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Abstract: Invasive species often cause negative ecological and economic effects. Florida has >20
established invasive fish species but only seven exist in saltwater. The present study examined
Belonesox belizanus (Pike Killifish), a Central American euryhaline fish introduced to Tampa Bay
(west-central Florida) in the early 1990s, which has quantifiably reduced populations of small-bodied
native fishes and may compete with prized sportfish juveniles in estuarine nursery habitat. Long-term
monitoring revealed that B. belizanus occurs in estuarine waterbodies along a 31-km stretch of the
bay’s eastern fringe, with a second, smaller population in two western tributaries. Spread rate was
estimated to be 5.5–13 km year−1, intermediate among invasive poeciliids. A novel implementation of
boosted regression tree modeling to assess B. belizanus habitat predictability found greater probability
of presence with decreasing water depth and pH, whereas presence tended to be greatest at polyhaline
salinity. It is hypothesized that B. belizanus distribution in Tampa Bay is constrained by deep, seawall
habitats acting as ecological barriers. Further B. belizanus spread therefore may be most likely to occur
by human release (from aquaria or bait buckets) or bird carry-off. Newly restored tidal habitat within
the current range probably will be invaded quite quickly by B. belizanus.

Keywords: Belonesox belizanus; nursery; Tampa Bay; invasive fish; ecological barrier; boosted
regression tree; predation; estuary; habitat; prediction

1. Introduction

Invasive species, habitat degradation or loss, and pollution are the most important threats to native
fishes in the USA [1]. Invasive species are defined by the United States government as “with regard to
a particular ecosystem, a non-native organism whose introduction causes or is likely to cause economic
or environmental harm, or harm to human, animal, or plant health” [2]. The number of established
nonnative fishes in the USA more than doubled between 1970 and 2013 [3]. Negative ecological effects
from invasive fishes can include predation, competition, and interference [4]. Economic losses from
invasive fishes have been estimated at several billion US dollars annually [5]. Successful establishment
of invasive fishes in new habitats, whether through intentional or unintentional releases, may depend
on a variety of factors including broad physiological tolerance, rapid dispersal, and similarity of habitat
to the native range [6].

Prediction of invasive fish presence and habitat use is one of the most important applications
of species distribution modeling [7]. Establishing species-habitat relationships that are general and
broadly applicable rather than idiosyncratic to a narrow set of conditions is desirable for allowing
successful prediction of presence in unsampled areas [8]. Prediction serves as an important means
of validating the generality of observed species-habitat relationships and was recently argued by
Houlahan et al. [9] to be essential for demonstrating ecological understanding.
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Peninsular Florida is likely to contain more invasive freshwater fish than any other similarly
sized area in the world [10], probably because the warm climate facilitates survival of tropical fish
that are released from freshwater aquaria or that escape from fish farms [11]. Although freshwater
invasive fishes are prevalent, there are relatively few established invasive saltwater or estuarine fishes
in Florida: Schofield and Loftus [12] described 22 permanently established freshwater fishes, whereas
Schofield et al. [13] noted only two permanently established marine fishes (the lionfishes Pterois volitans
and Pterois miles). Six of the permanently established freshwater fishes are euryhaline and occur
in saltwater habitat [13]. The Pike Killifish Belonesox belizanus Kner (Pisces: Poeciliidae) is among
these species and was introduced to Miami-Dade County, south Florida, in 1957 when ~50 excess
medical research specimens were released into an agricultural canal [14]. Although the main invasive
distribution of B. belizanus is in south Florida (Figure 1), a secondary introduction occurred in the
Tampa Bay watershed (west central Florida), possibly as a result of escape from a tropical aquaculture
facility [15], and is the subject of the present study.

B. belizanus is native to Central American Atlantic drainages south of the Punta del Morro
(Mexico) to northeastern Costa Rica [16,17] and although the largest species within the Poeciliidae,
it is still relatively small (maximum size of 200-mm total length; [17]). All life stages of B. belizanus are
carnivorous [17], with prominent teeth and a novel gape adaptation that allows the species to consume
prey that are relatively large for its size [18]. The primary prey for all life stages (including neonates) is
fish [14,19–21]. The ability to switch to invertebrate prey such as small shrimps is considered to allow
B. belizanus to be a successful invader despite its specialized, invariant feeding mechanism [22]. In south
Florida, B. belizanus was observed to deplete small resident fish populations after introduction [14,19]
and the species was recently classified at the upper end of medium risk for potential negative effects [23].
Recognition of the ecological risk from B. belizanus is evidenced by the species being prohibited for
possession in a number of American states, although not Florida.

There is strong quantitative evidence that the Tampa Bay population of B. belizanus has significantly
reduced abundance of small-bodied resident fishes, in particular Sailfin Molly Poecilia latipinna, Eastern
Mosquitofish Gambusia holbrooki, and Sheepshead Minnow Cyprinodon variegatus [24]. Although there
is little evidence for direct effects on abundance or size distribution of estuary-dependent migratory
species, which generally grow to larger sizes and recruit from larger source populations than resident
fishes, the depletion of resident prey fishes by B. belizanus is of concern for its potential indirect effects
on estuary-dependent species through competition [15]. In particular, Tampa Bay provides important
nursery habitat for Common Snook Centropomus undecimalis, a prized sportfish supporting a substantial
recreational fishery (>277,000 directed trips year−1 worth $15.8 M year−1; [25]), which experienced
a considerable cold-kill-related decline in recent years [26] and occurs in estuarine areas in which
B. belizanus is also found [27–29].

