different water depth.

3.4. Contrast to Mainstream Target Detection Networks

In order to verify the detection performance of the improved algorithm in this paper,
the DFYOLO proposed in this study was compared with the mainstream target detection
models SSD, Faster-R CNN, YOLOv3 and YOLOv4, and the five metrics of Occupy Memory,
FPS, Recall, Precision and mAP50, were used to evaluate and compare the mainstream
detection algorithms. The comparison experimental parameters are shown in Table 3.

Table 3. Parameter settings for different detection networks.

Method Batch Size Learning Rate Epoch Momentum Weight Decay

SSD 16 0.001 475 0.9 0.0005
Faster-RCNN 16 0.001 475 0.9 0.0005

YOLOv3 16 0.001 475 0.9 0.0005
YOLOv4 16 0.001 475 0.9 0.0005
YOLOV5 16 0.01 475 0.9 0.0005
DFYOLO 16 0.01 475 0.9 0.0005

The analysis in Table 4 shows that when the IOU = 0.5, the recall of the DFYOLO
algorithm was 99.31%, which is 5.55% higher than the original YOLOV5 model; the preci-
sion was 99.75%, which is 5.39% higher than the original YOLOV5 model; the mAP50 was
99.38%, which is 5.86% higher than the original YOLOV5 algorithm; the mAP50:95 was
88.09%, which is 9.56% higher than the original YOLOV5 algorithm; the model occupied
0.9 MB less memory; while ensuring high accuracy detection, the FPS of the model did not
show a significant decrease.

Table 4. The detection results of different detection networks.

Method Occupy
Memory/MB FPS Recall/% Precision/% mAP50/% mAP50:95/%

SSD 63.2 69.73 73.01 76.81 68.24 42.03
Faster-
RCNN 77.8 57.97 83.28 86.18 79.87 51.14

YOLOv3 62.1 69.44 86.12 82.38 90.99 41.10
YOLOv4 226 78.24 93.84 93.58 93.39 59.53
YOLOV5 14.5 96.43 93.76 94.36 94.52 78.53
DFYOLO 13.6 93.21 99.31 99.75 99.38 88.09

3.5. Ablation Experiment

An ablation experiment is a commonly used experimental method in deep learning,
which proves the necessity of this module by removing the effect of single- or multiple-
improved methods. If the results of an ablation experiment are worse or the performance is
significantly reduced, the improved method is reasonable.
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The results of the ablation experiment are shown in Table 5, where it can be seen
that bilateral filtering and haze removal improved the quality of underwater photos, and
slightly improved the model detection. Image transformation can reduce the computation
time of the algorithm, Conv KG enhances the feature extraction of the fish surface, CBAM
focuses on “what the fish is?” and “where the fish are? is?”. The above methods improved
the detection speed, precision recall and mAP of the model.

Table 5. The results of an ablation test.

Baseline
Network

Bilateral
Filtering

Haze
Removal

Image
Transformation Conv KG CBAM Recall/% Precision/% mAP50/% mAP50:95/%

YOLOV5 93.76 94.36 94.52 78.53
YOLOV5

√
95.81 94.40 94.58 79.28

YOLOV5
√ √

95.85 94.86 96.02 82.12
YOLOV5

√ √ √
95.75 93.42 95.41 82.07

YOLOV5
√ √ √

97.21 98.24 98.35 87.98
YOLOV5

√ √ √ √
97.18 98.85 98.16 86.06

YOLOV5
√ √ √ √ √

99.31 99.75 99.38 88.09

3.6. Comparison of before and after Improvement

Randomly selected photographs of red tilapia and micropterus salmoides were entered
into the original YOLOV5 and DFYOLO models, as shown in Figure 12. The thin line part
is the recognition result of the original model, the thick line is the recognition result of the
DFYOLO, and the fish missed by the original model are only marked by the dashed line.
By comparing the images, the DFYOLO had a higher detection efficiency, more accurate
detection parts and a lower missed detection rate.

Fishes 2023, 8, x FOR PEER REVIEW 12 of 15 
 

 

  
(a) Red Tilapia (b) Micropterus Salmoides 

Figure 12. Comparison of the test image results. 

4. Discussion 
4.1. Robustness of the Method 

Although our work is an exploratory experiment, it aims to explore whether 
recognition algorithms can be used for disease recognition in fish. Nevertheless, we 
simulated the actual production situation to improve the robustness of our method. We 
chose to use a large intensive culture barrel for our experiment. First, we took time series 
of photographs of fish at different stages of growth. Secondly, we also selected two typical 
varieties (Figure 9), different light conditions (Figure 10) and different water depths 
(Figure 11), which were as close to the real environment as possible. In addition, the 
experimental design added some algae, so that we could see that all the photos were 
yellowish‐green. Our models still work well in this underwater environment. 

4.2. Comparison with Other Methods 
At present, there are also many underwater fish tracking and identification methods 

used [31,32]. They generally use RCNN or CNN, which has a high recognition accuracy 
and a low technical threshold. However, due to its structure, the recognition speed is not 
fast enough. Intensive farming requires relatively fast recognition speed, because more 
fish targets appear per unit image area. Therefore, this study preferentially selects YOLO 
as the basic algorithm. According to the data in Table 4, YOLOv5 has an obvious speed 
advantage compared with other algorithms in actual use. After some improvements, the 
DFYOLO sacrifices some of its speed advantage to reduce memory usage, but still 
achieves 93.21FPS. 

