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Abstract: Tuna fisheries are the most valuable fisheries in the world, with an estimated market value
of at least US$42 billion in 2018. Indonesia plays an important role in the global tuna fisheries and
has committed to improve its fisheries management; therefore, a pilot of long-term spatial-temporal
data bases was developed in 2012, however none have utilized data to have better understanding
for management improvement. In this study, the annual and seasonal variation of large (≥10 kg)
Yellowfin Tuna (YFT) catch per unit effort (CPUE) have been investigated and the influence of sea
surface temperature (SST) and chlorophyll-a on these variables examined. We used fish landing
data from West Nusa Tenggara recorded every month between 2012 and 2017 and analyzed using
generalized linear models and generalized additive models. We found a seasonal and annual pattern
of tuna abundance affected by SST and chlorophyll-a (chl a) and related to upwelling and El Nino
event. These results also suggest that a two-month closure to fishing in August and September in
southern Lombok is worth considering by the Government to maximize conservation of stocks due
to a high abundance of juveniles emerging during the upwelling months from June to August.

Keywords: Chlorophyll A; sea surface temperature; standardized catch per unit effort; Thunnus
albacares; generalized linear model; generalized additive model; tuna fishery; relative abundance;
Labuhan Lombok

1. Introduction

Tuna is one of the globally most important fish, caught by fishing vessels of more than 85 countries
and contributing 5.7% or 4.8 million t to the global seafood production in the year 2016 [1,2]. In 2016,
the value of tuna at all landing sites in the world was estimated to be more than US$10 billion
annually [2], with approximately an additional US$42.2 billion market value [3]. They provide food,
key nutrients, and income to coastal countries and their local communities [4]. Indonesia’s tuna
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fisheries are amongst the most important, diverse, and complex fisheries in the world. More than
130,000 vessels from 3 m in length to more than 100 m are operated with a total catch of more than
1 million tons of tuna per year [2,5]. Tuna is one of the most valuable species in Indonesia, with an
export value of US$677.9 million in 2017. Hence, tuna is an important generator of wealth across all
fleets, making it the most important seafood category for the country. The species of tuna caught in
Indonesian waters include yellowfin (Thunnus albacares), bigeye (Thunnus obesus), albacore (Thunnus
alalunga), and skipjack (Katsuwonus pelamis).

Tuna fishing has grown significantly in the waters of the Indonesian archipelago so that in 2016,
Indonesia was the top country globally for tuna landings [2,6]. In the last 10 years, Indonesia has
become involved in several regional fisheries management organizations, such as Indian Ocean Tuna
Commission, Commission for the Conservation of Southern Bluefin Tuna, Western and Central Pacific
Fisheries Commission, and the Inter-American Tropical Tuna Commission [7]. The Government
of Indonesia has shown its commitment to sustainable tuna fisheries by issuing a Tuna Fisheries
Management Plan in 2015 [7]. One of the most important components of this plan is the collection of
data to improve decision support systems for tuna fisheries management. A key issue for fisheries
scientists is the determination of fishing effort from the fishing fleets to be evaluated in relation to fishing
mortality and it is commonly used as a basic input in fish stock assessment models [8]. Knowing yield
per unit area and catch per unit effort can be complementary indicators of the stock status [9]; the first
refers to the total catch without any reference to the fishing pressure, while the second one links the
catch to the fishing efforts. Numerous projects and organizations have been involved in supporting the
Government of Indonesia to develop data collection systems for tuna, including the Indonesia Marine
and Climate Support (IMACs) project of United States Agency for International Development (USAID)
Indonesia that developed the original Ifish system in 2012, which is now administered by Provincial
Data Management Committees [10]. Data from tuna fishing boats are collected by enumerators through
standardized methods and then uploaded to an online database (Ifish data) that is accessible to fishers,
academicians and researchers, industries, and government. The Ifish data are available for advanced
studies, awareness, policy development, and decision-making [10].