Knowledge of B. belizanus spread, distribution, and habitat associations in Tampa Bay is therefore
of considerable importance both from the perspective of biodiversity (structuring of resident native
fish assemblages) and potential effects on managed fisheries. Qualitative accounts of B. belizanus
habitat in the native range describe occupation of a variety of shallow-water, low-flow habitats ranging
from freshwater to hypersaline, including mangrove swamps, sinkholes, ponds, creeks, and river
backwaters [17,30–32]. Quantitative evaluations of B. belizanus habitat have included multispecies
analyses in the native range [33–36] and a detailed single-species evaluation of associations with
physicochemical parameters from several datasets collected in south Florida [37]. The latter study
found B. belizanus density was correlated with salinity and temperature at the southernmost, estuarine
sites, whereas pH was most associated with changes in density at the northern, inland sites.
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Figure 1. Presence of Belonesox belizanus in estuarine waterbodies of Tampa Bay, 1989–2007/2008, 
amended with permission from [24], with inset showing collections from elsewhere in Florida [15]. 
For main map, red dots represent presence (with a red star indicating the first occurrence, 1994), green 
dots represent absence. QC = Question Mark Creek; RW = Riverview West Creek; DC = Dogleg Creek; 
MBC = Mill Bayou Canal; SCS = Sun City Slough. Total n = 16,113 shoreline seines (see Supplementary 
Material). Underlined waterbodies were included in the boosted regression tree modeling of habitat 
predictability. Collections from elsewhere in Florida represent clustered records ranging from one 
specimen (white circle) to 20 or more specimens (dark blue circle). 

The present study used long-term monitoring and shorter duration sampling efforts [24] to ask 
three main questions. First, what is the distribution of B. belizanus in estuarine portions of the Tampa 
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Figure 1. Presence of Belonesox belizanus in estuarine waterbodies of Tampa Bay, 1989–2007/2008,
amended with permission from [24], with inset showing collections from elsewhere in Florida [15].
For main map, red dots represent presence (with a red star indicating the first occurrence, 1994), green
dots represent absence. QC = Question Mark Creek; RW = Riverview West Creek; DC = Dogleg
Creek; MBC = Mill Bayou Canal; SCS = Sun City Slough. Total n = 16,113 shoreline seines
(see Supplementary Material). Underlined waterbodies were included in the boosted regression
tree modeling of habitat predictability. Collections from elsewhere in Florida represent clustered
records ranging from one specimen (white circle) to 20 or more specimens (dark blue circle).

The present study used long-term monitoring and shorter duration sampling efforts [24] to ask
three main questions. First, what is the distribution of B. belizanus in estuarine portions of the Tampa
Bay watershed? Examination of the species’ distribution allowed hypotheses to be developed for
the potential factors constraining B. belizanus within Tampa Bay and, by extension, south Florida.
Second, what is the spread rate of B. belizanus? Given the observed negative effects of the species,
knowledge of spread rate is vital to understanding the expansion of the potential risk posed by
B. belizanus, particularly because global climate change may provide more favorable temperatures
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over a greater spatial area of Florida and other states in the future [38]. Third, what are the habitat
associations of B. belizanus? Following the philosophy of Houlahan et al. [9] that prediction should
be used to aid ecological understanding, the present study employed a novel method to assess
predictability of habitat use in test waterbodies based on boosted regression tree models developed
from independent, training waterbodies. This allowed examination of the extent to which observed
B. belizanus–habitat relationships were general and broadly applicable rather than idiosyncratic and
limited to specific waterbodies. The present study is the first quantitative, single-species examination
of B. belizanus–habitat relationships based solely on data collected in situ at the time of sampling,
and demonstrates a method that can also be used for other species and locations. The main conclusions
of the present study are that the principal Tampa Bay population of B. belizanus is distributed in eastern
estuarine waterbodies, with a smaller, spatially restricted western population that is likely to have
been a separate introduction. Although the rate of B. belizanus spread is comparable to that of some
other invasive fishes, the distribution may be constrained by soft ecological barriers, which emphasizes
the need to manage human-mediated spread. Success of B. belizanus in Tampa Bay appears facilitated
by its spread rate, broad environmental tolerance, and relatively distinct ecological niche.

2. Materials and Methods

All data used in the present study are provided as Supplementary Material.

