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Abstract: The common snook (Centropomus undecimalis) is a euryhaline fish with high commercial
demand in the Mexican southeast, Caribbean, and South America. However, some aspects of its
digestive physiology are still unknown, particularly in relation to lipid hydrolysis. Therefore, the
characterization of the digestive lipase of this species was carried out. Our results show that the
digestive lipase’s optimal temperature is 35 ◦C, being stable between 25 and 35 ◦C, and shows
maximum activity at pH 9, with stability between pH 5 and 8. Different degrees of inhibition were
presented by Orlistat (61.4%), Ebelactone A (90.36%), Ebelactone B (75.9%), SDS 1% (80.7%), SDS 0.1%
(73.5%), and SDS at 0.01% (34.9%). Orlistat and Ebelactone A and B completely inhibited the lipase
band in the zymogram, but not SDS addition. Lipase showed a molecular weight of 43.8 kDa. The
high lipase activities in the digestive tract indicate the importance of lipids in the diet of C. undecimalis.

Keywords: digestive lipase; inhibitors; temperature; pH; Centropomidae

1. Introduction

The common snook (Centropomus undecimalis, Bloch, 1792) is a carnivorous marine
fish with high commercial importance in the Gulf of Mexico, part of the Caribbean, and
South America [1,2], This situation has been accentuated by population growth and the
projections made by the FAO for 2030 (FAO, 2020), and it is therefore necessary to integrate
this species into aquaculture. However, studies on digestive physiology focusing on the
functioning of the enzyme package in the digestive tract are required [3,4] to improve the
assimilation of nutrients from the diet, with an increase in growth and lower costs [5–8].
Exogenous lipases from the microbiota of fish such as rainbow trout (Oncorhynchus mykiss)
have been used and, in many cases, did not function as food additives [9], so the lack of
knowledge about the digestive physiology of fish is a limitation for the formulation of
aquatic food [10]. In C. undecimalis, some studies have been carried out on the importance
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of digestive enzymes such as the activity and early expression of proteases, lipases, and α-
amylase [11,12]. However, lipases require special attention since they are essential enzymes
of the digestive system, where catalytic activity can be evaluated by fast, reliable, specific,
selective, and sensitive analytical methods [13].

Typically, carnivorous fish feed prey with high lipid content; consequently, it is con-
sidered that they require more significant lipase activity compared to other omnivorous
species [7,14]. According to Refs. [3,8], lipids are essential in the structure of cell membranes
by maintaining flexibility and permeability, in the storage of energy and fatty acids, and in
participating in cell signaling [15,16].

Carboxyl ester lipase (CEL) are a group of water-soluble carboxylic ester hydrolase
enzymes that move between the cells of an organism [17] and carry out the hydrolysis of
triglycerides to monoglycerides to release fatty acids [18,19] by breaking lipid bonds, acting
between the aqueous and organic phases [13,20,21]. They are classified into two groups:
(1) Esterases (EC 3.1.1.1), which perform the excision of low-molecular-weight fatty acids
and have solubilizing capacity, acting on simple ester bonds by catalyzing the rupture of
ester bonds of vitamins, phospholipids, triglycerides (TGS), and cholesterol esters. They are
active in water-insoluble lipid substrates; (2) True (EC 3.1.1.3 acyl triglyceride hydrolase) or
bile-salt-dependent lipases, the dominant lipase in fish [22,23], which are synthesized in the
pancreas, requiring bile salts for their proper functioning in concentrations between 25 mM
and 250 mM, such as sodium taurocholate (C26H44NNaO7S), sodium taurodeoxycholate
(C26H44NNaO6S), and cholic acid (C24H40O5), produced and/or recycled in the liver
in 60 to 95% as a product of immunoglobulin degradation, lipids such as cholesterol
and steroids, which are essential for the solubilization, hydrolysis, and adsorption of
lipids through enterocytes and preserving their denaturation and considerably increasing
their activity at pH 8 [24–27]. Lipase is a unique polypeptide chain that folds into a
large N-terminal domain belonging to the fold α/β-hydrolase and a smaller C-terminal
domain containing a catalytic triad of serine, aspartic acid, and histidine that is analogous
to serine, thus favoring the adsorption of the substrate on the intestinal walls of fish,
allowing them to act on poorly soluble substrates [28]. They are currently used in the food,
pharmaceutical, detergent, biotensive, and optically active compound industries. For these
reasons, fish is being studied as a fundamental source of lipase production to improve
industrial processes [29,30].

