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Abstract: This study aimed to re-evaluate the pathogenic characteristics of Chryseobacterium balustinum,
generally known as a food spoilage bacterium. We observed mass mortality in a rainbow trout farm
in Jeonbuk province, Republic of Korea. Fewer studies have reported on rainbow trout mortality or
infections in Korea than in other countries; among these, few studies have reported cases of Chry-
seobacterium infections. Sequencing analysis revealed that this bacterium is closely related (99.24%)
to Chryseobacterium balustinum. Bacterial identification assays, including the API test, sequencing,
and phylogenetic analysis, found the 24 isolates to be C. balustinum. The strain showed multiple
resistance to 18 of 25 antibiotics tested. Primary clinical symptoms of its infection are damage to
the fins, necrosis, and cytoplasmic vacuolation in hepatocytes. The pathogenicity of the strain was
determined following Koch’s postulates and the challenge test. The present results suggest that C.
balustinum WLT can be considered a multidrug-resistant zoonotic pathogen responsible for mortality
and economic losses.

Keywords: Chryseobacterium balustinum; drug-resistant; rainbow trout; Korea; pathogenicity

1. Introduction

Genus Chryseobacterium was first proposed by Vandamme et al. [1]. The genus was moved
from the family Flavobateriaceae to the family Weeksellaceae in 2019 [2]. Chryseobacterium spp.
are generally present in the environment and are found in soil, water, and lake sediments,
similar to their close relatives in Flavobacteriaceae [3,4]. Chryseobacterium balustinum was
first isolated from halibut that was unfit for sale because of discoloration and the softening
of skin and muscle tissue [5]. Until recently, the bacterium was considered as a dairy
and seafood food spoilage organism [5,6]. Similar to Flavobacterium spp., some strains of
Chryseobacterium spp. are pathogenic to plants and fungi, and they are present in food
products such as cow milk and raw meat [7–9].

Recently, there have been emerging reports regarding clinical cases caused by Chry-
seobacterium spp. in different farmed animals, such as pond loach, yellow perch, and
salmonid fish, and pets such as bullfrogs and ball pythons. Chryseobacterium spp. has
not been considered as a common zoonotic pathogen; only a few studies have reported
clinical infections in humans [10,11]. Despite the general belief that Chryseobacterium is
an opportunistic pathogen that only causes secondary infection in immunocompromised
patients, it has been reported to cause severe sepsis in an immunocompetent traveler [12].
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Thus, the zoonotic possibilities of the Chryseobacterium should not be neglected as we may
be in close contact with it in daily life.

Due to their relatively low pathogenicity, Chryseobacterium species have been kept out
of the spotlight. However, the high antibiotic resistance profiles of Chryseobacterium have
been sufficient to collect general interest in perspectives of clinical relevance. They have
shown resistance to antibiotics approved for industrial purposes and last-resort antibiotics,
and there have been increasing reports of infections in animals in South Korea. There
are not many antibiotics to use among permitted drugs. Thus, it is of utmost importance
to report every Chryseobacterium outbreak to trace the dissemination in aquaculture. The
antimicrobial resistance and pathogenicity of the species must be studied to select suitable
antimicrobial agents as a treatment. Many studies highlight the antimicrobial resistance of
the Chryseobacterium species and warn of its zoonotic possibilities [13,14].

In this study, we investigated cases of infection with Chryseobacterium in rainbow trout
(Oncorhynchus mykiss) from a farm in Jeonbuk province, Republic of Korea. Identification of
the bacterial isolate was confirmed through sequencing and phylogenetic analysis of the 16S
rRNA gene. The antibiotic susceptibility of the bacterial isolate and the pathogenicity were
assessed. Moreover, histopathological changes in the liver of diseased fish were evaluated.

2. Materials and Methods
2.1. Fish Sampling

In March 2019, a rainbow trout farm in Jeonbuk province, Republic of Korea, requested
a pathological diagnosis of trout based on common clinical symptoms displayed, which
included anorexia and damaged dorsal and caudal fins (Figure 1). The farm has a closed
circulating water system from groundwater and the water temperature was 15–16 ◦C. The
farm reared 30,000 fish, distributed in six water tanks which contained 5000 L of water each.
The estimated mortality rate was approximately 10%; however, continuous and visible
clinical symptoms gradually intensified. The percentage of affected fish was >80% and
the size of the fish was approximately 1 kg ± 100 g. Infected fish experienced common
symptoms including loss of appetite and hemorrhage in the caudal fin. Ten fish with
severe clinical symptoms were selected for the study. They were caught and transported
to the Laboratory of Aquatic Biomedicine at Seoul National University, Seoul. These fish
were inspected for any external lesions visually and microscopically for bacterial, viral,
and parasitic diseases. The gills and fins of the fish were swabbed and smeared on glass
slide for observation under a light microscope. Viral infection, infectious hematopoietic
necrosis virus (IHNV), infectious pancreatic necrosis virus (IPNV), and viral hemorrhagic
septicemia virus (VHSV) were diagnosed using PCR and specific primers. Thereafter, the
kidney, liver, and spleen were dissected for bacterial isolation.