The abundance and composition of tuna resources caught by fishers are closely related to human
factors, such as accessibility, proxy of fishing activity (boats characteristic), and experience in the sea,
and other natural factors, such as weather condition, SST, chl a concentration, and the state of fish
resources. Structural changes of the fishery resources are highly related to the utilization intensity of
those resources. The oceanic features such as current dynamics, fronts, eddies, and convergences [11],
and SST have been used to investigate productive frontal zones [12], which can further be used to
indicate potential tuna fishing grounds. Thermal (or color) gradients in satellite images that arise from
the circulation of water masses often indicate areas of high productivity [13]. Meanwhile, chl a data
can also be used as a valuable indicator of water mass boundaries and may identify upwelling that can
influence tuna distribution within a region [14,15]. Chl a concentrations over 0.20 mg·m−3, indicate
high phytoplankton abundance for tuna prey, such as small pelagic fishery resources [16,17].

Fisheries in West Nusa Tenggara, one of the 34 provinces in Indonesia (Figure 1), are characterized
as a deep-sea handline tuna fishery. This province contributes significantly to the national production
of tuna, with yellowfin tuna, T. albacares, the most abundant species landed, comprising ~70% of the
total catch [18]. Despite the significance of tuna in this province, few studies related to tuna fisheries
have been made in this region [19]. We utilize the ‘Ifish database’ of the Data Management Committee,
West Nusa Tenggara from 2012 to 2017, to investigate how CPUE of large tuna varies among different
temporal factors, such as year, month of the year, different fishing days, and boat lengths, as well as the
use of fish aggregation devices. The variation in CPUE of large T. albacares (>10 kg) related to sea-surface
temperature and chl a is also examined. Thousands of records of CPUE from the Ifish database are
analyzed using General Additive Models (GAMs) and Generalized Linear Models (GLMs) to evaluate
the importance of these difference factors. Finally, we use the selected most parsimonious model to
understand the seasonal variation of tuna resources and relative abundance related to environmental
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factors, i.e., chl a and sea surface temperature, aiming to provide recommendations for sustainable
utilization and management of the tuna fishery.
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Figure 1. Map of (a) Indonesian Fisheries Management Areas (FMAs) showing the study region within
West Nusa Tenggara and (b) fish landing and monitoring site, as well as the grids covering the fishing
ground in the eastern Indian Ocean, Bali and Flores Seas, West Nusa Tenggara, Indonesia; combinations
of letters (right) and numbers (below) are the grid codes for the fishing ground. N/A = not applicable
as there are no records from these grids.
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2. Results

2.1. Distribution and Variation of Nominal Catch per Unit Effort

In total, 2831 trips caught YFT using handlines from 2012 to 2017, with 596 of these trips (~21.1%)
fishing around fish aggregating devices (FADs). A total of 41 different grids were fished during all
trips, with FAD fishing taking place in 23 of these grids (Figure 1b). The average total catch of large
YFT was 15 fish from fishing trips with an average duration of 11 days (Table 1). The lowest mean
catch was 10 fish per trip in 2010 and the greatest mean was 25 per trip in 2012. The average catch
using FAD was 13 tunas per trip, while without FAD was 15 individuals per trip. The SST and chl a
concentration at all fishing grounds ranged from 25.7 to 32.0 ◦C and 0.07 to 1.80 mg·m−3, respectively.
The lowest mean annual SST was 28.3 ◦C in 2017, while the highest mean SST was 30.5 ◦C in 2012.
For chl a, the lowest and the highest were 0.17 mg·m−3 (2012) and 0.42 mg·m−3 (2017), respectively
(Table 1, Figures 2 and 3).
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Figure 2. Box plots of catch per trip, number of large (>10 kg) Yellowfin Tuna (YFT), Thunnus albacares,
YFT individuals per trip by (a) year, (b) monthly average from all years, and (c) fish aggregating device.
Dark horizontal line shows the median, boxes cover the 25th and 75th percentiles and the whiskers
show the 5th and 95th percentiles.
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Table 1. Summary of the variables used in the analysis of large yellowfin tuna (>10 kg), Thunnus albacares,
caught from West Nusa Tenggara, Indonesia, showing the mean value (±1 SD) for Yellowfin Tuna catch,
trip duration, length of boat, SST, and chlorophyll-a (chl a) from this study period (2012–2017).

