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Abstract: The collective understanding of global-scale evolutionary trends in barracuda mitogenomes
is presently limited. This ongoing research delves into the maternal evolutionary path of Sphyraena
species, with a specific focus on the complete mitogenome of Sphyraena sphyraena, sourced from the
Atlantic Ocean through advanced next-generation sequencing. This mitogenome spans 16,841 base
pairs and encompasses 37 genes, including 13 protein-coding genes (PCGs), 2 ribosomal RNA genes
(rRNAs), 22 transfer RNA genes (tRNAs), and an AT-rich control region. Notably, the mitogenome
of S. sphyraena exhibits a preference for AT-base pairs, constituting 55.06% of the composition, a
trait consistent with a similar bias found in related species. Most protein-coding genes initiate with
an ATG codon, with the exception of Cytochrome c oxidase I (COI), which begins with a GTG
codon. Additionally, six PCGs terminate with a TAA codon, COI with AGA, while six others exhibit
incomplete termination codons. In the S. sphyraena mitogenome, the majority of transfer RNAs
exhibit typical cloverleaf secondary structures, except for tRNA-serine, which lacks a DHU stem.
Comparative analysis of conserved blocks within the D-loop regions of six Sphyraenidae species
reveals that the CSB-I block extends to 22 base pairs, surpassing other blocks and containing highly
variable sites. Both maximum-likelihood and Bayesian phylogenetic analyses, using concatenated
13 mitochondrial PCGs, distinctly separate all Sphyraenidae species. The European Barracuda,
S. sphyraena, demonstrates a sister relationship with the ‘Sphyraena barracuda’ group, including
S. barracuda and S. jello. In conclusion, this study advances our understanding of the evolutionary
relationship and genetic diversity within barracudas. Furthermore, it recommends comprehensive
exploration of mitogenomes and broader genomic data for all existing Sphyraenidae fishes, providing
invaluable insights into their systematics, genetic characterization, and maternal evolutionary history
within marine environments.

Keywords: barracudas; Africa; next-generation sequencing; mitochondrial genome; evolution

Key Contribution: The current research enhances our understanding of the genetic makeup and
structural attributes of the complete mitochondrial genome of the European Barracuda, Sphyraena
sphyraena, as well as other members of the barracuda family. By delving into genetic distances and
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examining phylogenetic patterns, the researchers unveil the maternal lineage’s evolution among dif-
ferent Sphyraena species and their broader context within Percomorpha. The generation of additional
mitogenomes is anticipated to provide insights into the genetic diversity, evolutionary history, and
conservation requisites of fish species within the Sphyraenidae family.

1. Introduction

Barracudas (Actinopterygii: Perciformes) are large, globally distributed ray-finned fishes
found in tropical and temperate seas [1]. Fossil records date the presence of barracudas back
to the Miocene period [2]. They belong to the single extant genus, Sphyraena, within the family
Sphyraenidae, and currently, there are 26 recognized species worldwide [3]. Barracudas
are characterized by their elongated body, pointed head, two widely separated dorsal fins,
and large, sharp, conical teeth [4]. Their unique gill-raker morphology allows for their
proper identification using classical methods [5,6]. Due to their popularity as a food source,
barracudas have gained economic value and significant importance in aquaculture [7]. These
species of fish are generally piscivorous (fish eaters) and act as top predators in reef and non-
reef habitats, helping to maintain marine ecosystems (http://oceanexplorer.noaa.gov, accessed
on 18 October 2023). Given their species’ diversity, Sphyraena species has been extensively
studied from various perspectives. Researchers have conducted ultrastructural investigations
into their morphological features, bite mechanics, and length-weight relationships across
different marine environments [8–11]. Additionally, ecological and physiological studies
have been pursued to gain insights into their behavior and adaptation [12–14]. Furthermore,
barracudas have been subjected to repeated examination for parasitological research [15,16]
and the assessment of potential human health risks linked with the consumption of heavy
metals through fish consumption [17,18]. These species have also been scrutinized to evaluate
predator-prey interactions within coral reef ecosystems [19].