2.2. Bacterial Isolation

The recovery of bacteria was performed from the liver, kidney, and spleen of rainbow
trout. Each tissue sample was streaked directly on tryptic soy agar (BD Difco, Detroit,
MI, USA) and cytophaga agar. Streaked plates were incubated at 20 ◦C and 25 ◦C for
72 h and bacterial growth was monitored. Colonies present in the largest proportion were
sub-cultured. Recovered bacteria were stored at −80 ◦C in tryptic soy broth (BD Difco,
Detroit, MI, USA) supplemented with 25% glycerol for further analysis.

2.3. Biochemical Characterization

The Gram reaction of bacterial isolates was determined using a Gram staining kit
(BioMerieux, Seoul, Korea) following the manufacturer’s protocols. The oxidase reaction
and catalase activity were assayed using 1% tetramethyl-p-phenylenediamine (Merck,
Madison, NJ, USA) and 3% (volume by volume) aqueous hydrogen peroxide solution,
respectively. For bacterial identification, API 20NE and API ZYM kits (BioMerieux,
Seoul, Korea) were used following the manufacturer’s protocols.
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Figure 1. Clinical symptoms of Chryseobacterium balustinum infection indicate severe damage on the
dorsal and caudal fin.

2.4. Bacterial Identification

Sub-cultured bacteria were grown on TSA at 25 ◦C for 24 h and the bacterial DNA
was extracted using a Qiagen DNeasy Tissue Kit (Qiagen Sciences, Valencia, CA, USA) for
16S rRNA gene analysis using PCR. For PCR amplification, universal primers (27F, 1492R)
targeting 16S rRNA gene were used, as previously reported [15]. PCR products were sent
to the genomics division of Macrogen (Seoul, Korea) for gene sequence analysis, where
nucleotide sequencing was performed using ABI PRISM 3730XL Analyzer with BigDye ®

Terminator v3.1 Cycle Sequencing Kits (Applied Biosystems, Waltham, MA, USA).

2.5. Phylogenetic Analysis

As all the 16S rRNA genes of the isolates were 100% identical, the sequence of strain
WLT was included in the phylogenetic analysis as a representative. The 16S rRNA gene
sequence was used to assess the similarity with other Chryseobacterium spp., using BLASTn
(NCBI, Bethesda, MD, USA) and EzBioCloud server (https://www.ezbiocloud.net/) to
identify similar bacterial strains. Twenty closely related bacteria of the genus Chryseobac-
terium were selected for phylogenetic analysis and sequences were aligned using MEGA X
software [16]. The 16S rRNA sequence of Janthinobacterium tructae SNU WT3 was included
as an out-group [17]. A phylogenetic tree was constructed using the MEGA X software
using the neighbor-joining method, and evolutionary distances were calculated using
Kimura’s 2-parameter model [18,19]. Tree topology was assessed using 1000 bootstrap
replicates [20]. The 16S rRNA gene sequence of the Chryseobacterium WLT was deposited
within GenBank (Accession number: MN317337).

2.6. Histopathological Analysis

Fish displaying severe clinical signs, including damaged fins and lethargic behavior,
were selected for histopathological examination. The spleen, kidney, and liver were dis-
sected and preserved in 10% neutral-buffered formalin to determine the pathological and
degenerative changes resulting from the infection. Fixed tissues were trimmed, dehydrated
using ethanol, embedded in paraffin blocks, and sectioned and stained with hematoxylin

https://www.ezbiocloud.net/
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and eosin. The specimens were examined using a light microscope and digitally scanned
by Xenos Inc. (Seoul, Korea).

2.7. Antibiotic Susceptibility Test

The bacterial strain isolated from diseased rainbow trout was subjected to antibiotic
susceptibility tests against 24 antibiotics using the disk diffusion method on Mueller–Hinton
agar (BD Difco, Detroit, MI, USA). Chryseobacterium spp. is inherently resistant to various an-
tibiotics including tetracycline, erythromycin, linezolid, aminoglycosides, chloramphenicol,
and beta-lactams. The following antibiotics were assayed: amikacin, ampicillin, piperacillin,
cefazolin, cefepime, cefotaxime, cefoxitin, ceftazidime, ceftizoxime, aztreonam, imipenem,
meropenem, gentamicin, kanamycin, streptomycin, tetracycline, doxycycline, ciprofloxacin,
nalidixic acid, norfloxacin, ofloxacin, trimethoprim-sulfamethoxazole, chloramphenicol,
and erythromycin. The results were determined as resistant, intermediate, and susceptible,
and were assessed based on the diameter of the zone of inhibition (mm) [21].