4.3. Contribution to the Detection of Fish Diseases 
In recent years, with the rapid development of artificial intelligence, the application 

of computer vision model in fishery industry is more and more popular. This study is 
concerned with the use of computer vision technology for real‐time detection of fish body 
surface to estimate the disease and degree of fish, which can improve the management 
efficiency of freshwater fish culture. The difference between underwater fish disease 
recognition and common target recognition is that the features of fish body surface are 
more homogenous and smaller than those of common targets. On the other hand, the 
underwater shooting environment is much more complex than that in the air. In addition, 
the most important point is that fish have a large degree of overlap in space, so it is easy 
to introduce redundant features and affect the accuracy of body surface disease 
recognition. In this study, the image noise reduction is carried out by the method of 
bilateral filtering, which reduces the interference of other electrical equipment to the 
underwater camera. The application of haze removal using dark channel reduces the 
influence of turbid water on the image quality, and C3 replacing the original CPSNet 

Figure 12. Comparison of the test image results.

4. Discussion
4.1. Robustness of the Method

Although our work is an exploratory experiment, it aims to explore whether recogni-
tion algorithms can be used for disease recognition in fish. Nevertheless, we simulated the
actual production situation to improve the robustness of our method. We chose to use a
large intensive culture barrel for our experiment. First, we took time series of photographs
of fish at different stages of growth. Secondly, we also selected two typical varieties
(Figure 9), different light conditions (Figure 10) and different water depths (Figure 11),
which were as close to the real environment as possible. In addition, the experimental
design added some algae, so that we could see that all the photos were yellowish-green.
Our models still work well in this underwater environment.
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4.2. Comparison with Other Methods

At present, there are also many underwater fish tracking and identification methods
used [31,32]. They generally use RCNN or CNN, which has a high recognition accuracy
and a low technical threshold. However, due to its structure, the recognition speed is not
fast enough. Intensive farming requires relatively fast recognition speed, because more fish
targets appear per unit image area. Therefore, this study preferentially selects YOLO as the
basic algorithm. According to the data in Table 4, YOLOv5 has an obvious speed advantage
compared with other algorithms in actual use. After some improvements, the DFYOLO
sacrifices some of its speed advantage to reduce memory usage, but still achieves 93.21FPS.

4.3. Contribution to the Detection of Fish Diseases

In recent years, with the rapid development of artificial intelligence, the application
of computer vision model in fishery industry is more and more popular. This study is
concerned with the use of computer vision technology for real-time detection of fish body
surface to estimate the disease and degree of fish, which can improve the management
efficiency of freshwater fish culture. The difference between underwater fish disease
recognition and common target recognition is that the features of fish body surface are
more homogenous and smaller than those of common targets. On the other hand, the
underwater shooting environment is much more complex than that in the air. In addition,
the most important point is that fish have a large degree of overlap in space, so it is easy to
introduce redundant features and affect the accuracy of body surface disease recognition.
In this study, the image noise reduction is carried out by the method of bilateral filtering,
which reduces the interference of other electrical equipment to the underwater camera. The
application of haze removal using dark channel reduces the influence of turbid water on
the image quality, and C3 replacing the original CPSNet reduces the memory occupied by
the model, while CABM (convolutional block attention module) is introduced to avoid the
influence of a large amount of redundant information on fish recognition. According to the
data in Table 5, compared with the original algorithm before improvement (YOLO v5), our
model has great advantages in speed and accuracy, achieving a real-time detection speed
and accuracy of 99.75%.

5. Conclusions

In order to detect fish health in real time, this paper proposes a DFYOLO network
based on YOLOV5m, to detect the proportion of diseased fish in the shoal of fish.

The captive barrel has an automatic aerator, sewage discharge and other electrical
equipment, generating the electromagnetic interference in the process of camera shooting.
In this study, the form of bilateral filtering is adopted to reduce the noise of the images
taken. In addition, intensive culture will lead to turbidity of water and unclear surface
features of fish body. If the unprocessed image is directly input into the algorithm, the
recognition effect will be greatly reduced. The addition of haze removal using dark channel
can effectively reduce the influence of water turbidity on photo quality. C3 replaces CSPNet,
which makes the whole algorithm structure simple and efficient. The introduction of Conv
KG reduces the memory of the whole algorithm. The application of CABM makes the
whole algorithm combined-target detection and feature recognition, and achieves good
results in fish detection and body surface feature recognition. The experimental results
showed that DFYOLO not only achieves the highest mAP50 (99.38%), which is 4.86%
higher than YOLOv5m, but also keeps a high inference speed (93.21FPS) and occupies less
memory (13.6 MB). This method will provide a theoretical basis for the development of
intelligent fishery.

Although this study has realized the identification and statistics of fish disease, the
proposed method still has some limitations.

1. The algorithm used in this paper is a target recognition algorithm. It does not actually
support multi-target dynamic tracking. As a result, it is unable to track fish move-
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ments, and the information collected is too simple to provide a comprehensive picture
of their health.

2. The dataset used in this study for two common fish diseases is not sufficient for
practical application. More species of fish disease behavior should be collected to
supplement the dataset.

3. In future work, we will use stereo and multispectral cameras to capture images, to
reduce the impact of illumination, water quality and refraction on image quality. In
addition, we have found a number of methods regarding geometric features that can
be used to describe the size, weight and swimming speed of the fish, to construct a
more accurate estimation model of the health of the fish.
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