Lipase activity and its characterization have been reported in several fish species
such as Yellowfin tuna (Thunnus albacares), Longtail tuna (Thunnus tonggol), Skipjack tuna
(Katsuwonus pelamis) [4], Siamese fighting fish (Betta splendens) [14], European perch (Perca
fluviatilis) and Arctic char (Salvelinus alpinus) [7], and Mozambique tilapia (Oreochromis
mossambicus) [8]. However, in C. undecimalis, this type of study has not been carried out;
consequently, our main objective is to characterize bile-salt-activated lipase by biochemical
and electrophoretic techniques in the intestine of C. undecimalis, and it is here that they
exert their catalytic activity.

2. Material and Methods
2.1. Ethical Statement

Fish were handled in compliance with the standards for the good welfare practices
of laboratory animals from the Norma Mexicana NOM-062-ZOO-1999 de la Secretaría de
Agricultura, Gandara, Desarrollo Rural, Pesca y Alimentación.

2.2. Capture and Maintenance of Juveniles

For this study, a total of 50 wild juveniles (3.22 ± 0.16 g and 7.25 ± 0.14 cm) were
captured in the month of July from the natural environment, with conical mosquito nets
15 m long × 3 m high, in Arroyo Verde, Comalcalco, Tabasco Mexico. The fish were
transferred in containers with constant aeration to the Laboratorio de Fisiología en Recursos
Acuáticos by the División Académica de Ciencias Biológicas of the Universidad Juárez
Autónoma de Tabasco, México, and fed with tilapia (Oreochromis niloticus) fingerlings, in
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circular plastic ponds at 28 ◦C, for 7 days. Before slaughter by overdose of MS-222 (tricaine
methanesulfonate), they were starved for 48 h.

2.3. Enzyme Extract and Enzymatic Technique

All the fish were sacrificed, and their intestines were dissected under ice conditions
(4 ◦C). The organs were weighed, then the organ set was homogenized in 50 mM Tris-HCl +
25 mM CaCl2, pH 7.5 buffer, in a ratio of 1:5, and centrifuged at 16,000× g for 30 min at 4 ◦C.
Subsequently, the supernatant was removed and stored at −20 ◦C for subsequent analysis.

Activity was measured using the method described by Versaw et al. [31], where the
reaction mix consisted of 20 µL of enzyme extract in 200 µL of 100 mM sodium taurocholate
and 1.9 mL of 50 mM Tris-HCl buffer at pH 7.5. The mix was incubated at room temperature
for 5 min, and the reaction was started with 20 µL of β-naphthyl caprylate (20 mM) for
30 min at 35 ◦C. Then, 20 µL of fast blue was added at 100 mM and incubated for 5 min
at room temperature. The reaction was stopped with 200 µL of trichloroacetic acid (TCA;
0.72 N) and clarified with 2.71 mL of ethanol ethyl acetate at 1:1 v/v. Finally, the absorbance
was read at 540 nm in quartz cuvettes. The concentration of soluble protein was determined
using the Bradford [32] technique with bovine serum albumin as the standard. Calculation
of specific activity of individual extracts was determined using the following equations:
(1) units mL−1 = [∆abs × final reaction volume (mL)] × [MEC × time (min) × extract
volume (mL)] and (2) mg protein units−1 = [units per mL] × [mg of soluble protein]−1,
where ∆ abs = Increase in absorbance at a given wavelength; Final volume = Final volume of
the reaction (mL); MEC = Molar extinction coefficient (MEC) calculated from the regression
line of 2-naphthol (0.02 mL mg−1 cm−1); Time = incubation time of the catalyzed reaction
(min); Extra-spectrum volume = Volume of multienzyme extract (mL). All tests were
performed in triplicate.

2.4. Temperature and pH Effect on Enzymatic Activity

The effect of temperature on lipase activity was determined with universal buffer [33]
at pH 9 in the range between 25 and 65 ◦C and using the technique previously described.
The effect of pH on lipase activity was determined with universal buffer [33], varying
the pH between 2 and 12. All assays were performed in triplicate. The residual activity
was determined at different times (30, 60, 90, and 120 min of pre-incubation), varying
temperatures (25, 35, 35, 55 ◦C) and pH (2, 3, 4, 5, 6, 7, 8, 9, 10 and 11) compared to a control
without pre-incubation using the technique of Versaw et al. [31]. All tests were performed
in triplicate.