The European Barracuda, Sphyraena sphyraena, is distributed across the Atlantic Ocean,
Mediterranean Sea, Tyrrhenian Sea, and Black Sea. Compounded by its sympatric co-
existence with another closely related species, the Yellowmouth Barracuda (Sphyraena
viridensis), in the northern Atlantic Ocean and Mediterranean Sea, these two species have
been sources of enduring taxonomic confusion, particularly in various life stages. In recent
years, DNA research has advanced rapidly, leading to numerous large-scale initiatives
aimed at unraveling the phylogeny, diversification, and evolutionary relationships of
teleostean fishes [20–22]. Despite these efforts, several acanthomorph lineages remain
poorly understood due to inadequate sampling. Some projects have specifically sought
to elucidate the phylogenetic relationships of acanthomorphs, including Sphyraenidae
species, by examining partial mitochondrial (COI, Cytb, 12S rRNA, 16S rRNA, and D-loop)
and nuclear genes (28S rRNA, rhodopsin, and RNF213) [23–25]. This genetic data has proven
valuable in assessing the distribution of genetic variability among Sphyraenidae species
and resolving the taxonomic dilemma of S. sphyraena and S. viridensis [26,27]. Nevertheless,
data on the nuclear and mitochondrial genetics of Sphyraenidae species has been generated
sporadically [28–36]. More recently, comprehensive genome-wide analyses of Sphyraenidae
species have been initiated to uncover cryptic diversity, employing phylogenomic, popu-
lation genomic, and coalescent-based species delimitation approaches while considering
morphological and ecological data [37]. However, our understanding of barracudas based
on mitochondrial genomes is still fragmentary. Prior to this study, mitogenomes for five
species were generated and are available in the global GenBank database [38–40]. Further-
more, the genetic characterization of various genes and the mitochondrial genome-based
assessment of evolutionary relationships remain incomplete for this group. To enhance
taxonomic clarity in phylogenetic interpretation, the present study aimed to assemble the
complete mitogenome of the European Barracuda, Sphyraena sphyraena, from the Atlantic
Ocean. Additionally, this study sought to characterize the structure and variations in
mitochondrial genes of S. sphyraena when compared to other available barracuda species.

http://oceanexplorer.noaa.gov
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In conclusion, this research contributes to our global understanding of the evolutionary his-
tory of the Sphyraenidae. However, investigating deeper into mitogenomes and extensive
genomic data for Sphyraena species holds the potential to offer fresh perspectives on their
thorough genetic profiling and evolutionary journey in the marine environment.

2. Materials and Methods
2.1. Sampling and Species Identification

A live European Barracuda, scientifically known as S. sphyraena, was captured in the
Atlantic Ocean off the coast of Cameroon, Africa (2.8877N 9.7219E). Species identification
was performed following established morphological criteria, as outlined in prior stud-
ies [41,42]. The specimen, measuring 380 mm in length, exhibited a dark dorsal surface and
a silvery ventral surface, demarcated by the lateral line. The second dorsal fin surpassed the
first in length, accompanied by the presence of 15 to 17 scales above the lateral line. The anal
fin displayed a whitish-yellow hue, and an enumeration of 13 pectoral fin rays was recorded.
The morphological characters observed effectively distinguish S. sphyraena from its closest
species, S. viridensis. Muscle tissue was carefully excised from the ventral thoracic region
and stored under sterile conditions within the Department of Marine Biology at Pukyong
National University in Busan, South Korea. Voucher specimens were meticulously pre-
served in 10% formaldehyde at the Fisheries and Animal Industries (MINEPIA) facility in
Yaoundé, Cameroon. The Institutional Animal Care and Use Committee (IACUC) granted
approval under the code PKNUIACUC-2022-72, dated 15 December 2022, confirming that
the biological material used in the experiments did not raise ethical concerns, as the targeted
fish was not subjected to harm by the researchers. The experiments were conducted in
adherence to the relevant ARRIVE 2.0 guidelines (https://arriveguidelines.org).

2.2. DNA Extraction, Sequencing, and Assembly

Total genomic DNA extraction was carried out using the AccuPrep® DNA extraction
kit from Bioneer in Daejeon, Republic of Korea, following established standard protocols.
The quality and quantity of genomic DNA were meticulously assessed using a NanoDrop
spectrophotometer (Thermo Fisher Scientific D1000, Waltham, MA, USA). To obtain the
complete mitogenome of S. sphyraena, sequencing procedures were conducted on the
NovaSeq platform at Macrogen (https://dna.macrogen.com/) in Daejeon, Republic of
Korea, provided by Illumina. Sequencing libraries were prepared according to the manufac-
turer’s guidelines for the TruSeq Nano DNA High-Throughput Library Prep Kit (Illumina,
Inc., San Diego, CA, USA). Briefly, 100 ng of genomic DNA underwent fragmentation
using adaptive focused acoustic technology (Covaris, Woburn, MA, USA), resulting in
double-stranded DNA molecules with blunt ends and 5′-phosphorylation. Following the
end-repair step, DNA fragments were size-selected using a bead-based method, modi-
fied with the addition of a single ‘A’ base, and ligated with TruSeq DNA UD Indexing
adapters. The products were purified and enriched through PCR to create the final DNA
library. Library quantification was performed using qPCR, following the qPCR Quantifi-
cation Protocol Guide (KAPA Library Quantification Kits for Illumina Sequencing Plat-
forms), and quality assessment was performed using Agilent Technologies 4200 TapeStation
D1000 screentape (Agilent Technologies, Santa Clara, CA, USA). Paired-end (2 × 150 bp)
sequencing was conducted by Macrogen on the NovaSeq platform (Illumina, Inc., San
Diego, CA, USA). Processing of over 20 million raw reads involved the Cutadapt tool
(http://code.google.com/p/cutadapt/) to trim adapters and eliminate low-quality bases
with a Phred quality score (Q score) cutoff of 20. Assembly of the targeted genome from
high-quality paired-end next-generation sequencing (NGS) reads was performed using
Geneious Prime version 2023.0.1, employing reference mapping with the mitogenome
of a closely related species as a reference, utilizing default mapping algorithms. Addi-
tionally, for the acquisition of the full-length control region, a species-specific primer pair
(5′-CTTGTCGCAGATGTCGCAATCC-3′ and 5′-GCCTGATACCAGCTCCATGTTCC-3′)
was designed based on the conserved region of Cytb and 12S rRNA genes. The PCR was

