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Abstract: C. kraussii is an endemic fish species from Colombia and Venezuela and represents a valu-
able food resource for local human communities. Due to its economic importance, the management
and captive breeding of this species are of special interest. However, the anatomical similarities
between sexes have been a problem for visual identification. It is also important to indicate that
C. kraussii has cryptic morphological behavior between sexes, a topic that has been one of the main
problems for the implementation of management plans. The following research studied individuals
from three different localities along the Canal del Dique, Bolívar Department in Colombia, in which
the body shape of C. kraussii was analyzed using geometric morphometric analysis. The analyses
detected the presence of intralocality sexual dimorphism in two of the three localities analyzed,
showing a low morphological variability among males, presenting conserved body shape, as well as
a greater morphological disparity among females. This sexual shape dimorphism may be associated
with the environmental variation among different locations. These results suggest the presence of
two evolutionary forces acting asymmetrically between the sexes of C. kraussii, with males mostly
subject to sexual selection pressure, while females are mainly subject to environmental pressures.

Keywords: geometric morphometrics; Cichlidae; sexual dimorphism; shape; sexual selection

1. Introduction

Classifying and understanding the complexity of morphological diversity in organ-
isms have historically been the basis of comparative anatomy. Part of this diversity may
be established by natural and/or sexual selection. The sexual selection theory states that
selection depends on the fact that individuals of the same species and sex have advantages
regarding reproduction [1–3], affecting the success of differential mating [4]. Sexual se-
lection can be intrasexual when males of the same species compete among them to gain
access to the other sex, and intersexual selection is related to the differential selection of
the opposite sex [5]. The significant difference in size ranges, specifically the body size of
a species, between males and females is defined as sexual size dimorphism (SSD) [6–8],
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and it is considered one of the main determinants of mating success in many species [9,10].
On the other hand, sexual shape dimorphism (SShD) deals with the comparative analysis
of shape between males and females, but it has been less studied. However, in those
studies where it was used, it has been proposed as a diagnostic tool for the identification of
sex [11,12]. One of the tools used to study shape is geometric morphometrics (GM), which
is defined as the geometric information of an object that is retained after removing the
effects of translation, scale and rotation [13–15]. In GM, the methods used to determine
sexual dimorphism include applying landmarks, defined as specific, equivalent and ho-
mologous points in a biological structure being studied, or semilandmarks, which quantify
two- or three-dimensional homologous curves and surfaces and are analyzed together
with landmarks [9]. GM allows studying the shape of organisms, providing sound graphic
analyses based on which morphometric variation can be quantified and visually perceived
within and between the samples of organisms [16,17]. Therefore, studying shape differences
in individuals in one species or between species is considered to be of scientific interest,
since its comprehension may reveal insights about evolutionary stress and the adaptative
mechanisms acting upon them [18–20].

A major proportion of sexual dimorphism studies have focused on vertebrates [5]. In
particular, teleost fish happen to be an interesting group to study sexual dimorphism [5,21],
since they show large intraspecific variation [22]. Some studies, such as Lima-Filho et al. [4],
showed the effect of a longitudinal cline on the sexual shape dimorphism of individuals
of Bathygobius soporator (Valenciennes 1837), showing significant intra- and interpopula-
tion differences in the sexual differentiation of the species. Similarly, Gonzales et al. [23]
determined sexual dimorphism in Rachycentron canadum (Cobia) (Linnaeus, 1766) in captiv-
ity based on the size and shape of individuals; Brzozowski et al. [24] used cichlids from
Malawi lake, Africa, in order to determine sexual dimorphism based on the color trait of
individuals, and they found significant differences between males and females.

In particular, in the group of freshwater fish, a number of species differ in the expres-
sion of sexual traits, such as Trachelyopterus insignis (Steindachner, 1878), which shows
morphological differences between males and females [25], or the case of the characin
Hyphessobrycon myrmex, where females are yellow and males are red, as an example of
sexual dichromatism [26], whereas, in other species, morphological differences are reduced,
such as the case of Caquetaia kraussii (Steindachner, 1878), a species endemic to Colombia
and Venezuela belonging to the Cichlidae family, commonly named yellow mojarra [27].

In Colombia, C. kraussii is considered a species of high commercial relevance [28,29],
and it is distributed in the medium and low regions of the rivers Sinú, Cauca, Magdalena,
San Jorge, Cesar and Arauca, down to Puerto Berrío, and freshwater or low-salinity marshes
with submerged vegetation [27,30].

C. kraussii features a yellow or light brown body, with cross stripes in black and a black
spot in the upper posterior region of the caudal peduncle and a bigger one in the central
part of the body, below the dorsal fin and in the caudal fin [31,32]. This morphology is
observed to be very similar between males and females, characters that may indicate that
this species has cryptic morphological behavior between different sexes.