2.8. Pathogenicity Challenge Trials

To estimate the pathogenicity of bacterial isolates, rainbow trout weighing 20 g on
average were purchased from another farm in Chungbuk province, Republic of Korea. Fish
were transported and stabilized for two weeks before the trial under the same conditions
as the challenge trial. Thirty fish were intraperitoneally injected with 3 × 107, 106, 105, and
104 CFU of bacteria per fish in each group. The control groups were injected with the same
volume of PBS. The experiments were performed with 30 fish per group, and the average
mortality rates were determined as days post infection. Each group of artificially infected
fish was kept in 120 L water tanks, and the water temperature was regulated at 16 ◦C. The
trials were conducted for 15 d after all fish groups were stabilized.

3. Results
3.1. Clinical Symptoms and Bacterial Isolation

The clinical symptoms observed herein, such as severe damage to the caudal fin in
diseased fish, were similar to that of cases of Flavobacterium psychrophilum infection [22].
However, PCR-based bacterial detection yielded negative results [23]. Furthermore, no
virus or parasitic infections were observed upon microscopic and macroscopic examination.
Virus detection using PCR with specific primers found all samples were negative for IHNV,
IPNV, and VHSV [24,25]. Moreover, since Pseudomonas fluorescens and Aeromonas salmonicida
are considered major pathogens in salmonids, their detection was carried out and the results
were negative [23,26–28]. After excluding some major rainbow trout pathogens, bacterial
isolation was performed to identify the disease etiology. After incubation at 25 ◦C for 24 h,
circular, yellow colonies of 34 mm diameter appeared on both TSA and cytophaga. For the
isolation of pure colonies, colonies were individually sub-cultured. Notable differences
between these bacteria and other Flavobacterium spp. were that culture duration was
relatively short and bacterial alternation was not observed during sub-culturing [29].
Finally, a total of 24 isolates were recovered.

3.2. Biochemical Characterization

The strain was Gram-negative and oxidase- and catalase-positive. It did not produce
indole nor reduce nitrate. With the API ZYM strip, the strain was negative for C4 es-
terase and β-glucosidase, but positive for C8 esterase lipid, valine arylamidase, trypsin,
α-glucosidase, and N-acetyl-β-glucosaminidase. On the API 20NE strip, the strain was
negative for arabinose, mannitol, and citrate but positive for maltose assimilation.

3.3. Phylogenetic Analysis

16S rRNA gene sequencing analysis revealed 98~99% similarity to other Chryseobac-
terium related species: 99.24% (C. balustinum DSM 16775T), 98.96% (C. piscium LMG23089T),
and 98.75% (C. scophthalmum DSM 16779T). The phylogenetic tree (Figure 2) was con-
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structed with 20 Chryseobacterium spp., indicating that the Chryseobacterium spp. isolated
from the rainbow trout part of this study are the causative agents of mortality and can be
considered C. balustinum bacteria.
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3.4. Pathogenicity Challenge Trials

The virulence of the strain WLT was determined by the challenge trial. The first
mortalities occurred within 4 days of injection, and the 3 × 107 group showed 60% mortality
(Figure 3). The pathogenicity trial revealed that the LD50 was estimated to be lower than
that of other Chryseobacterium spp. One of the Chryseobacterium spp. isolated from multiple
Great Lake salmonids (T28) had an LD50 of >108 CFU per fish; however, the estimated
LD50 value of the present isolate was between 107 and 106 CFU per fish [30].
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3.5. Histopathological Analysis

Histopathological analysis revealed that the pathological lesions were more concen-
trated on the liver than on the kidney and spleen. Moderate hepatocyte degeneration and
cytoplasmic vacuolation were observed throughout the liver (Figure 4). However, the
degree of the damage was not proportional to the mortality rate of rainbow trout. In the
present case, the kidney and the spleen were relatively normal.
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Figure 4. Histopathology of liver of healthy rainbow trout (A) and a moribund rainbow trout
with Chryseobacterium balustinum WLT infection (B). Necrosis and cytoplasmic vacuolation can be
observed in hepatic cells on liver of diseased fish. Slides were stained with hematoxylin and eosin.
Scale bars = 20 µm.