https://arriveguidelines.org
https://dna.macrogen.com/
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conducted using a TaKaRa Verity Thermal Cycler with a 1X PCR buffer, 1 U Taq polymerase,
10 pmol primers, 2.5 mM dNTPs, and 1 µL template DNA. Purification of the PCR products
was carried out using the AccuPrep® PCR/Gel Purification Kit (Bioneer, Daejeon, Republic
of Korea). Subsequently, the amplicons were subjected to amplification with the BigDye®

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA) and
sequenced in both directions utilizing the ABI PRISM 3730XL DNA analyzer available
at Macrogen (https://dna.macrogen.com/), Republic of Korea. The assembly of the con-
trol region with the complete mitogenome involved ensuring alignment of overlapping
regions through MEGA X, after eliminating any noisy segments via SeqScanner version
1.0 (Applied Biosystems Inc., Foster City, CA, USA). To further ensure the validity of the
mitogenome assembly, we examined the alignment of overlapping regions using MEGA
X [43]. The boundaries and orientations of individual genes were confirmed through the
utilization of MITOS v806 (http://mitos.bioinf.uni-leipzig.de, accessed on 18 October 2023)
and MitoAnnotator (http://mitofish.aori.u-tokyo.ac.jp/annotation/input/, accessed on
18 October 2023) web servers [44,45]. For the validation of protein-coding genes (PCGs),
the translated putative amino acid sequences underwent analysis using the Open Reading
Frame Finder web tool (https://www.ncbi.nlm.nih.gov/orffinder/, accessed on 18 Octo-
ber 2023), based on the vertebrate mitochondrial genetic code. The resulting S. sphyraena
mitogenome was appropriately submitted to the global GenBank database.

2.3. Characterization and Comparative Analyses

We utilized MitoAnnotator (http://mitofish.aori.u-tokyo.ac.jp/annotation/input/, ac-
cessed on 18 October 2023) to create a spherical representation of the generated mitogenome.
Our comprehensive comparative analysis aimed to evaluate the mitogenomic architec-
ture and variations in our sequenced data in comparison to five existing mitogenomes of
Sphyraena species. Intergenic spacers separating adjacent genes and overlapping regions
were manually calculated. Nucleotide compositions within protein-coding genes (PCGs),
ribosomal RNA (rRNA), transfer RNA (tRNA), and the control region (CR) were deter-
mined using MEGA X. A sliding window analysis of nucleotide diversity with a window
size of 200 bp and a step size of 25 bp was conducted using DnaSP6.0 [46]. Base compo-
sition skews were computed following established formulas: AT-skew = [A − T]/[A + T],
GC-skew = [G − C]/[G + C] [47]. The saturation of the transition codon of the mitochon-
drial PCGs based on transition (s) and transversion (v), as well as AT and GC skews, was
depicted using DAMBE6 [48]. To ensure the initiation and termination codons for each PCG
and compliance with the vertebrate mitochondrial genetic code, validation was performed
using MEGA X. Additionally, the boundaries of rRNA and tRNA genes were confirmed
through the utilization of the tRNAscan-SE Search Server 2.0 in conjunction with ARWEN
1.2 [49,50]. Structural domains within the control region were identified through CLUSTAL
X alignments [51].