Therefore, the aim of this study was to quantify the sexual shape dimorphism of
C. kraussi by means of advanced morphological tools in order to evaluate whether the
geometric shape could identify cryptic morphology related to environmental or sexual
dimorphism factors. As a case study, individuals distributed in the “Canal del Dique” and
its marsh complex in the Colombian Caribbean were examined.

2. Materials and Methods
2.1. Study Area

The Canal del Dique, located in the Bolívar Department of Colombia, is an alluvial
plain formed by a complex of wetlands composed of marshes that soften the Canal flow.
The Canal is 113 km long from the town of Calamar to its mouth in Cartagena Bay [33].
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2.2. Field Work

Field visits were carried out every other month for four days between December 2020
and October 2021, during which fresh C. kraussii specimens were collected by artisanal
fishing with a cast net and gillnetting along the Canal del Dique and the marshes next to it.

The biological material was sacrificed and identified in situ using the field guide
Colombian Andean Fish and the Catalogue of Continental Fishery Resources of Colom-
bia [31,34]. Eighty C. kraussii specimens were analyzed from three locations being studied:
UEP1—Ciénaga de Capote; UEP2—Canal del Dique/Compuerticas; and UEP4—Ciénaga
del Jobo/San Cristóbal) (See Figure 1). There were 47 females and 33 males, the sex of
which was determined by direct observation of gonads [35].
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Figure 1. Location of Sampling Points. Zodes Dique (Canal del Dique Subregion: Red: UEP1, Green;
UEP2; Blue: UEP4. Source: Author).

2.3. Geometric Morphometrics

In order to obtain the images, individuals were fixed with pins and placed on a white
Styrofoam base in an anterior–posterior position with fins extended. Additionally, a scale
ruler was used to establish the scale when the picture was taken. The photographs were
taken with a high-resolution FUJIFILM camera with 24 Megapixels. Landmarks were estab-
lished following Corti and Crosetti [36], Soria et al. [37] and Aguirre and Jiménez-Prado [38]
criteria, and they were digitized and converted into coordinates in a bidimensional plane
using the tpsDig2 [39] software. In total, 15 landmarks were identified (Table 1), as shown
in Figure 2.
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Table 1. Anatomical description of landmarks in C. kraussii.

N◦ Landmarks Position

1 Upper tip of the mouth
2 First spine of the dorsal region
3 Posterior insertion of dorsal fin
4 Dorsal base of caudal fin
5 Ventral insertion of caudal fin
6 Ventral base of caudal fin
7 Posterior insertion of anal fin
8 First spine anal
9 Anterior base of first pelvic fin ray

10 Superior insertion of pectoral fin
11 Posterior tip of operculum
12 Dorsal border of preoperculum
13 Middle of the eye
14 Cleft of the upper lip
15 Anterior margin of the cleithrum

By means of a Generalized Procrustes Analysis (GPA), the Cartesian coordinates
derived from the landmark positions were processed. The GPA superimposes the resulting
configurations of all the specimens analyzed, fitting them to a unitary centroid size and
eliminating rotation and translation of configurations [14]. The GPA is based on the
minimum squares to obtain the optimal superimposition; that is, it averages the lack of
fit of all the points, allowing the detection of differences between different configurations.
The GPA calculates the average configuration, which summarizes the configurations of all
landmarks so that the specimen shape can be described and compared [14,23,40–42]. In the
process of determining the landmarks, the measurement error was calculated by digitizing
twice the reference points in a sample of individuals and by means of a Procrustes ANOVA;
the values of mean squares of individuals were compared to see if they were lower than the
error [43,44]. A principal component analysis (PCA) was conducted using the covariance
matrix of individual shape [45]. Then, a scatterplot was generated, where the first two
shape dimensions were shown graphically. After that, in order to observe the average
shape changes for the classifiers (sex and population), a PCA from the covariance matrix of
the average combined classifier (population × sex) was performed. Then, the body shapes
were superimposed onto each other. Finally, with the purpose of highlighting changes
associated with the sexual dimorphism of shape between populations, a canonical variate
analysis (CVA) was carried out using a combined sex and location classifier. CVA uses
the Procrustes coordinates and produces a set of new variables, canonical variates (CVs),
which successively account for the maximum amount of among-group variance relative to
within-group variance. Moreover, the CVs are uncorrelated within and among groups. It is
important to note that CVA is a discriminant analysis that maximizes variation between
groups, creating a new shape axis.

To determine the existence of statistically significant differences in SShD, a permutation
test was performed (10,000 permutations) using Mahalanobis distances (morphological
distances resulting from a CVA). All analyses were conducted with the MorphoJ 1.07a
software [46].