2.5. Inhibitor Effect on Enzymatic Activity

The effect of inhibitors on lipase activity was determined by a multi-enzymatic extract
pre-incubated with Orlistat 2.6 mM, microbial Ebelactone A 1 mM, and microbial Ebelactone
B 1 mM [34] and in increasing amounts (0.01, 0.1, and 1%) of sodium lauryl doudecylsulfate
(SDS) using the technique proposed by Görgün and Akpınar [15], compared to a control
without pre-incubation, using the same technique as Versaw et al. [31], as previously
described. All tests were performed in triplicate.

2.6. Zymogram Analysis

Electrophoresis was performed under native conditions following the technique pro-
posed by Davis [35] on 10% polyacrylamide gels in buffer Tris-HCl 1.5 mol L−1 at pH 8.8.
The electrophoretic was run at 80 V for 15 min and then increased to 120 V for 2 h at
4 ◦C. As substrate was used a solution of β-naphthyl caprylate (200 mmol L−1), where gel
was washed for 30 min. At the end, fast blue solution (100 mmol L−1) was added, and
it was incubated at 25 ◦C until the lipase activity bands were observed. The same four
inhibitors previously mentioned were used, which were pre-incubated in a 1:1 ratio (en-
zyme/inhibitor) for 1 h. Molecular weight markers Bio Basic Inc. (Markham, ON, Canada)
BM523 and Quantity One 1-D Analysis Software from Bio-Rad (Hercules, CA, USA) (phos-
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phorylase 97 kDa, bovine serum albumin 66 kDa, Ovalbumin 45 kDa, carbonic anhydrase
29 kDa, trypsinogen 24 kDa, and SBTI 20 kDa) were used to calculate the molecular weight
of the band with activity.

2.7. Statistical Analysis

Normality and homoscedasticity were corroborated for the values of enzymatic activity
> One-way analysis of variance was applied, followed by Duncan’s tests to determine the
differences between the treatments. For all statistical tests, a significance value of p < 0.05
was used. All statistical analyzes were performed using STATISTICATM v. 7.0 software
(Statsoft, Tulsa, OK, USA). In addition, Sigma Plot 12.0 software was used to draw the
graphics.

3. Results
3.1. Temperature and pH Optimum and Stability

The specific activity is expressed in units per milligram of protein and represents the
amount of enzyme that catalyzes the formation of one µmol of product per minute under
conditions of substrate saturation. In this study, the optimum temperature of lipases was
detected at 35 ◦C (0.27 ± 0.04) (Figure 1) with a drop-in activity from 45 ◦C (0.218 ± 0.01),
showing statistically significant differences in all treatments for p < 0.05. In thermal stability,
the highest activity was observed at 25 ◦C at 60 min of incubation (154.24 ± 1.71), followed
by high activity at 35 ◦C (116.16 ± 3.69) above 100% of the residual activity, showing a
decrease in activity at 90 min of incubation at 25 ◦C (116.8 ± 1.21) and at 35 ◦C (93.76 ± 2.64),
respectively, showing practically no activity at temperatures higher than 35 ◦C (Table 1).
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Figure 1. Optimum temperature of intestinal lipases in the common snook C. undecimalis. Different
letters indicate significant differences between temperatures.

Table 1. Stability at different temperatures of intestinal lipases in the common snook C. undecimalis.

◦C 0 min 30 min 60 min 90 min

25 100 ± 0.00 c 68.16 ± 1.02 d 154.24 ± 1.71 a 116.80 ± 1.21 b

35 100 ± 0.00 c 58.24 ± 3.01 d 116.16 ± 3.69 a 93.76 ± 2.64 b

45 100 ± 0.00 a 0.00 ± 0.00 c 6.56 ± 0.09 b 4.16 ± 0.05 b

55 100 ± 0.00 a 0.00 ± 0.00 b 0.00 ± 0.00 b 0.00 ± 0.00 b

Means in the same row with different superscripts are significantly different (p < 0.05).