2.4. Genetic Distance and Phylogenetic Analyses

To prepare the dataset for phylogenetic analysis, we used the iTaxoTools 0.1 tool to
concatenate all 13 PCGs [52]. Pairwise genetic distances between different Sphyraena species
were computed by utilizing the uncorrected p-distances and Kimura 2-parameter (K2P)
methods within MEGA X. For the exploration of matrilineal phylogenetic relationships, we
retrieved the mitogenomes of five Sphyraena species from the GenBank database (accessed
on 18 October 2023) [38–40] (Table S1). Additionally, the mitogenome of Polydactylus
sextarius (KP259870) from the Polynemidae family was included as an outgroup [53]. Our
model selection analysis identified the ‘GTR + G + I’ model as the most suitable, serving
as the optimal model for all PCGs and yielding the lowest Bayesian Information Criterion
(BIC) scores. This model selection process was executed through PartitionFinder 2 on the
CIPRES Science Gateway v3.3 and JModelTest v2 [54–56]. The maximum-likelihood (ML)
tree was constructed using MEGA X with default parameters. Subsequently, the Bayesian
(BA) tree was constructed using Mr. Bayes 3.1.2, with nst = 6, involving one cold and three

https://dna.macrogen.com/
http://mitos.bioinf.uni-leipzig.de
http://mitofish.aori.u-tokyo.ac.jp/annotation/input/
https://www.ncbi.nlm.nih.gov/orffinder/
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hot Metropolis-coupled Markov Chain Monte Carlo (MCMC) chains. The analysis ran
for 10,000,000 generations, with tree sampling at every 100th generation, and 25% of the
samples were discarded as burn-in [57]. The resulting BA tree was visualized using the
iTOL v4 web server (https://itol.embl.de/login.cgi, accessed on 18 October 2023) [58].

3. Results and Discussion
3.1. Mitogenome Structure and Organization

In this study, we determined the mitogenome of S. sphyraena (16,841 bp) and de-
posited it under GenBank Accession No. OQ434241. Notably, the complete mitogenome of
S. sphyraena boasts the greatest length among the five other Sphyraena species, ranging from
16,620 bp (Sphyraena pinguis) to 16,760 bp (Sphyraena japonica). All six Sphyraena species
mitogenomes, including S. sphyraena, encode the same set of components: 13 protein-
coding genes (PCGs), 22 transfer RNAs, two ribosomal RNAs, and an AT-rich control
region (Table 1, Figure 1). With the exception of S. japonica and Sphyraena borealis, the
remaining four species (S. sphyraena, S. jello, S. pinguis, and S. barracuda) display strand
symmetry throughout their mitogenomic organization, mirroring the typical vertebrate
mitochondrial genome structure. However, in the mitogenomes of S. japonica and S. borealis,
an unusual transposition was observed in the WANCY region (Figure 1). The mitogenome
of S. sphyraena is characterized by an AT bias (55.06%), with nucleotide composition per-
centages of 28.63% for A, 26.43% for T, 16.29% for G, and 28.65% for C. This AT bias is
also observed in the other Sphyraena species, ranging from 52.38% (S. pinguis) to 54.22%
(S. jello) (Table 2). In the mitogenome of S. sphyraena, the AT skew and GC skew were 0.040
and −0.275, respectively. AT skew values range from −0.027 (S. japonica) to 0.068 (S. jello
and S. barracuda), while GC skew values range from −0.295 (S. jello) to −0.196 (S. japonica)
(Table 2). This consistent pattern of nucleotide composition and AT bias has been observed
in previously documented fish mitogenomes [59,60]. In the mitogenome of S. sphyraena, a
total of 15 intergenic spacers and six overlapping regions were identified, with a combined
length of 264 bp and 28 bp, respectively. The largest intergenic spacer (127 bp) was situated
between 16S rRNA and trnL2, while the most extensive overlap (10 bp) was observed be-
tween atp8 and atp6. Similar high intergenic spacer lengths were found between 16S rRNA
and trnL2 in other Sphyraena species, except in S. japonica with 51 bp between trnN and
trnC and S. borealis with 58 bp between trnW and trnN (Table S2). The longest overlapping
region (10 bp) was shared between atp8 and atp6 in three species (S. sphyraena, S. pinguis,
S. japonica, and S. borealis), while S. jello and S. barracuda exhibited the most extensive
overlap (12 bp) between COI and trnS2 (Table S2). The genetic variations detected in the
Sphyraena mitogenome might provide insights into their evolutionary development and
energy metabolism, in line with similar observations in other fish species [61]. This study
provides valuable information about the structural features of Sphyraena mitogenomes,
which are crucial for understanding the functions of these mitogenomes and the genes
they encode.

Table 1. List of annotated mitochondrial genes of Sphyraena sphyraena.

Name Start End Strand Size (bp) Intergenic
Nucleotide Anticodon Start Codon Stop Codon

tRNA-Phe (F) 1 70 H 70 0 AAG

12S rRNA 71 1035 H 965 0

tRNA-Val (V) 1036 1108 H 73 0 CAU

https://itol.embl.de/login.cgi
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Table 1. Cont.