2.1. Study Area and Sampling Techniques

Tampa Bay is Florida’s largest open-water estuary (1031 km2; [39]), a subtropical system that,
although greatly altered by urbanization, still has relatively large areas fringed by mangroves, salt
marshes, and other natural vegetation [29,40,41]. Four main tributaries (the Hillsborough, Alafia,
Little Manatee, and Manatee rivers) provide freshwater inflow, with approximately 100 smaller tributaries
also draining to the bay (Figure 1; [42]). The smaller tributaries and creeks range from relatively natural
mangrove- or saltmarsh-lined waterbodies to urbanized systems with considerable amounts of seawall
and riprap. Physicochemical conditions vary widely and salinity ranges from nearly fresh to polyhaline,
depending on tides, precipitation, and wind. Tampa Bay is described in detail by Lewis and Estevez [39].

Analyses presented herein used data collected in 1989–2008 during diurnal shoreline seine
sampling within estuarine waterbodies of the Tampa Bay watershed by the Florida Fish and Wildlife
Conservation Commission, Fish and Wildlife Research Institute’s Fisheries-Independent Monitoring
program [24]. Data from trawling in deeper areas and seines deployed away from the shore were
not considered because B. belizanus was never collected in these habitats. In all sampling, B. belizanus
specimens were identified, counted, and measured (standard length, mm). Descriptive habitat data
and physicochemical parameters were also recorded, as described further below. Secchi depth as
a measure of water clarity was also measured, but is not included in analyses because sampling sites
were sufficiently shallow that the Secchi disk was almost always visible on the substrate. Further details
of the sampling procedures can be found elsewhere [24,43].

2.2. Data Analysis

2.2.1. Distribution and Spread Rate

Coordinates of sites at which B. belizanus was present or absent during seine sampling were
overlaid on maps of the Tampa Bay watershed to assess the species’ distribution. Long-term sampling
in the lower Little Manatee River watershed was used to examine the rate of spread following first
occurrence. This watershed was selected to examine rate of spread because it offered the most
comprehensive, consistent longitudinal sampling and monthly sampling had already commenced
before first occurrence (in contrast to the Alafia River, for example, wherein sampling was only seasonal
at the time of first occurrence). Monthly 21.3-m shoreline seine sampling in the Little Manatee River
watershed occurs in the lowermost 13 km of the river main stem and accessible adjacent habitats
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(Figure 2). Sampling is stratified into upstream and downstream zones 7 km upstream of the river
mouth (Figure 2), with 4 samples per month in each zone. The temporal sequence of observations
suggested that B. belizanus invaded the Little Manatee River from downstream to upstream. Following
Ben Rais Lasram et al. [44], the rate of spread (S) was calculated:

St =
(dt − dt−1)

(Dt − Dt−1)
(1)

where d is distance upstream of the mouth of the Little Manatee River (km), D is number of days
from the first observation in the river, t is a given observation of B. belizanus, and t − 1 is the previous
downstream observation of B. belizanus.
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Figure 2. Presence (red dots with last two digits of year annotation) of B. belizanus in the lower Little
Manatee River sampling area (km 0–13) from regular shoreline seine monitoring, 1997–2007. The first
six presences are highlighted, along with the most upstream presence. The broken yellow line divides
the upstream and downstream zones of monthly sampling. The inset graph shows rate of upstream
spread from the first to sixth occurrence in 1997/1998.

2.2.2. Habitat Predictability

Habitat predictability of B. belizanus was investigated using data collected monthly in 2006 or 2007
with 9.1-m seines in 11 estuarine waterbodies within the species’ range in the Tampa Bay watershed,
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consisting of small creeks, canals, and adjacent non-creek/canal habitats (river main-stems or bayous)
(Figure 1, Tables 1 and 2; [24]). The original purpose of sampling in these waterbodies was to assess
the value of tidal creeks/canals as nekton habitat, with the adjacent non-creek/canal habitats generally
also sampled to provide a contrast. Each waterbody was divided into longitudinal spatial strata
(~200 m long) and daylight sampling was undertaken monthly at randomly chosen locations between
each creek/canal’s mouth and the upstream extent that could be reached within time or access constraints.
Sites were chosen from a set of predefined geographic coordinates with a random number generator.
The number of samples per waterbody was proportional to the extent of the waterbody that was sampled,
with two samples per spatial stratum per month; thus, the number of seine samples ranged from four
per month in smaller waterbodies (250–300 m long) to 10 per month in larger waterbodies (1000 m long).
Adjacent waterbodies (rivers or bayou) also received two samples per month per stratum, with one
stratum located upstream and downstream of the creek/canal mouths. A total of 935 shoreline seine
samples was collected. Additional detailed description of the studied waterbodies is provided in [21,45].

Relationships between B. belizanus probability of presence and a variety of habitat predictor
variables were examined using Boosted Regression Trees (BRT; [46]). As described by Elith et al. [46],
BRT is a machine learning method that combines regression trees (models that relate a response to their
predictors by recursive binary splits) and boosting (an adaptive method for combining many simple
models to give improved predictive performance), resulting in final models that are essentially additive
regression models in which individual terms are simple trees, fitted in a forward, stagewise fashion.
The advantages of BRT include no need for prior data transformation or elimination of outliers, ability
to fit complex nonlinear relationships, and inclusion of interactions between predictors [46].