The highest activity was presented at pH 8 (1.96 ± 0.08) and pH 9 (1.98 ± 0.08),
respectively, with no statistically significant differences between these two treatments, with
low activities at pH 7 (1.31 ± 0.07) and pH 6 (0.96 ± 0.08), showing statistically significant
differences between them and those mentioned above (Figure 2). Stability was shown at
pH 7 (157.16 ± 12.59) and pH 8 (156.92 ± 8.87) at 60 min of incubation, even exceeding the
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residual activity without showing statistically significant differences for these two points,
with a drop at 90 min for pH 7 (108.95 ± 3.76) and pH 8 (112.05 ± 1.29), respectively, while
at pH 5 and pH 6, the activity decreased after 30 min of incubation. The residual activity of
all the other pHs analyzed showed activities below 100% of the residual activity (Table 2).
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Table 2. Stability at different pH of intestinal lipases in the common snook C. undecimalis.

pH 0 min 30 min 60 min 90 min

2 100 ± 0.00 a 0.00 ± 0.04 d 46.18 ± 3.01 b 11.34 ± 0.22 c

3 100 ± 0.00 a 12.29 ± 0.82 c 23.87 ± 1.11 b 10.74 ± 0.50 c

4 100 ± 0.00 a 80.55 ± 1.04 b 45.35 ± 1.02 c 95.59 ± 1.21 a

5 100 ± 0.00 c 122.32 ± 3.04 b 101.31 ± 1.03 c 139.98 ± 2.02 a

6 100 ± 0.00 d 139.14 ± 5.01 a 107.40 ± 4.06 c 118.74 ± 4.01 b

7 100 ± 0.00 c 144.87 ± 4.02 a 157.16 ± 12.59 a 108.95 ± 3.76 b

8 100 ± 0.00 d 137.95 ± 6.01 b 156.92 ± 8.87 a 112.05 ± 1.29 c

9 100 ± 0.00 a 70.29 ± 2.01 c 76.37 ± 1.04 b 53.34 ± 0.72 d

10 100 ± 0.00 a 101.91 ± 1.02 a 58.23 ± 1.00 b 30.31 ± 0.13 c

11 100 ± 0.00 a 36.64 ± 1.03 d 66.71 ± 1.22 b 57.04 ± 2.23 c

Means in the same row with different superscripts are significantly different (p < 0.05).

3.2. Inhibitor Effect on Lipase Activity

The presence of inhibitors shows different degrees of inhibition in the activity of lipase,
where the highest degree of inhibition was observed when the enzyme was exposed to
the presence of Ebelactone A (89.8 ± 8.6%), followed by SDS at 1% (80.2 ± 12.7%) and
Ebelactone B (75.7 ± 4.7%), showing significant differences between Ebelactone B and SDS
at 1%. Likewise, SDS at 0.1% (73.2 ± 6.9%) showed a greater effect on relative activity than
SDS at 0.01% (35.3 ± 1.8%), while Orlistat showed the least inhibitory effect (61.6 ± 10.1%)
in relation to the group of inhibitors used in this study, showing statistically significant
differences between treatments (p < 0.05) (Figure 3).
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3.3. Zymogram Analysis

Zymogram of lipase shows a single band with a molecular weight of 43.8 kDa, that
was not affected by different concentrations of SDS, while Orlistat, Ebelactone A, and
Ebelactone B completely inhibited bands (Figure 4).
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Figure 4. Zymogram of inhibition under native conditions on 10% polyacrylamide gels of lipolytic
activity in juveniles of common snook C. undecimalis. M (molecular weight marker: phosphorylase
97 kDa, bovine serum albumin 66 Kda, Ovalbumin 45 Kda, carbonic anhydrase 29 Kda, trypsinogen
24 Kda, and SBTI 20 kDa). Control (lipases without inhibitor). Inhibitors: Orl (Orlistat), EbA
(Ebelactone A), EbE (Ebelactone B), SDS (sodium dodecyl sulfate).

4. Discussion

Lipases are responsible for carrying out lipolysis [14]. Lipids contained in the diet are
their primary source of energy and play a vital role in the composition of the cell membrane
and signaling, where fish consume lipid-rich foods [3]. In this study, C. undecimalis showed
higher lipase activity at 35 ◦C, like that reported for hoki (Macruronus novaezelandiae)
(35 ◦C) [23], bluefin tuna (Thunnus orientalis) (40 ◦C), totoaba (Totoaba macdonaldi) (45 ◦C),
striped bass (Morone saxatilis) (35 ◦C) [25], and Atlantic cod (Gadus morhua) (25 to 30 ◦C) [30].
Ref. [24] reports optimal temperature in Catla (Catla catla) lipases at 20 ◦C, although species
such as Chinook salmon (Oncorhynchus tshawytscha) present two optimal temperatures
(35–40 ◦C and 50 ◦C) that possibly indicate the presence of lipases isoforms [23]. Ref. [22]
indicates that species such as O. niloticus, G. morhua, Indian oil sardine (Sardinella longiceps),
and picked dogfish (Squalus acanthias) show optimal activity between 25 ◦C and 37 ◦C,
except for flathead grey mullet (Mugil cephalus), which shows more significant activity at
50 ◦C, as well as gilthead seabream (Sparus aurata) [36]. Thus, the optimal activity of lipases
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varies with the temperature of the fish habitat [37], culture parameters, and carbon and
nitrogen sources [29].