Name Start End Strand Size (bp) Intergenic
Nucleotide Anticodon Start Codon Stop Codon

16S rRNA 1109 2889 H 1781 127

tRNA-Leu (L2) 3017 3090 H 74 0 AAU

ND1 3091 4065 H 975 5 ATG TAA

tRNA-Ile (I) 4071 4141 H 71 −1 UAG

tRNA-Gln (Q) 4141 4211 L 71 8 GUU

tRNA-Met (M) 4220 4289 H 70 0 UAC

ND2 4290 5351 H 1062 30 ATG TAA

tRNA-Trp (W) 5382 5452 H 71 3 ACU

tRNA-Ala (A) 5456 5524 L 69 1 CGU

tRNA-Asn (N) 5526 5598 L 73 47 UUG

tRNA-Cys (C) 5646 5712 L 67 12 ACG

tRNA-Tyr (Y) 5725 5794 L 70 1 AUG

COI 5796 7352 H 1557 −5 GTG AGA

tRNA-Ser (S2) 7348 7418 L 71 3 AGU

tRNA-Asp (D) 7422 7493 H 72 10 CUG

COII 7504 8194 H 691 0 ATG T--

tRNA-Lys (K) 8195 8268 H 74 8 UUU

ATP8 8277 8444 H 168 −10 ATG TAA

ATP6 8435 9117 H 683 0 TTG TA-

COIII 9118 9902 H 785 0 ATG TA-

tRNA-Gly (G) 9903 9972 H 70 1 CCU

ND3 9974 10,322 H 349 0 ATG T--

tRNA-Arg (R) 10,323 10,391 H 69 0 GCU

ND4L 10,392 10,688 H 297 −7 ATG TAA

ND4 10,682 12,062 H 1381 0 ATG T--

tRNA-His (H) 12,063 12,131 H 69 0 GUG

tRNA-Ser (S1) 12,132 12,199 H 68 5 UCG

tRNA-Leu (L1) 12,205 12,278 H 74 0 GAU

ND5 12,279 14,117 H 1839 −4 ATG TAA

ND6 14,114 14,635 L 522 0 ATG TAA

tRNA-Glu (E) 14,636 14,704 L 69 3 CUU

Cyt b 14,708 15,848 H 1141 0 ATG T--

tRNA-Thr (T) 15,849 15,921 H 73 −1 UGU

tRNA-Pro (P) 15,921 15,991 L 71 0 GGU

D-loop 15,992 16,841 H 850
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Table 2. Nucleotide composition of the mitochondrial genomes of five Sphyraena species.