Habitat variables were assessed in the BRT modeling for their potential to influence the probability
of presence of B. belizanus based on previously observed or hypothesized relationships. Julian day
was included to represent seasonality [37]. Waterbody type was included to test for the potential
importance of mesohabitat, given previous qualitative observations of habitat preference (Miller [30]:
“swamps and the eddies of streams”; Turner and Snelson [20]: “ . . . habitats with some degree of
cover, such as mangrove swamps and narrow, shallow canals with dense aquatic vegetation . . . not
found in large, open canals or borrow ponds”; Greenfield and Thomerson [31]: “ . . . shallow water
and areas of heavy vegetation”, “temporary ponds that form during . . . flooding”, “larger rivers and
streams . . . usually found close to shore, in slower-moving backwater areas”; and Miller et al. [17]: “
. . . ciénegas, lagoons, ponds, and slow-moving parts of creeks and rivers . . . ”). Waterbodies were
classified as creek (natural tributaries of larger rivers), canal (dredged inlets of larger rivers), bayou
(large open embayment of a river), and river (mainstems of the two main rivers within the B. belizanus
range, Alafia and Little Manatee). Dominant shoreline type at each sampling site was included because
of qualitative observations of differences in B. belizanus presence between vegetation type [20], and was
characterized as emergent marsh (primarily black rush, Juncus roemarianus), mangrove (red mangrove,
Rhizophora mangle, or black mangrove, Avicennia germinans), small terrestrial vegetation (primarily leather
fern, Acrostichum danaefolium), shrubs/trees, or artificially hardened (e.g., sea wall or rip rap). Associated
with shoreline type were qualitative variables for whether or not the shoreline was inundated during
sampling and whether or not the shoreline vegetation was overhanging the sampling site; these variables
could influence the probability of presence along shoreline habitat, as shown for other fishes [47,48].
Substrate type was represented in the BRT models as mud, mud-sand, sand, or some oyster/rock. Water
depth (at the seine’s bag, i.e., 1.5 m from shore; with sampling limited to sites 1.2 m deep or less) and site
gradient (calculated as the difference in water depth between the seine’s bag and the seine’s wing at the
shore, divided by the distance between bag and shore, and expressed as a percentage) were included
to address these variables’ potential importance for predation risk [49]. Physicochemical variables
previously shown to correlate with B. belizanus density in south Florida [37] were also included in the
BRT models: salinity, temperature, dissolved oxygen, and pH. These physicochemical variables were
measured at 0.2-m depth with a Hydrolab® multiprobe (OTT Hydromet, Kempten, Germany), reflecting
B. belizanus’s tendency to inhabit surface waters [30].
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Table 1. Tampa Bay estuarine waterbodies sampled to assess Belonesox belizanus habitat predictability, including mean and range of continuous habitat predictors.

Waterbody Name Waterbody
Type Year Sampled Number of 9.1-m

Seine Samples Temperature (◦C) Salinity (Practical
Salinity Scale)

Dissolved Oxygen
(mg L−1) pH Depth (m) Gradient (%)

Alafia River River 2006 167 22.9 (13.9–30.3) 3.5 (0.1–20.1) 7.3 (3.4–16.5) 7.7 (6.8–8.8) 0.5 (0.1–1.0) 20.6 (0.0–66.7)
Andrews Creek Creek 2007 72 25.1 (17.3–32.3) 22.4 (6.3–32.8) 5.5 (2.9–9.9) 7.8 (7.5–8.1) 0.5 (0.2–1.0) 21.4 (0.0–66.7)

Cockroach Creek Creek 2007 120 23.8 (16.1–29.7) 19.3 (0.4–33.0) 3.8 (0.3–12.2) 7.3 (6.8–8.1) 0.5 (0.2–1.2) 21.1 (0.0–60.0)
Curiosity Creek Creek 2006 120 22.5 (11.9–30.0) 3.3 (0.2–17.2) 6.5 (2.7–10.6) 7.3 (6.4–7.9) 0.7 (0.1–1.2) 26.8 (0.0–66.7)
Dogleg Creek Canal 2006 48 22.6 (15.1–28.3) 1.3 (0.2–4.0) 6.9 (4.5–9.8) 7.7 (7.3–8.3) 0.7 (0.3–1.0) 29.0 (6.7–53.3)
Hayes Bayou Bayou 2006 48 23.7 (12.8–30.5) 11.6 (0.6–23.6) 7.0 (3.6–10.3) 7.6 (7.0–8.3) 0.4 (0.1–1.0) 14.3 (0.0–40.0)

Little Manatee River River 2006 96 23.8 (11.8–31.4) 8.5 (0.1–27.0) 6.7 (3.6–12.9) 7.4 (6.3–7.9) 0.5 (0.1–1.0) 18.3 (0.0–53.3)
Question Mark Creek Canal 2006 48 23.4 (13.4–30.1) 8.0 (1.0–16.4) 6.5 (2.6–13.7) 7.6 (6.9–8.4) 0.5 (0.2–1.0) 23.1 (0.0–46.7)

Rice Creek Creek 2006 48 21.7 (15.4–29.2) 1.3 (0.1–8.1) 8.1 (2.0–13.5) 7.6 (7.1–8.8) 0.5 (0.1–1.0) 12.6 (0.0–66.7)
Riverview West Creek Canal 2006 48 23.3 (15.1–30.6) 2.5 (0.2–8.9) 7.8 (2.7–16.6) 7.7 (6.9–8.7) 0.5 (0.1–1.0) 15.7 (0.0–40.0)