3. Results

The Procrustes ANOVA conducted to assess the measurement error showed that
the mean square value of individuals was higher than the measurement error (MSerror:
0.0000068573 < MSindividual 0.000077336) (Table 2).



Fishes 2022, 7, 146 5 of 12

Table 2. Procrustes ANOVA for digitizing measurement error of centroid size and shape of
Caquetaia kraussii.

Centroid Size

Effect SS MS df F P (param.)

Individual 186.8477 5.049938 37 12.95 <0.0001

Error 1 14.430189 0.390005 37

Shape, Procrustes ANOVA

Effect SS MS df F P (param.) Pillai tr. P (param.)

Individual 0.07439725 0.000077336 962 11.28 <0.0001 19.65 <0.0001

Error 1 0.00659669 0.000006857 962

The PCA by location showed that the first three PCs accounted for 50.03% (PC1:
23.9; PC2: 14.3; PC3: 11.7) of shape variation in C. kraussii (see Figure 3A). Similarly,
the PCA using the sex–location classifier did not reveal large differences in the shape
variance between sexes, but it did show a trend in which they become separated by location
(Figure 3B).
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Figure 3. Principal component analysis of Caquetaia kraussi: (A): scatterplot of shape variation
between three localities. Green: UEP1; orange: UEP4; and blue: UEP2. (B): Scatterplot of intralocality
sexual shape dimorphism between three localities. Pink: female UEP1; red: male UEP1; light green:
female UEP2; dark green: male UEP2; light blue: female UEP4; and dark blue: male UEP4. The
confidence ellipses were computed from the mean shape using the criteria locality and locality/sex.

After averaging data, the average PCA (Figure 4) showed a slight shape variation
in the body of males between locations; however, it presented slight variations, with a
descending displacement towards the ventral area formed by landmarks 10, 11 and 12,
which corresponds to the insertion of the pectoral fin, posterior edge of the operculum and
the dorsal edge of the preoperculum, respectively.

Likewise, changes associated with the upward movement towards the dorsal area
of landmark 8 were observed, corresponding to the first anal spine (see Figure 5A). On
the other hand, female shape showed more disparity between locations, where UEP1 and
UEP4 populations had a more compact body, although there was a difference because
UEP1 females had a shorter caudal peduncle than UEP4 females. On the other hand, UEP2
females exhibited a longer and hydrodynamic shape, with a larger size of the operculum,
which is a characteristic of fish in lotic environments (see Figure 5B).
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Figure 5. Average shape superposition of Caquetaia kraussi represented by colored wireframe between
sexes and localities. (A): Male Wireframe Overlay. red: male UEP1; dark green: male UEP2 and dark
blue: male UEP4. (B): Female’s wireframe overlay. Pink: female UEP1; light green: female UEP2 and
light blue: female UEP4.

The canonical variate analysis confirmed the presence of the SShD of the C. kraussii
body, with a clear difference among locations (see Figure 6). Furthermore, these differences
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were significant after the permutation test using Mahalanobis distances (Table 3). The only
comparison resulting in no significant shape differences was between UEP2 females and
UEP2 males.
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Figure 6. Canonical variate analysis of Caquetaia kraussi localities and sex in three populations in
Colombia. Pink: female UEP1; red: male UEP1; light green: female UEP2; dark green: male UEP2;
light blue: female UEP4; and dark blue: male UEP4.

Table 3. Permutation test based on Mahalanobis distances and their corresponding p-values of the
comparison between populations and sexes of C. kraussii.

H/UEP1 H/UEP2 H/UEP4 M/UEP1 M/UEP2

H/UEP2 3.1459
p-values: <0.0001
H/UEP4 3.3519 3.6005
p-values: <0.0001 <0.0001
M/UEP1 2.2344 3.2729 3.9664
p-values: 0.0001 <0.0001 <0.0001
M/UEP2 2.5726 2.014 3.6465 2.7917
p-values: <0.0001 0.4495 <0.0001 0.0002
M/UEP4 4.4469 5.0323 4.2434 5.1425 4.2772
p-values: <0.0001 <0.0001 0.002 <0.0001 0.0002