C. undecimalis requires an optimal culture temperature between 25 and 29 ◦C, with
mortalities at temperatures of 10 ◦C and 35 ◦C, respectively [2]. We find that the temperature
stability was between 25 ◦C and 35 ◦C for C. undecimalis, losing significant activity when
incubated at temperatures above 35 ◦C, which is related to the mortalities. These stability
data are like those reported for O. tshawytscha and M. novaezelandiae [23] and C. catla
(20 ◦C) [24]. In contrast, Kurtovic et al. [22] reports stability fluctuations between 30 ◦C and
50 ◦C in species such as O. niloticus, G. morhua, S. longiceps, S. acanthius, and M. cephalus.
Nolasco et al. [32] reports optimal activities at 40 ◦C in S. aurata, such as the results obtained
by González-Felix et al. [38] in T. macdonaldi at 45 ◦C.

Currently, there are no reported data on the gastrointestinal pH of C. undecimalis;
however, most of the fish studied show an intestinal pH between 6.7 and 8.5 [39–44]. This
parameter may be related to the catalytic activity of lipases. Regarding pH activity, C.
undecimalis showed the highest intestinal lipase activity at pH 8 and 9. Similar data were
reported for S. aurata [36]; T. orientalis, T. macdonaldi, and M. saxatilis [25]; juveniles of
O. niloticus [16]; and O. tshawytscha, M. novaezelandiae and T. macdonaldi [23,29]; however,
activities at different pH have also been reported such as in C. catla at 7.8 [24]. Thongpra-
jukaew et al. [14] report three different peaks at 7, 8, and 11, according to the development
stage of B. splendens. Prasertsan et al. [4] report maximum activities of digestive lipases
at pH 10 in T. albacares and K. pelamis, and at pH 9 in T. tonggol, indicating that the opti-
mum pH of lipase can vary in species between 6.5 and 9 [22]. pH stability was observed
in the range of 5 to 8, with greater stability at pH 7 and 8, which was reported for O.
tshawytscha, M. novaezelandiae [23], and S. aurata [36]. Similarly, in S. longiceps, stability
was reported between pH 5 and 9.5, while O. niloticus showed stability between 6.5 and
8.5 [22]. Areekijseree et al. [45] indicates that developmental stage and environment can
modify optimal activities at different temperatures and pH, as observed in Hyriopsis bialatus.
Knowing the thermal and pH stability in fish is vital, since these data reflect the optimal
digestive activity that these organisms possess over a long period of time under common
environmental conditions in their environment. In contrast, optimal temperature and pH
indicate maximum proteolytic activity before denaturation of enzymes, which is achieved
in a short time.

Orlistat is a tetrahydrolipstatin (THL) that belongs to the β-lactone group derived by
the hydrogenation of lipstatin produced by the fungus Streptomyces toxytricini. It is known
as a potent, irreversible, and specific inhibitor of gastric and pancreatic lipases [46], where
the action mode is through the formation of a double bond with the serine catalytic residue
of lipase in the β-lactone group, blocking the active site and preventing the hydrolysis of
triglycerides from freeing fatty acids, which in the physiological process are eliminated
through the faces [36,47]. This chemical compound has been used mainly in humans for
treatments of obesity and pancreatitis [48,49]; however, it reduces the incorporation of n-3
long-chain polyunsaturated fatty acids into the blood and tissues of rats [50]. Orlistat in
this study inhibited lipase activity by 61.6%, and its inhibitory action was also verified in
fish, while in Centropomus viridis, it inhibited 71.16% at a concentration of 1 mM. This high
inhibition at a lower concentration may be since [51] worked with larvae, and at that stage,
they found great activity of neutral lipases, while in juveniles, they were already absent. To
this, it can also be added that there are variations in the activities of lipases, even though
they are related species, even in the same species with a different diet, because of genetic
change [52].