Wildcat Creek Creek 2006 120 22.7 (11.6–28.9) 7.3 (0.2–23.4) 6.5 (2.7–15.2) 7.4 (7.0–8.1) 0.5 (0.1–1.2) 21.0 (0.0–66.7)
Overall 935 23.2 (11.6–32.3) 8.3 (0.1–33.0) 6.4 (0.3–16.6) 7.5 (6.3–8.8) 0.5 (0.1–1.2) 20.9 (0.0–66.7)

Table 2. Shoreline and substrate type in Tampa Bay estuarine waterbodies sampled to assess B. belizanus habitat predictability.

Waterbody Name
Shoreline Type Substrate Type

Mangrove Marsh Shrubs/Trees Small Terrestrial Veg. Hardened Mud Mud-Sand Sand Oyster-Rock

Alafia River 0.0% 14.4% 21.6% 13.8% 49.1% 7.2% 26.3% 49.7% 16.8%
Andrews Creek 94.4% 0.0% 1.4% 0.0% 2.8% 72.2% 18.1% 1.4% 6.9%

Cockroach Creek 99.2% 0.0% 0.0% 0.0% 0.0% 69.2% 20.8% 1.7% 8.3%
Curiosity Creek 0.0% 50.8% 27.5% 20.0% 0.0% 19.2% 35.8% 45.0% 0.0%
Dogleg Creek 0.0% 0.0% 39.6% 29.2% 4.2% 33.3% 41.7% 20.8% 4.2%
Hayes Bayou 0.0% 100.0% 0.0% 0.0% 0.0% 33.3% 25.0% 41.7% 0.0%

Little Manatee River 21.9% 56.3% 3.1% 2.1% 12.5% 3.1% 22.9% 55.2% 18.8%
Question Mark Creek 2.1% 10.4% 66.7% 4.2% 14.6% 22.9% 41.7% 33.3% 2.1%

Rice Creek 0.0% 8.3% 18.8% 33.3% 27.1% 10.4% 31.3% 54.2% 4.2%
Riverview West

Creek 0.0% 2.1% 0.0% 25.0% 72.9% 68.8% 18.8% 6.3% 6.3%

Wildcat Creek 4.2% 86.7% 4.2% 2.5% 0.0% 50.8% 40.0% 9.2% 0.0%
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In order to examine habitat predictability for B. belizanus presence, a novel approach based on
creating two sets of BRT models was implemented. Hereinafter the models are referred to as the fixed
subset and randomly selected subset models. For both types of models, training data are defined as
the data used to formulate the model, whereas test data were not used for model formulation and
instead were used to test the models’ predictive performance, i.e., the test data were independent
of the training data. For the fixed subset model, test data were represented by the data collected
in three waterbodies (Andrews Creek, Curiosity Creek, and Question Mark Creek; n = 240 samples,
25.7% of the 935 total samples), which were chosen on the basis of their habitat characteristics being
within the range encompassed by the other eight waterbodies (Tables 1 and 2). Training data thus
consisted of the 695 samples (74.3%) from these eight other waterbodies. The fixed subset BRT
model was implemented in the dismo package [50] of the R software environment [51] using a bag
fraction (i.e., the proportion of data to be selected at each step of the model) of 0.5, a learning rate
(i.e., the shrinkage parameter determining the contribution of each tree to the growing model) of
0.005, and tree complexity of 2 (i.e., allowing first-order interactions) in order to achieve Elith and
coworkers’ [46] recommendation of >1000 trees for reliable model predictions. Exploration of a higher
order of tree complexity (5) did not yield substantial improvement in the model’s predictive performance,
so tree complexity of 2 was implemented for the final analysis. Given the stochasticity in BRT model
formulation [46], 1000 iterations of the fixed subset model were undertaken in order to examine the
variability in model predictive performance and the consistency in relationships between B. belizanus
presence and habitat. Model fitting, tenfold crossvalidation, and prediction of the model to the test data
were undertaken for each of the 1000 iterations of the fixed subset model.

The randomly selected subset BRT model consisted of randomly selecting (without replacement)
695 samples of the total 935 samples to use as training data, then repeating the steps described
above for the fixed subset model: model fitting, crossvalidation, and prediction to the test data
(i.e., the randomly remaining 240 samples). This whole procedure was repeated 1000 times,
again to illustrate the variability in model predictive performance and consistency in B. belizanus
presence–habitat relationships.