Species Name Size (bp) A% T% G% C% A + T% AT-Skew GC-Skew

Complete mitogenome

Sphyraena sphyraena 16,841 28.63 26.43 16.29 28.65 55.06 0.040 −0.275

Sphyraena japonica 16,760 25.99 27.42 18.74 27.85 53.41 −0.027 −0.196

Sphyraena jello 16,699 28.97 25.25 16.14 29.64 54.22 0.068 −0.295

Sphyraena pinguis 16,620 26.03 26.35 18.80 28.81 52.38 −0.006 −0.210

Sphyraena barracuda 16,707 28.90 25.23 16.18 29.68 54.13 0.068 −0.294

Sphyraena borealis 16,739 26.42 26.39 18.9 28.29 52.81 0.001 −0.199

PCGs

Sphyraena sphyraena 11,450 25.8 28.6 15.9 29.7 54.41 −0.052 −0.303

Sphyraena japonica 11,453 23.64 29.31 17.88 29.17 52.95 −0.107 −0.240

Sphyraena jello 11,445 26.67 27.12 15.38 30.83 53.79 −0.008 −0.334

Sphyraena pinguis 11,439 23.46 28.18 18.37 29.99 51.64 −0.091 −0.240

Sphyraena barracuda 11,444 26.64 27.13 15.38 30.85 53.77 −0.009 −0.335

Sphyraena borealis 11,443 23.65 28.29 18.65 29.42 51.94 −0.089 −0.224

rRNAs

Sphyraena sphyraena 2746 31.32 22.61 20.9 25.16 53.93 0.161 −0.092

Sphyraena japonica 2772 29.94 22.87 22.22 24.96 52.81 0.134 −0.058

Sphyraena jello 2696 31.49 22.07 20.73 25.7 53.56 0.176 −0.107

Sphyraena pinguis 2699 30.57 22.23 21.9 25.31 52.80 0.158 −0.072

Sphyraena barracuda 2696 31.45 22 20.77 25.78 53.45 0.177 −0.108

Sphyraena borealis 2772 30.56 22.22 22.29 24.93 52.78 0.158 −0.056

tRNAs

Sphyraena sphyraena 1559 28.48 27.13 23.16 21.23 55.61 0.024 0.043

Sphyraena japonica 1561 28.12 27.99 23.96 19.92 56.11 0.002 0.092

Sphyraena jello 1562 27.98 27.14 23.88 21.00 55.12 0.015 0.064

Sphyraena pinguis 1552 27.06 26.29 24.48 22.16 53.35 0.014 0.050

Sphyraena barracuda 1559 28.03 27.26 23.93 20.78 55.29 0.014 0.070

Sphyraena borealis 1551 27.92 27.08 24.24 20.76 55.00 0.015 0.077

CRs

Sphyraena sphyraena 850 36.71 27.06 12.82 23.41 63.77 0.151 −0.292

Sphyraena japonica 859 28.21 30.42 17.6 23.78 58.63 −0.038 −0.149

Sphyraena jello 799 31.79 28.79 18.15 21.28 60.58 0.050 −0.079

Sphyraena pinguis 832 29.69 29.45 16.71 24.16 59.14 0.004 −0.182

Sphyraena barracuda 809 30.41 28.68 19.28 21.63 59.09 0.029 −0.057

Sphyraena borealis 839 32.54 29.2 16.33 21.93 61.74 0.054 −0.146
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Figure 1. Distribution pattern and collection locality of the European Barracuda (S. sphyraena) in
Cameroon. The mitochondrial genome of S. sphyraena has been visually represented and annotated
using the MitoAnnotator online server. Different color arcs highlight the presence of protein-coding
genes (PCGs), ribosomal RNA genes (rRNAs), transfer RNA genes (tRNAs), and the control region
(CR). The linearized view of the complete mitochondrial genome organization reveals the gene
arrangement in barracuda species, while transpositions of tRNA genes are denoted by black arrows.

3.2. Protein-Coding Genes

The mitogenomes of S. sphyraena encompassed 13 protein-coding genes (PCGs), with
atp8 being the shortest (168 bp) and ND5 the longest (1839 bp). Collectively, the PCGs in
S. sphyraena accounted for a total length of 11,450 bp, constituting 67.98% of the complete
mitogenome. In comparison, the mitogenomes of other Sphyraena species were slightly
longer, ranging from 11,439 bp (S. pinguis) to 11,453 bp (S. japonica) (Table 2). To assess
nucleotide diversity, we performed a sliding window analysis on the concatenated PCGs
of Sphyraena species. The average nucleotide diversity value (Pi) was calculated to be
0.22281, with a total of 4721 polymorphic sites observed in all Sphyraena species (Figure 2A).
Sequence saturation analysis revealed both transitions and transversions were slightly
saturated with increasing divergence values (Figure 2B). The PCGs of all Sphyraena species
displayed an AT bias, ranging from 51.64% to 54.41%, and AT skews and GC skews varied
from −0.107 (S. japonica) to −0.008 (S. jello) and from −0.335 (S. barracuda) to −0.224
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(S. borealis), respectively (Figure 2C,D). Most of the PCGs initiated with the ATG start
codon, except for COI, which initiated with GTG in all Sphyraena species (Table S3). The
TTG start codon was observed in atp6 of S. sphyraena, and GTG was observed in COI, ND3,
ND4, and ND5 of S. japonica. Among the six PCGs of S. sphyraena, TAA served as the
termination codon for five, while COI used AGA, and the remaining PCGs utilized an
incomplete stop codon. Similar termination codon patterns were observed in the other
Sphyraena species, except for S. japonica and S. borealis (Table S3). It is crucial to emphasize
that these incomplete stop codons may potentially be completed with TAA during RNA
processing, as suggested in previous studies [62]. As observed in other fish species, the
identified genetic variations could lead to the independent selection of protein-coding genes
(PCGs) [63]. These PCGs play essential roles in oxidative phosphorylation, ATP synthesis,
and the encoding of proteins involved in electron transport pathways. Therefore, the
incorporation of mitogenomes from various Sphyraena species could assist in investigating
variations in gene expression and energy utilization.
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Figure 2. (A) Mitochondrial protein-coding gene genetic diversity (Pi) is displayed, providing
insights into the genetic variation among six barracuda species; (B) the graph exhibits the relationship
between transitions (s) and transversions (v) concerning divergence, utilizing the Tamura and Nei
(1993) distance method. It effectively illustrates the saturation of transition codons in mitochondrial
protein-coding genes, with crosses indicating transition events and triangles representing transversion
events. The curves delineate the trends in the variance of transitions and transversions as genetic
distance increases; (C) AT skew and (D) GC skew plots showcase the nucleotide composition patterns
of the protein-coding genes of six barracuda fish mitogenomes.