Ebelactone A and B are a small group of β-lactone esterase-inhibiting enzymes, lipases,
and N-formylmethionine aminopeptidases located on the cell membrane and synthesized
by the fungus S. aburaviensis. In this sense, the inhibitory power of Ebelactone B shows a
decrease in absorption of lipids by the intestinal wall from the diet in mice [53,54], where the
β-lactone group inactivates the active lipase site, as previously described for Orlistat [49].
Ebelactone A inhibited lipase activity by 89.8% in our trial, while Ebelactone B showed less
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inhibitory power at 75.7% [55]. On the other hand, cationic surfactants such as quaternary
ammonium salts and anionics such as sodium dodecyl sulfate (SDS) are components with
the highest inhibition in lipase activity, such as diethyl p-nitrophenyl phosphate, which
affects the active site of serine through irreversible inhibition [22]. SDS at 1% inactive
80.2% of the activity in this study, SDS at 0.1% inactive 73.2% of lipase activity, and SDS at
0.01% inactive 35.3% of lipase activity, showing a dose-dependent relationship. Görgün
and Akpınar [15] reports a total loss of lipase activity in Cyprinus carpio L. using 0.5% SDS.

The molecular weight of the digestive lipase found in C. undecimalis was 43.8 kDa.
Fish studies show digestive lipases with molecular weights between 46 and 64 kDa [22].
These studies include those published for O. niloticus (46 kDa) [37], bighead carp (Aris-
tichthys nobilis) (127.9 kDa), hybrid sturgeon (Huso dauricus ♀X Acipenser schrenki Brandt ♂)
(40.5 kDa) [3], C. catla (70 kDa) [24], Round sardinella (Sardinella aurita) (43 kDa) [56], and
T. macdonaldi (70 kDa) [38]. Villanueva-Gutiérrez et al. [29] report two molecular weights
for T. macdonaldi lipase (70.2 kDa and 47.5 kDa), suggesting the presence of two different
forms: (a) the uncleaved form and (b) the final form of a pancreatic lipase dependent on
colipase since the activity was detected without the presence of bile salts complementing
the inhibited activity. Other studies in O. tshawytscha report molecular weights of 79.6 and
54.9 kDa, and M. novaezelandiae shows 44.6 kDa [23]. Kurtovic et al. [22] indicate that a
molecular weight of 57 kDa may suggest the presence of a carboxyl ester lipase, supported
by results shown by [57] for S. longiceps (54–57 kDa). Therefore, molecular weights depend
on the species, stages of development, eating habits, and tissues.

Although most of the studies carried out with lipase activities indicate that herbivore
fish show higher activity than carnivorous, similar levels of activity among them have
been reported without finding significant differences [58]. Other studies have indicated
that sea bass in the marine environment obtain their energy from lipids, proteins, and
carbohydrates, indicating that it would be possible to find a higher activity of lipases in
this environment than in freshwater fish that use proteins as energy sources. However, [59]
found no differences when studying lipase activities in carnivorous and herbivorous fish in
two different environments, although this differs from that detected by [60], who reported
higher lipase activity in the herbivorous species monkeyface prickleback (Cebidichthys
violaceus) and rock prickleback (Xiphister mucosus) than in the carnivores black prickleback
(Xiphister atropurpureus) and high cockscomb (Anoplarchus purpurescens). Horn et al. [41]
reports that the highest activity of lipases takes place in the anterior intestine, although
Hariati et al. [61] indicate that high activity can occur in the anterior or posterior intestine
depending on the time of year and, therefore, on the diet, which would increase activity
along with growth, as observed in gachua (Channa gachua). Thus, the environment and
bioavailability of nutrients in the fish diet will regulate lipase activity [10,26,62–64], and
studies with pH STAT could help to identify the catalytic differences of lipases for a
substrate of plant or animal origin.

5. Conclusions

The characterization of the lipase of common snook (Centropomus undecimalis) is vital
to determine the enzymatic activity and its relationship with pH and temperature. This
knowledge can help us in future studies to determine the nutritional balance of diets applied
to the cultivation of this species. In our study, the lipase enzyme has a molecular weight of
43.8 kDa, with an optimal temperature of 35 ◦C and an optimal pH of 9, presenting different
sensitivities to the inhibitors. In this study, Ebelactone A is the substance that inhibited
the most lipase activity. Further studies are needed to determine suitable lipid sources
that will be hydrolyzed by C. undecimalis lipases and contribute to the proper nutrition of
this species.
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