4. Discussion

The results of this study show that, although there is slight sexual dimorphism of
the geometric shape at the species level in C. kraussii, clear intralocation sexual shape
dimorphism (SShD) of the body can be observed. C. kraussii, along the subregion Canal del
Dique, inhabits a great variety of environments, from lentic water bodies (marsh) to lotic
environments (Canal del Dique course) [47]. It is also observed that males have a more
conserved body shape, with slight variations among the locations studied. Conversely,
there is a significant variation in the body shape of females, which may be conditioned
by their habitat. Females from both UEP1 and UEP4 have more robust and compact
bodies, both being in marsh environments characterized by quiet waters with low current.
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The main differentiation is that UEP4 females have a longer tail, which may be efficient
for moving in an environment where, although the current is low, it is deeper than the
shallow marsh present in UEP1. On the other hand, the body of females inhabiting UEP2
is significantly more acute and longer, and at the same time, their caudal peduncle leans
towards the dorsal zone of the caudal fin. The UEP2 habitat is above Canal del Dique;
therefore, it is an environment with a strong flow, so the adaptations of females inhabiting
UEP2 seem to have occurred in order to have a more hydrodynamic body shape adapted
to move freely and with low effort in waters flowing at higher speeds. A similar pattern
was reported by Perazzo et al. [48], who found that individuals in lotic environments have
a more hydrodynamic shape, as well as a larger operculum.

In this sense, the fact that the body shape of C. kraussii males does not have major
variations among locations, unlike females of the same species, seems to show the presence
of different selective stresses acting in a dissimilar manner between individuals of different
sexes within the same species in an interpopulational manner. As described by Hedrick
and Temeles [49], the presence of a conserved shape in males among populations would be
an indication that the selective stress on males is mainly exerted by females by means of
the sexual selection of mates, where certain traits are actively selected over others, causing
the male body shape to then be more reserved, with a conserved body scheme between
populations. Kodric-Brown and Nicoletto [50] observed a similar pattern in poeciliids
such as Guppy (Poecilia reticulada) and mosquitofish (Gambusia holbrooki). They studied
the effect of two components in male mating, the color and exhibition behavior, in the
selection by females, and they found that females select their mates based on both static
and dynamic traits, showing a preference for the more noticeable males. On the other hand,
Ramos Salazar [51] studied the factors that have an influence on females’ preference for
males in Gambusia holbrooki individuals, and they found that females seem to prefer males
with a larger size. Another study that supports our result that females may be exerting a
degree of sexual selection on males is the one published by Selz et al. [52], who determined
that, in cichlid species, there is sexual selection by females at intra- and interspecific levels,
revealing that the nuptial coloring is a sexual selection objective by females [53].

On the other hand, body shape variance in females seems to be determined by selective
environmental stresses due to both abiotic environmental features and the stress exerted
by predators and intersexual competence. Bolnick and Doebeli [54] stated that species
with strong selective mating based on ecological traits are less likely to develop sexual
dimorphism, which is evidenced in the results of this study, considering that C. kraussii
does not show many differences between males and females; however, when splitting them
by population, dimorphism becomes apparent. In the same manner, it is possible that
female shape variation changes due to ecological selection, which, according to Hedrick
and Temeles [49] and Herler et al. [5], can have a differential impact on both sexes, favoring
dimorphic niches. Their hypothesis suggests that environmental selection acts mainly on
females [55], results that were shown by geometric morphometrics in C. kraussii females.
Badyaev [56] and Lima Filho et al. [4] suggested that physical and ecological conditions of
environments can give rise to the evolution of sexual dimorphisms [57,58]. A similar pat-
tern was observed by Stillwell and Fox [59], showing that temperature (an environmental
ecological factor) induces sexual shape dimorphism in the seed beetle (Callosobruchus macu-
latus). Regarding fish, Laporte et al. [60] studied the ecology of sexual shape dimorphism
in Salaria fluviatilis, finding that selective environmental stresses affect sexual selection and,
therefore, the visualization of sexual dimorphism within the species.

In addition, it is important to mention that there have been very few sexual shape
dimorphism studies using geometric morphometrics. In fish, the sexual dimorphism of
shape was studied in Tule perch, Hysterocarpus traskii, and significant differences in perch
shape were found using GM [61]. Another study was conducted by Saura et al. [62], who,
by means of GM, evaluated the fluctuating asymmetry and sexual dimorphism in Channa
striata individuals; these groups are clear examples of studies where the combination
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of high-resolution morphological tools was able to unravel traits in the life history of
organisms.

Finally, this study shows evidence for the effects of different selective stresses acting
in an asymmetric manner between sexes in C. kraussii, as determined by environmental
variables along a continuous environment, although heterogeneous. These results are a
valuable information source for understanding the adaptative, selective and microevolu-
tionary processes that occur simultaneously along the Canal del Dique basin. Similarly,
since C. kraussii is a species with value and commercial relevance, this study provides
useful information for the creation of management and exploitation plans for this resource,
emphasizing considerations about the effect of the morphological variability of females
subject to different environmental characteristics, and at the same time, since they have
a conserved body shape, the translocation of males between different populations may
serve as a strategy to increase the genetic heritage, which is useful information for creating
conservation strategies.
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