3.6. Antibiotic Susceptibility Test

The antibiotic susceptibility test indicated that, similar to other Chryseobacterium spp.,
the isolate WLT was resistant to different antibiotics (Table 1). Chryseobacterium sp. is in-
herently resistant to numerous antibiotics including tetracyclines, erythromycin, linezolid,
polymyxins, and chloramphenicol [31]. The antibiotic susceptibility test revealed that the
strain was resistant to ampicillin, piperacillin, cefazolin, cefepime, cefotaxime, ceftazidime,
ceftizoxime, aztreonam, gentamicin, amikacin, kanamycin, streptomycin, tetracycline,
doxycycline, nalidixic acid, trimethoprim-sulfamethoxazole, chloramphenicol, and ery-
thromycin. However, it was susceptible to cefoxitin, imipenem, meropenem, ciprofloxacin,
norfloxacin, and ofloxacin.

Table 1. Antibiotic susceptibility test performed on C. balustinum WLT by disk diffusion method (R:
resistant, S: susceptible, I: intermediate).

Antibiotics Susceptibility Inhibition Zone
Diameter (mm) Antibiotics Susceptibility Inhibition Zone

Diameter (mm)

Ampicillin R 7 Piperacillin R 9
Cefazolin R 10 Cefepime R 9

Cefotaxime R 10 Cefoxitin S 22
Ceftazidime R 12 Ceftizoxime R 3
Aztreonam R 2 Imipenem S 26
Meropenem S 28 Gentamicin R 11

Amikacin R 4 Kanamycin R 5
Streptomycin R 2 Tetracycline R 8
Doxycycline R 11 Ciprofloxacin S 24

Nalidixic acid R 7 Norfloxacin S 27
Trimethoprim-

sulfamethoxazole R 9 Ofloxacin S 25

Chloramphenicol R 13 Erythromycin R 4

4. Discussion

There is a tendency that Chryseobacterium spp. is often neglected in clinical settings
because of the low number of cases and decreased pathogenicity. However, severe antibi-
otic resistance makes them hard to control, especially in immunocompromised patients
or stressed animals, and this has been the case for C. balustinum. The first isolation was re-
ported in halibut and was recognized as a food spoilage bacterium rather than a pathogenic
bacterium since it was isolated from the fin of the fish [5,6,30]. In this study, we observed
the mortality of farmed rainbow trout and verified that it originated from the infection by
C. balustinum designated as WLT.
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As Chryseobacterium is prevalent in the natural environment, which includes river
water and soil, there is a high possibility for individuals to be exposed to it. Indeed, a severe
sepsis case was reported from those who had previous exposure to soil and water [12]. The
causative agent was presumed to have infected the individuals through the skin. In the
case of the present study, the pathogenesis of Chryseobacterium was presumed to proceed
from a localized to a systemic infection. It was also observed in our previous report with
C. cucumeris [32]. Furthermore, considering the production of proteolytic enzymes, includ-
ing esterase, the zoonotic potential of C. balustinum through infection through the skin
should not be excluded.

Generally, the pathogenicity of Chryseobacterium in farmed fish is comparably lower
than the major bacterial pathogens (e.g., Flavobacterium and Lactococcus) and earlier studies
reported 5 LogCFU/fish as the median lethal dose of Chryseobacterium [33,34]. The LD50 of
C. cucumeris in pond loach was 7.8 LogCFU/fish [32], whereas the LD50 of C. indologenes
in yellow perch was 8.1 LogCFU/fish [35]. The C. scophthalmum TPBLGL 18 infection in
golden mahseer resulted in median lethal dose of 6.2 LogCFU/fish [36]. Although the
pathogenicity of the Chryseobacterium was not much greater than the common pathogens,
multidrug-resistant features of the strain WLT may pose a therapeutic challenge [33,34].
Therefore, Chryseobacterium could be considered as a fish pathogenic microoganism in
addition to its food spoilage activity.

Since, Chryseobacterium sp. has been recognized as an emerging fish pathogen in South
Korea in recent times, studies regarding antibiotic susceptibility-based treatment methods
should precede [32,37]. In a previous Chryseobacterium infection case study, we failed to
cure the diseased fish and we speculated that high prevalence of antibiotic resistance by
Chryseobacterium was a reason. The C. balustinum WLT also revealed resistance to almost
all the tested antibiotics (e.g., ampicillin, doxycycline, and nalidixic acid against Gram-
negative bacteria) that are permitted by the National Institute of Fisheries Science, South
Korea for aquaculture uses. Accordingly, an effective treatment protocol should be adopted
to address the emerging Chryseobacterium outbreaks.

5. Conclusions

In conclusion, one of the isolates of Chryseobacterium spp. pathogenic to rainbow
trout closely resembled C. balustinum on 16S rRNA gene sequencing analysis. Following
Koch’s postulates, the bacteria were confirmed to cause clinical symptoms such as damaged
fins and mortality. Further studies on the pathogenicity of the bacteria are required since
these bacteria can induce economic loss in other rainbow trout fisheries in Korea or other
countries. Moreover, follow-up evaluation is required for this outbreak to control and
prevent this disease.
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