Year
Catch of YFT
(Individual)

Trip Duration
(Days)

Length of
Boat (m)

SST
(◦C) Chl a (mg m−3)

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

2012 (n = 131) 25 ± 18 10.45 ± 3.11 17.30 ± 3.63 30.48 ± 0.72 0.17 ± 0.03
2013 (n = 816) 15 ± 11 10.73 ± 3.60 16.03 ± 2.97 29.07 ± 1.05 0.24 ± 0.12
2014 (n = 796) 14 ± 12 11.84 ± 3.69 14.34 ± 2.65 28.48 ± 1.35 0.33 ± 0.25
2015 (n = 603) 16 ± 14 12.16 ± 3.36 14.58 ± 2.81 28.50 ± 1.42 0.33 ± 0.20
2016 (n = 400) 14 ± 12 11.61 ± 3.73 13.62 ± 2.33 29.55 ± 1.11 0.18 ± 0.06
2017 (n = 117) 10 ± 9 11.65 ± 3.77 13.23 ± 1.75 28.29 ± 1.13 0.42 ± 0.31

2012–2017 (n = 2831) 15 ± 13 11.48 ± 3.63 14.87 ± 2.95 28.89 ± 1.33 0.28 ± 0.19
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surface temperature (SST).

An initial comparison of the total catches of large YFT (nominal/unstandardized catches) using
analysis of variance indicated that they differed significantly among years and months (p < 0.01,
Table 2). The highest and lowest annual mean catches were recorded in 2012 (25 individuals)
and 2017 (10 individuals), respectively, while the highest and lowest monthly mean catches were
in February (7 individuals) and October (20 individuals), respectively. Average catch of YFT
(nominal/unstandardized catches) at the areas (grids) with FADs was significantly higher (p < 0.001,
Table 2) than the catch at the areas (grids) without FAD. We also detected some nonlinear patterns
when we plotted the YFT catches against the duration of fishing trips (days at sea), boat length, SST,
and chl a concentration (Figures 2 and 3).
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Table 2. Analysis of variance for nominal catch of large Yellowfin Tuna (>10 kg), Thunnus albacares,
landed in West Nusa Tenggara, Indonesia.

Parameter Degree of Freedom Sum of Square Mean of Square F Value p-Value

Year 5 18,740 3748 24.57 <2 × 10−16

Residuals 2825 430,887 153
Month 11 38,558 3505 24.04 <2 × 10−16

Residuals 2819 411,069 146
FAD 1 1788 1787.9 11.29 0.000788

Residuals 2829 447,839 158.3

2.2. Distribution and Variation of Standardized Catch per Unit Effort

When all factors were included in a single GLM and GAM, the most parsimonious model to explain
the CPUE of large YFT included year, month, days at sea, boat length, chl a, and SST. We excluded
the FAD because it did not significantly affect the standardized YFT catch. Later, we found that
GLM models with higher Akaike information criterion (AIC) values had residuals that were not
homogeneous (Table 3, Appendix A). Meanwhile, GAM models showed lower AIC with no obvious
pattern of residuals detected (Table 3, Appendix A), hence we selected the generalized additive model
to predict our data. We found that the best fitted GAM was: GAM Negative Binomial (NB) Model:
CPUE~Year + month + spline (boat length) + spline (days at sea) + spline (Chl a) + spline (SST).