The predictive performance of the fixed and randomly selected subset BRT models in correctly
modeling presence of B. belizanus was assessed using the area under the receiver operating characteristic
curve (AUC). As noted by Huang and Frimpong [7], AUC values are commonly interpreted as follows:
AUC > 0.9 is excellent; 0.8 < AUC < 0.9 is good; 0.7 < AUC < 0.8 is fair; 0.6 < AUC < 0.7 is poor;
and 0.5 < AUC < 0.6 is failed (i.e., similar to random guessing). Huang and Frimpong suggested
that this classification scheme is too demanding for prediction to test data, given that the scheme
was developed for the purpose of assessing model fit rather than transferability (prediction); instead,
they used a threshold of AUC < 0.6 to indicate limited transferability from training to test data for
prediction [7]. This threshold was also considered appropriate for the present study. Similar to the
approach used by Broennimann and Guisan [52], the variability in AUC over the 1000 iterations of the
fixed subset and randomly selected BRT models allowed 95% intervals to be calculated, based on the
2.5th and 97.5th percentiles of AUC. The overlap of the 95% intervals was assessed to examine the
evidence for differences in predictive performance between fixed subset and randomly selected BRT
models for training, crossvalidation, and prediction to test data.

In addition to assessing predictive performance with AUC, the ability of the fixed subset BRT to
predict presence in the three test waterbodies was assessed by summing the probability of presence
over all samples for each waterbody to give an overall predicted % presence for each iteration of the
model, with 95% intervals calculated based on the 2.5th and 97.5th percentiles of the 1000 iterations.
The predicted estimates of % presence were compared to the actual % presence in each waterbody,
for which 95% intervals were generated by bootstrapping—randomly sampling with replacement, for the
same sample size as the original sample [53]—the presence/absence data 1000 times, then calculating
the 2.5th and 97.5th percentiles of the % presence from each of the 1000 resamples.
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The relative contribution [54] of the habitat predictor variables to B. belizanus presence was
compared between the fixed and randomly selected subset BRT models using the 95% intervals from
the 1000 model iterations. The consistency of B. belizanus presence–habitat relationships between the
fixed and randomly selected subset models was assessed with partial dependence plots from R’s gbm
package [55]. The partial dependence plots illustrated the marginal effect of each habitat predictor on
B. belizanus probability of presence after accounting for the average effects of all other predictors in the
models, and were based on the 95% intervals of the marginal effects from the 1000 model iterations.

3. Results

3.1. Distribution and Spread Rate

The first specimen of B. belizanus collected in the Tampa Bay watershed was made on 21 February
1994 from a canal off the Alafia River (at 3.2 km from the river mouth; Figure 1). During extensive
sampling occurring in 2006/2007, B. belizanus was mostly collected in a number of waterbodies
draining either directly to eastern Tampa Bay, to the Alafia River, or to the Little Manatee River
(Figure 1). Data collected following this period (2008–2016), primarily as a continuation of long-term
monitoring for status and trends in estuary-dependent sportfishes and nekton communities, found
B. belizanus in similar areas within this range [56,57]. The straight-line distance from the northernmost
to southernmost collection locations is approximately 31 km. B. belizanus was also collected in two
small urban creeks in the city of St. Petersburg, on the western fringe of Tampa Bay (Figure 1).

The first collection of B. belizanus in the Little Manatee River watershed was made on 13 October 1998,
approximately 5 km from the mouth of the river, with the farthest upstream collection within the sampling
area at approximately river km 13 of the main stem in October 2000 (Figure 2). Four collections between
October 1998 and November 1999 gave estimated spread rates of 15–35 m day−1 (5.5–13 km year−1; Figure 2).

3.2. Habitat Predictability

B. belizanus was found in 7% of shoreline seine samples from the 11 estuarine waterbodies
studied during 2006/2007, with the greatest frequency of presence (12%–14%) in two polyhaline
mangrove-dominated creeks (Andrews Creek and Cockroach Creek), a mesohaline marsh-dominated
creek (Wildcat Creek), and a mesohaline canal mostly lined with shrubs/trees (Question Mark Creek)
(Table 3). The species occurred along all shoreline and bottom types sampled with seines, across
a broad range of physiochemical variables: salinity 0.2–29.3, temperature 11.8–30.1 ◦C, dissolved
oxygen 0.5–14.7 mg l−1, pH 6.9–8.4, depth 0.1–1.0 m, and gradient 0%–66.7%.

Table 3. Abundance and percentage presence of B. belizanus in Tampa Bay estuarine waterbodies
sampled to assess habitat predictability.

Waterbody Name Number of 9.1-m Seine Samples Number of Fish % Presence

Alafia River 167 2 1.2%
Andrews Creek 72 14 12.5%

Cockroach Creek 120 26 11.7%
Curiosity Creek 120 10 5.0%
Dogleg Creek 48 2 4.2%
Hayes Bayou 48 3 6.3%

Little Manatee River 96 6 5.2%
Question Mark Creek 48 8 12.5%

Rice Creek 48 0 0.0%
Riverview West Creek 48 4 6.3%

Wildcat Creek 120 22 14.2%
Overall 935 97 7.2%
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The predictive performance of the BRT models for B. belizanus presence was greatest for the
training data, with slightly more variation in the area under the receiver operating characteristic curve
(AUC) for the 1000 iterations of the randomly selected data subsets (95% interval: 0.92–0.98) than
for the fixed subsets (0.92–0.96) (Figure 3). The 95% interval of AUC for the crossvalidation of the
training data overlapped for the randomly selected and fixed subsets of data, again with more variation
for the randomly selected subset. With respect to prediction of test data that were not included in
development of the models, there was significantly lower AUC for the fixed subset model compared
to the randomly selected model, with the latter having broad variation which overlapped the AUC of
the crossvalidation models (Figure 3).Fishes 2017, 2, x FOR PEER REVIEW  11 of 23 
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Figure 3. Predictive performance of boosted regression tree models for B. belizanus presence in
Tampa Bay estuarine waterbodies for randomly selected (|- - -|) and fixed (|——|) subsets of 935
9.1-m shoreline seine samples, expressed as 95% intervals of the area under the receiver operating
characteristic curve from 1000 model iterations. Randomly selected and fixed subset models included
training data (n = 695 samples) and prediction data (n = 240 samples).