3.3. Ribosomal RNA and Transfer RNA Genes

In S. sphyraena, the length of the 12S rRNA was determined to be 965 bp, while the 16S
rRNA spanned 1781 bp, collectively accounting for 16.31% of the complete mitogenome.
When compared to other Sphyraena species, the total length of rRNAs ranged from 2696 bp
(S. jello and S. barracuda) to 2772 bp (S. japonica and S. borealis) (Table 2). The rRNA genes
displayed an AT bias, with values ranging from 52.78% (S. borealis) to 53.93% (S. sphyraena).
AT skews and GC skews exhibited variation, ranging from 0.134 (S. japonica) to 0.177
(S. barracuda) and from −0.108 (S. barracuda) to −0.056 (S. borealis), respectively (Table 2).
The structural organization of these rRNA genes, particularly the conserved loops, provides
valuable insights into the catalytic chemical processes underlying protein synthesis [64,65].
The studied taxon, S. sphyraena, harbored 22 tRNA genes within its mitogenome. The
collective length of these tRNA genes was 1559 bp, contributing to 9.25% of the complete
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mitogenome. In comparison with other Sphyraena species, the total length of tRNA ranged
from 1551 bp (S. borealis) to 1562 bp (S. jello). The tRNA genes in Sphyraena species exhibited
an AT bias, with values varying from 53.35% (S. pinguis) to 56.11% (S. japonica), and the AT
skew ranged from 0.002 (S. japonica) to 0.024 (S. sphyraena) (Table 2). Identical anticodons
were identified within all 22 transfer RNA (tRNA) genes across all Sphyraena species
(Table S4). In S. sphyraena, wobble base pairings were identified in 13 tRNAs, with the
highest number present in trnA and trnE. These wobble base pairings were observed in the
DHU stem of seven tRNAs (trnA, trnQ, trnW, trnC, trnG, trnR, trnP), in the acceptor stem
of nine tRNAs (trnA, trnQ, trnC, trnY, trnD, trnK, trnR, trnE, trnP), in the TψC stem of two
tRNAs (trnA, trnS2), and in the anticodon stem of six tRNAs (trnA, trnL2, trnY, trnS2, trnR,
trnE) (Figure 3).
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3.4. Features of Control Region

The control region (CR) of S. sphyraena spans 850 base pairs, making up 5.05% of the
total mitogenome. When compared to other Sphyraena species, the CR’s length varied, rang-
ing from 799 base pairs in S. jello to 858 base pairs in S. japonica (Table 2). The CRs exhibited
an AT bias, with values ranging from 58.63% (S. japonica) to 63.77% (S. sphyraena), and the
AT skews displayed variability, spanning from −0.038 (S. japonica) to 0.151 (S. sphyraena).
In the scrutiny of the extant mitogenomes of five barracudas, a thorough examination
of diverse domains was specifically undertaken for S. barracuda (AP006828) [66]. Com-
parative analysis with S. barracuda revealed the identification of four analogous blocks
(CSB-D, CSB-I, CSB-II, and CSB-III) within the CR of S. sphyraena and other barracudas.
This observation is consistent with patterns discerned in other teleost mitogenomes [66,67].
Among these blocks, CSB-I stood out as the longest, measuring 22 base pairs, while CSB-D,
CSB-II, and CSB-III had lengths of 18 base pairs, 17 base pairs, and 20 base pairs, respec-
tively (Figure 4). Comparative analyses unveiled significant nucleotide variability and
parsimony-informative nucleotides within CSB-II and CSB-III when compared to the other
two domains in Sphyraena CR’s. In this investigation, the reliance on observed nucleotide
variation within conserved domains in CRs is constrained, mirroring the imperative limita-
tion in the blind dependence on CRs from other barracudas accessible in public databases.
The lack of prior scrutiny on these datasets necessitates caution in their application. It is
conjectured that the CRs in barracudas exhibit significant variability, potentially attributable
to elevated substitution rates, a phenomenon notoriously challenging for alignment. Conse-
quently, we advocate for targeted sequencing efforts directed at barracudas to substantiate
assertions regarding the conserved CR domains. Nevertheless, this AT-rich regulatory
region has the potential to assess population structures and distinguish differences among
Sphyraena species, both between and within species, by scrutinizing these variable nu-
cleotides. Similar to observations in other species, these conserved domains play a crucial
role in the replication and transcription of mitochondrial genomes [68]. Analyzing the
extensively variable control region of S. sphyraena across its geographical distribution in the
East Atlantic Ocean, Mediterranean Sea, Tyrrhenian Sea, and Black Sea will offer valuable
insights into estimating population structure and providing a detailed phylogeographic
perspective, as previously inferred for the Great Barracuda [26].Fishes 2023, 8, x FOR PEER REVIEW 13 of 18 
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3.5. Genetic Distances and Matrilineal Phylogeny