The factors of month, days at sea, year, boat length, and chl a concentration significantly affected
the catch of YFT as a parametric effect, while days at sea, SST, and Chl a were significant when included
as non-parametric terms (Table 4, Figure 4).

Table 3. Description of the different models used to test the best fit model for large Yellowfin Tuna
(≥10 kg), Thunnus albacares, and their over-dispersion and AIC values to select the “best” model
(lo = loess/local regression; span = value to control loess smoothing (0.1–0.9); s() = smoothing spline;
θ = df = degrees of freedom. Plots of residuals for each model are shown in Appendix A.

No Full Model Over-Dispersion AIC

Generalized Linear Models

1 CPUE ~ Year + month + boat length + days at sea +
Chl a + SST; family = Gaussian NA 22,263.00

2
CPUE ~ Year + month + boat length + days at sea +
Chl a + SST;
family = Poisson

9.8 37,384.00

3
CPUE ~ Year + month + boat length + days at sea +
chl a + SST;
family = negative-binomial

9.8 20,789.00

Generalized Additive Models

4

CPUE~ Year + month + lo(boat length, span = 0.5)
+ lo(days at sea, span = 0.5) + lo(Chl a, span = 0.4) +
lo(Chl a, span = 0.2);
family = negative binomial (θ = 1.75)

NA 20,415.73

5
CPUE ~ Year + month + s(boat length, df = 3) +
s(days at sea, df = 5.5) + s(Chl a, df = 9.4) + s(SST,
df = 9); family = negative binomial (θ = 1.8)

NA 20,403.25
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Table 4. Summary for the best fitted Generalised Additive Model (GAM) for large Yellowfin Tuna
(>10 kg), Thunnus albacares, landed in West Nusa Tenggara, Indonesia.

Parameter Degree of Freedom Sum of Square Mean of Square % MS F Value p-Value

ANOVA for Parametric Effects

Month 11 309.93 28.1752 35.64 27.88 >0.0001
Year 5 65.61 13.1227 16.60 12.9852 1.63 × 10−12

Chl a 1 5.32 5.3237 6.73 5.2679 0.022
Boat length 1 6.85 6.8485 8.66 6.7768 0.009

SST 1 0.08 0.0838 0.11 0.0829 0.773458
Days at sea 1 24.49 24.492 30.98 24.2354 9.02 × 10−07

Residuals 2787 2816.51 1.0106 1.28

ANOVA for Nonparametric Effects

Month
Year
Chl a 8.4 2.1923 0.02299

Boat length 2 2.8834 0.05611
SST 8.1 6.072 7.65 × 10−08

Days at sea 4.5 22.0429 <2.2 × 10−16
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Figure 4. Factor (year and month) and smoothing line (boat length, days at sea, chl a, and SST) of
generalized additive model for number of large (>10 kg) Yellowfin Tuna, Thunnus albacares, individuals
per trip by (a) year, (b) month, (c) boat length, (d) days at sea, (e) chl a, and (f) SST; degrees of freedom
were determined using cross validation. Density of dots on X-axis reflects the number of points.

The standardized CPUE according to the estimated marginal mean of YFT catch (using length of
boat = 9 m, trip = 9 days at sea, SST = 29.25 ◦C, and chl a = 0.15 mg·m−3) showed a fluctuating pattern
for both monthly and annual CPUE (Figures 5 and 6). Monthly standardized CPUE ranged from 7.6 in
February to 19.3 in October and the annual standardized CPUE ranged from 10.8 in 2017 to 21.2 in 2012.
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When estimating the standardized CPUE from chl a concentration and SST, higher CPUEs were estimated
at lower chl a concentrations, while CPUEs were not linearly influenced by SST (Figures 4 and 7).
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3. Discussion