The BRT model for the fixed subset of the data provided a reasonable prediction of the presence
of B. belizanus in one of the three test waterbodies: the 95% interval of the prediction for Curiosity
Creek was 6.8%–7.4%, which was somewhat greater than the actual observed 5.0% presence, but well
within the 95% interval for actual presence (Figure 4). In contrast, the BRT model underpredicted the
presence in the two other waterbodies, and in the case of Andrews Creek, the 95% intervals for the
predicted and actual presence did not overlap (Figure 4).
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Figure 4. Predictions (|——|, 95% interval) of B. belizanus presence (% of samples) in three estuarine
waterbodies of Tampa Bay, based on 1000 boosted regression tree model iterations for a fixed subset
training dataset (n = 695 samples), in comparison to actual occurrence (|— —|, with 95% interval
generated by 1000 bootstrapped resamples of the data).
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In general, the BRT models based on the randomly selected and fixed subsets of the data suggested
a similar relative ranking of habitat predictor variable importance in predicting B. belizanus presence
(Figure 5). The range of variability in importance across the 1000 iterations of the two BRT models was
considerably greater for the model based on randomly selected subsets of the data. Julian day was the
most important predictor, followed by dissolved oxygen. Depth was suggested to be as important
as pH, salinity, temperature and shoreline type in the model based on randomly selected subsets of
the data, whereas shoreline type in particular had greater importance in the model based on the fixed
subset of data. Substrate, gradient, and waterbody had relatively little importance (generally 5% or
less), and shoreline inundation and vegetation overhang had minimal importance (Figure 5).Fishes 2017, 2, x FOR PEER REVIEW  12 of 23 
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Figure 5. Relative contribution of habitat predictors from boosted regression tree models for B. belizanus
presence in Tampa Bay estuarine waterbodies for randomly selected (|- - -|) and fixed (|——|) subsets
of 935 9.1-m shoreline seine samples, expressed as 95% intervals from 1000 model iterations.

The relationships between B. belizanus probability of presence and habitat predictors showed
some similarities and some differences between the BRT models based on the randomly selected and
fixed subsets of the data. Both the randomly selected and fixed subset BRT models suggested that
the probability of presence increased from around Julian day 240 (i.e., September) until the end of the
year, although the increase was less pronounced for the randomly selected model (Figure 6). A major
difference between the randomly selected and fixed subset models was the representation of the effect
of dissolved oxygen in hypoxic conditions (<2 mg L−1), for which the fixed subset model suggested
a very high marginal effect on probability of presence (up to nearly 0.14) whereas the randomly
selected subset model gave a marginal effect of around 0.04. This difference principally arose from
high frequency of presence (0.6, i.e., 60% of samples) for B. belizanus during hypoxic conditions in
Cockroach Creek in September 2007, with these observations being present in all iterations of the fixed
subset model; the predicted effect of dissolved oxygen was more consistent between the randomly
selected and fixed subset models over the rest of the variable’s range.
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Figure 6. Partial dependence plots of habitat predictors from boosted regression tree models for
B. belizanus presence in Tampa Bay estuarine waterbodies for randomly selected (|- - -|) and
fixed (|——|) subsets of 935 total 9.1-m shoreline seine samples, expressed as 95% intervals from
1000 model iterations. (a) Julian day; (b) dissolved oxygen; (c) water depth; (d) pH; (e) salinity;
(f) temperature; (g) shoreline type: Mng (mangrove), Msh (marsh), ShT (shrubs/trees), STV (small
terrestrial vegetation), Har (hardened), Oth (other); (h) substrate type: Mud, M/S (mud/sand), Oy/R
(oyster/rock), Snd (sand), Unk (unknown); (i) gradient; (j) waterbody type; (k) shoreline inundation;
(l) overhanging vegetation.

Other habitat predictors with relatively high contributions for which the predicted marginal effect
on B. belizanus presence was reasonably consistent between randomly selected and fixed subset BRT
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models were depth and pH, for which the probability of presence decreased by two to three times
over the range of each variable (Figure 6). The predicted marginal effect of salinity was not mononotic
and predicted B. belizanus presence as a peak between salinity of about 20 and 30 for both randomly
selected and fixed subset models, whereas somewhat higher probability of presence at low salinity (<7)
was only suggested by the fixed subset model. The increased probability of presence with increasing
temperature, particularly above ~19 ◦C, was consistent for fixed and randomly selected BRT models.