The concatenated protein-coding genes (PCGs) of S. sphyraena exhibited 16.13–27.88%
uncorrected p-distances and 18.8–35.6% K2P distances when compared to the other five
Sphyraena species. Both the ML and BA phylogenies provided similar topologies and clear
separation among all six Sphyraena species (Figure 5). It revealed a sister relationship
between the European Barracuda, or Mediterranean Barracuda (S. sphyraena), with the
Great Barracuda (S. barracuda) and the Pickhandle Barracuda (S. jello), which are widely
distributed across the Indian, Pacific, and Atlantic oceans. On the other hand, the Japanese
Barracuda (S. japonica) and the Northern Sennet (S. borealis), distributed in the eastern and
western Pacific and western Atlantic Ocean, respectively, showed a close clustering with
each other. Notably, the mitogenome-based topology revealed an ancestral cladding pattern
of the Red Barracuda (S. pinguis) in comparison to other barracuda species (Figure 5). The
current topology and the depicted evolutionary relationships are in agreement with previ-
ous research, demonstrating a monophyletic clustering of Sphyraena and congruent with the
previous hypothesis on Sphyraenidae phylogeny [25,27,38]. However, an imperative need
exists for the mitogenome analysis of the Yellowmouth Barracuda (S. viridensis), the nearest
congener of S. sphyraena. This analysis is crucial for investigating the mitochondrial genome
evolution of these two sympatric species in the northern Atlantic and Mediterranean Seas.
Hence, for a more comprehensive understanding of the phylogenetic relationships, this
study recommends generating additional mitogenomes from other Sphyraena congeners
using live and/or museum specimens. Furthermore, the relationship among Sphyraena
species does not exhibit a correlation with their geographical distribution and habitat types
(reef and nonreef ecosystems). Conclusively, the mitogenomic data displayed adequate
genetic variability suitable for both inter- and intraspecific examinations. The nucleotide
information acquired effectively discriminates S. sphyraena from other Sphyraena species,
offering novel insights into their evolutionary implications. In the recent past, a phyloge-
netic analysis of 20 species within the Sphyraenidae family was conducted, utilizing three
mitochondrial loci (COI, Cytb, and 16S rRNA). The resulting Bayesian analysis delineated
three major clusters: (i) the ‘Sphyraena barracuda’ group, (ii) the ‘Sphyraena obtusata’ group,
and (iii) the ‘Sphyraena sphyraena’ group [69]. The TimeTree analysis provided additional
insights, indicating the origin of these barracudas during the late Paleocene, with the
radiation of extant phylogenetic lineages occurring from the middle Eocene to the Miocene
period. The current phylogenetic trees revealed a close clustering of S. barracuda and S. jello
within the ‘S. barracuda’ group. Notably, the mitogenome sequence of S. pinguis cladded
apart from other species, suggesting its placement under the ‘S. obtusata’ group. However,
the phylogenetic placement of both S. sphyraena and S. japonica under the ‘S. sphyraena’
group displayed a paraphyletic clustering in the present analyses. Given this incongruency
in cladistic patterns, the present study advocates for the inclusion of more mitogenomes
from Sphyraenid species to elucidate a more comprehensive understanding of the evolu-
tionary patterns and divergence times within the Percomorpha. Such data will contribute to
clarifying the lineage diversification and colonization of barracudas in both reef-associated
and non-reef ecosystems.
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Figure 5. The maximum-likelihood (A) and Bayesian (B) matrilineal phylogenetic tree, constructed
from the concatenated sequences of the 13 protein-coding genes (PCGs), provides insights into the
evolutionary relationships among Sphyraena species. Bootstrap supports and Bayesian posterior
probability values are indicated at each node, reflecting the statistical support for each branching
point in the tree. Major groups and habitat types (reef and non-reef) of the barracudas are marked by
a green and blue color circle, as shown in a previous study [69]. Representative photographs of the
barracuda species and the blackspot threadfin were obtained from online sources and serve as visual
references for the respective species.

4. Conclusions

In conclusion, this study delved into a comprehensive analysis of the mitogenome of
S. sphyraena, providing a detailed understanding of its genetic composition and structural
organization. Additionally, the research explored genetic distances and phylogenetic
relationships, revealing the intricate evolutionary connections among Sphyraenidae species.
Significantly, the study identified substantial genetic divergence between S. sphyraena
and its congeners. The cladistic patterns, in conjunction with their distribution across
different oceanic regions, offer valuable insights into the emergence and diversification
of Sphyraenidae species. The genetic data, both partial loci and complete mitochondrial
information, will be instrumental in assessing the population structure of barracudas in the
near future, with potential implications for conservation efforts. This genetic knowledge
will play a crucial role in formulating effective conservation strategies to protect species’
diversity and ensure the sustainability of marine life, particularly within the Sphyraenidae
family. In summary, the analysis of the mitogenome and evolutionary history of S. sphyraena
provides invaluable insights into the genetic characteristics and evolutionary dynamics
within the Atlantic Ocean.
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of intergenic nucleotides and overlapping regions of six Sphyraena mitogenomes genes. Table S3.
Comparison of start and stop codons of six Sphyraena mitogenomes PCGs. Table S4. Comparison of
anticodons of six Sphyraena mitogenomes tRNA genes.
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