Strong seasonal and annual patterns were recorded in the catch data of large (>10 kg) Yellowfin
Tuna (YFT) in Lombok Island waters from 2012 to 2017. Based on GAM analyses, we found significant
changes in the CPUE of large YFT recorded both among months of the year and among years.
These patterns of YFT catch were also influenced by chl a concentration and ocean-atmosphere
phenomena, such as sea-surface temperatures (SST) and El Niño events. The catch rates of large YFT
were greater during the transition period of SST and chl a concentration, i.e., May–July (from rainy to dry
seasons) and October–November (from dry to rainy seasons). During May and July, the SST decreased,
and the chl a concentration increased, while the converse of this pattern was seen from October to
November, i.e., SST increased and chl a concentration decreased. Chl a concentrations are influenced
by SST [20], which in turn influences the net primary productivity of plankton. The abundance of tuna
increases in high-productivity zones (such as upwelling zones, around islands, or at current interfaces),
which attracts tuna to areas with greater food supply [21]. Therefore, the relative densities of the fish
usually follow the distribution of primary production, with some time delays or lags.

Despite the limitations of the CPUE method, which include catch data and information about
population dynamics that can help interpret productivity of fisheries and identify contradictions [22],
our study overcome the shortcomings by adding environmental factors when considering the variation
in standardized CPUE of large YFT among years. The greatest mean catches were recorded in 2012
and 2015, years with cooler monthly mean SSTs and mostly greater mean monthly chl a concentrations
than in other years. A coupled ocean-atmosphere mode, namely an El Niño event (cooler waters
and higher primary production), took place in the tropical Pacific Ocean during 2012 and 2015–2016,
which might have influenced Lombok waters through the Indonesian Throughflow that passes through
the Lombok Strait. In 2012, the El Niño occurred in August and September and was categorized as
a weak El Niño [23], while in 2015, the El Niño event started to develop from April to May 2015,
reached its maximum between November and December 2015, and finished in April–May 2016 [24].
This event had an El Niño index of 3.4 and was classified as a strong event [25], one of the strongest
events recorded during the last two decades [24]. During El Niño events, it is likely that the water
movement from Makassar Strait has lower flow [26], thus it could have influenced the upwelling level
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in the coastal waters of Lombok and Sumbawa waters because cold water with higher productivity in
deep water flows to the surface. During the El Niño events, the coastal upwelling level in terms of
chl a concentration was more intense than in other years due to no disturbance from the Indonesia
Throughflow waters from Lombok Strait [27]. The abundance of various economically important fish
species such as tuna is influenced by environmental conditions and food availability [21,28]. To a
certain degree, the water movement related to the El Niño event determines the distribution of water
temperature [29]. The distribution and abundance of large YFT are closely associated with physical
changes in the ocean, such as temperature changes, storms (length and magnitude or intensity), and the
El Niño, as well as variations in the mixing depth layer and disturbances caused by the wind [21,30].
Our study emphasis on role of ENSO using longer time series data and investigating the spatial
variability of key environmental variables SST and food distribution in the Indian Ocean in relation to
tuna distribution and its relationship with climate on different time scales could further improve tuna
habitat models, as also suggested by previous researchers [31].

According to the best selected GAM model, the standardized CPUE can be significantly predicted
by specific factors, such as month, fishing trip (days at sea), year, boat size, and chl a. The SST
and chl a concentrations are the main variables that contribute to the upwelling phenomenon that
influences the abundance of fish in this area. The peak of chl a concentration occurred in July and
August, which indicated annual upwelling that used to occur annually in this region from June
(see Ningsih et al. [32]). This was followed by the high catch of the mature size of tuna in October,
and slightly reduced catch in November–December during 2012–2017, about three months after the
peak in chl a. The “time-lag” between the upwelling event and the season of tuna catch is due to
effect of trophic conversion, where the tuna prey reaches the highest abundance 3–7 months after the
peak of phytoplankton or pigment concentration [14,33,34]. The influence of chl a on the catch of tuna
resulted in varying degrees of lag effect on trophic conversion. Ortega-Garcı´a and Lluch-Cota [34]
found a 3- to 5-month time-lag between high chl a and high tuna abundance in the tropical Pacific,
while Lehodey et al. [33] recorded a longer time-lag of 3 to 7 months. Meanwhile, the correlation
between upwelling time may have a direct correlation with tuna juveniles only [35]. Although many
studies concluded that SST has an influence on tuna abundance, we did not find a significant parametric
effect of SST on the standardized CPUE of large YFT, only a non-linear effect. A plausible explanation
for our finding is that SST contributed to a nonlinear effect on the abundance of YFT in Lombok Island
waters. Dunstan et al. [20] stated that there is no consistent correlation and mechanism between SST
and chl a variation, and warming water results in decreasing chl a concentration as well as leading to
increased chl a concentration. Additionally, YFT can efficiently regulate their body temperature and
allow themselves to make large horizontal and vertical migrations, hence reducing the effect of SST on
the CPUE [14,36]. Lan et al. [14] found that subsurface water temperature was linearly affecting the
abundance of YFT, rather than the SST itself.

This study revealed a significant correlation between environmental parameter fluctuation and
regular seasonality and annual abundance of YFT, indicated by seasonal and annual patterns of
variation in the standardized catch per unit of effort (CPUE) (Figure 5, Table 4). These dynamics of
the large tuna influence the movements of tuna hand-line fishers, especially those who fish in grids
without FADs. Currently, small-scale tuna management in West Nusa Tenggara has not yet adopted
spatial management, e.g., using time/area closures on the tuna fishing grounds. These closures might
be effective in conserving juvenile tuna and reducing bycatch. Our results suggest that the government
could consider implementing a temporal closure in the waters of southern Lombok for two months after
the chl a concentration reaches the highest level from August to September. At this time, the abundance
of large YFT is low and the abundance of juvenile YFT is probably very high due to the upwelling
phenomenon. A closure at this time would thus allow the juvenile tuna to grow without experiencing
fishing mortality and could lead to greater recruitment of larger fish. A three-month closure on FAD
fishing in the Atlantic appears to have been successful in reducing the catch of juvenile YFT and bigeye
tuna [37]. The results of area and month closures for tuna fishing in the Banda Sea, of southern Maluku
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Province, also indicate that a combination of area and temporal closures would aid in the recovery
of YFT stocks and could potentially be beneficial for fisheries [38]. However, the decision of location
choices, sizes, shapes, and duration of closure (seasonal or for a number of years) should be carefully
studied and characterized by environmental parameters.

4. Materials and Methods

The waters of Indonesia’s Exclusive Economic Zone (EEZ) are divided into 11 fisheries management
areas (FMAs) that were formed in 1999 to optimize fisheries management in Indonesia [39]. The 11 FMAs
fall into two major regional fishing areas recognised by the FAO: The Eastern Indian Ocean zone
(FMAs 571, 572, and 573) and the Western and Central Pacific (FMAs 711, 712, 713, 714, 715, 716, 717,
and 718). This study took place in Lombok Island, West Nusa Tenggara (WNT) Indonesia, part of FMA
713, which includes the relatively shallow waters of the Flores Sea and FMA 573 in the eastern Indian
Ocean (Figure 1). The waters in this FMA are characterized as deep sea, with depths of up to 1000 m
within 5 nautical miles of the coast in some locations. Upwelling events occur frequently in these
waters due to its bathymetry, currents, and other oceanography features [32]. Small-scale fisheries
predominate in this province and the most prominent landing sites in Lombok Island are Labuhan
Lombok, Tanjung Luar, and various traditional landing sites, such as Bangko-bangko and Tanjung
Ringgit (Figure 1a). Labuhan Lombok is the most important landing site for tuna on Lombok Island as
this is where yellowfin tuna, skipjack tuna, and frigate tuna (Auxis thazard) are all landed at its coastal
harbor (Figure 1).

4.1. Data Collection

4.1.1. Fisheries Data

We used landing data for tuna from the Data Management Committee (DMC) of West Nusa
Tenggara province, which oversees and manages data collection and management for the tuna fishery
in the province. The provincial fisheries office employs three trained enumerators to collect data from
each trip in Labuhan Lombok during working days (Monday to Friday; at least 20 days a month)
and one supervisor to oversee and ensure data quality. We extracted data 2012 to 2017 from the Ifish
system for this region and only used data from fishing trips that used handlines (Table 5), as this is
the dominant fishing gear used in the tuna fishery in Lombok Island [18]. Note that data collection
in 2012 started in February and in 2017 covered the months from January to October. The analyses
concentrated on large yellowfin tuna (≥10 kg) that have reached maturity [10,40].

Table 5. Summary of the variables extracted from the Ifish data base provided through the data
Management Committee of West Nusa Tenggara province in eastern Indonesia. Data retrieved
December 2017.

Variable Type Description

Year Categorical Year of trip (2012–2017)
Month Categorical Month of trip (January–December)

Days at sea Numeric Total day of fishing trip
Boat length Numeric Length of boat in meters

Fish aggregating device (FAD) Categorical Fishing on FAD or not
Fishing Ground Categorical Grid code of fishing areas (Figure 1)

Catch Numeric Number of fish with weight ≥10 kg caught on each fishing trip

4.1.2. Sea Surface Temperature and Chlorophyll Data

SST and chl a data were downloaded from the Environmental Research Division’s Data Access
Program (ERDDAP; https://coastwatch.pfeg.noaa.gov/erddap/info/index.html). SST measurements
were gathered by the Moderate Resolution Imaging Spectroradiometer (MODIS) that was carried
aboard by the NASA’s Aqua spacecraft, while chl a measurements were also gathered using the MODIS

https://coastwatch.pfeg.noaa.gov/erddap/info/index.html
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and generated according to algorithm developed by Hu et al., 2012 [41]. We selected the following data
from this source: grid code (total area of a grid = 1.2 million ha) (see Figure 1b), days at sea for each
fishing trip, and the catch of large YFT. We used average SST and chl a for each fishing trip: for trips of
≤3 d = average over the days of the trip; trips of 4–10 days in length = 8–day mean value; and for trips
of >10 d at sea, the 30 d mean value. When the daily SST or chl a data were not available, we used
moving averages (see Johnston et al. [42]) to estimate the missing values.

4.2. Data Analyses

Prior to the statistical analyses, we plotted all data (catch versus all factors) and then used analysis
of variance [43] to understand the patterns of variation in unstandardized catch and the factors
contributing towards this variation. Then, we used Generalized Linear Models (GLM) and Generalized
Additive Models (GAMs) to standardize CPUE and to understand the influence of month of the year
(as a proxy for the season), SST, and chl a on the abundance of large YFT. The full models for both
types of analyses were:

1. CPUE~Year + month + boat length + days at sea + Chl a + SST . . . fitted with a simple linear
regression or Generalized Linear Model (GLM);

2. CPUE~Year + month + lo (boat length) + lo (days at sea) + lo (Chl a) + lo (SST) . . . fitted with a
Generalized Additive Model (GAM) using a loess/local regression, lo [44];

3. CPUE~Year + month + s (boat length) + s (days at sea) + s (Chl a) + s(SST) . . . fitted with a
Generalized Additive Model (GAM) using a smoothing function (s(x)) [44].

All models were run using R software [45] and the best model was selected using the dredge
function through automated model selection with subsets of the full model and using the Akaike
information criterion (AIC) values [46]. We then inspected the residuals from selected models using
GLMs with different families and GAMs with different smoothing functions, and compared the fit of
the models using the AIC values to determine the most parsimonious model [47]. Multi-collinearity
was checked using the variance inflation factor [48]. We estimated the standardized CPUE for each
month, year, range of SST, and range of chl a according to the mode of the set of data values.
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