The fixed subset model suggested some significant differences between shoreline types (with marsh
having greater probability of B. belizanus presence than other types), substrate (greater probability of
presence over mud than oyster/rock or sand), and waterbody (greater probability of presence in
canals and creeks than rivers, with bayou intermediate); however, the random subset model suggested
a greater extent of overlap in the different levels of these predictors. A somewhat increasing probability
of presence with increasing gradient was more pronounced in the random subset model than the fixed
subset model (Figure 6).

4. Discussion

4.1. Distribution and Spread Rate

The present study demonstrated that B. belizanus is well distributed in some estuarine portions
of the Tampa Bay watershed, principally in the Alafia and Little Manatee River basins (Figure 1).
From the first recorded presence in the Alafia River drainage in 1994, the species was subsequently
detected in the Little Manatee River drainage in 1998. The mouths of these two rivers are approximately
a straight-line distance of 17 km apart. Given the indentations along the Tampa Bay shoreline between
the two rivers (Figure 1), as well as numerous convoluted potential inshore pathways (e.g., mosquito
ditches and county road drainage ditches), the first presence of B. belizanus in the Little Manatee River
nearly five years after the first recorded presence in the Alafia River is consistent with the estimated
rate of spread in the Little Manatee River (5.5–13 km year−1; Figure 2). Subsequent sampling in
non-tidal freshwater ditches that are ultimately connected to estuarine tributaries has shown that
B. belizanus has spread extensively inland in these drainages [56]. Collections of B. belizanus in south
Florida following initial introduction indicates a spread rate of about 1.8 km in just over two months
(from latitude 25.559516◦, longitude −80.331945◦ in early December 1957 to approximately latitude
25.543571◦, longitude −80.331424◦ on 18 February 1958; [14]). Extrapolation of this rate to a full year
gives a value (9 km year−1) within the range estimated in the present study. Additional study of
B. belizanus spread rates in south Florida based on the extensive available collection database [15] was
beyond the scope of the present study but would be valuable.

Invasion success is often linked with a rapid rate of spread [58], and spread rate has been shown
to correlate with factors such as the availability of vacant ecological niches [59]. The shallow-water
piscivore niche of B. belizanus has other members [28], although the fact that the species is immediately
piscivorous after birth [20] and is resident year-round in such systems generally differentiates it
from other piscivores. The niche (described as “piscivorous in open water habitat in the middle
and high water column, principally using pectoral fins for motility”) is recognized as being quite
distinct from other fishes in the native range [60]. The spread rate of B. belizanus estimated in
the present study is intermediate to those of other invasive poeciliids. Invasive mosquitofishes
(Gambusia affinis and G. holbrooki) spread much more quickly than B. belizanus, with rates ranging from
~38 km year−1 in the Colorado River watershed [59] to several hundred meters per day in small-scale
studies [61,62]. These rapid rates have been attributed to relatively high boldness of invasive
mosquitofishes that contributes to their classification as some of the world’s worst invasive species [58].
In contrast, B. belizanus rate of spread is greater than the 1.6-km year−1 spread of Trinidadian Guppy
Poecilia reticulata [59], another invasive poeciliid known for negative ecological effects [63], and similar
to the 7.9 km year−1 spread of Sailfin Molly P. latipinna [59]. Among non-poeciliids, the B. belizanus
spread rate is comparable to that of Round Goby Neogobius melanostomus, for which estimates range
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from 0.5 to 17 km year−1 in the Great Lakes and Danube River [64–66]. Some larger invasive fishes of
particular concern exhibit very rapid spread rates, e.g., Nile Perch Lates niloticus (150 km 6 month−1 to
50 km week−1; [67], Bighead Carp (1.7–2.4 km day−1; [68]), and Northern Snakehead Channa argus
(18 km month−1; [69]). Mayan Cichlid Cichlasoma urophthalmus spread from south to east-central
Florida was estimated to be 15 km year−1 [70]; this species has been shown to negatively affect native
fishes [71], with a range that includes Tampa Bay and is expanding [56,72]. Depletion of prey in a given
area by B. belizanus may increase the likelihood of range expansion [19], as may agonistic intraspecific
interactions such as territoriality [73] and avoidance of cannibalism [14].

The disjunct distribution of the western population of B. belizanus in Tampa Bay relative to the
eastern population is not likely to have resulted from swimming because over 15 km of deeper, open
water separates the two populations and the species has not been collected in offshore habitat or in
the many km of shoreline around the bay between the two populations (Figure 1). Data are lacking to
determine when the species first occurred in western Tampa Bay, but potential mechanisms facilitating
occurrence include aquarium release [74], bait bucket release [65,75], or bird carry-off [11,76]. A single
inseminated female B. belizanus released into a water body may be sufficient to establish a population
because of large potential brood sizes (>300; [20]) and no evidence for deleterious phenotypic effects in
poeciliid populations founded by a single individual [63].

Given the ability of B. belizanus to spread at up to 13 km year−1, why then after over 20 years in
Tampa Bay does the main, eastern population appear to be confined to a region that is a crow’s-fly
distance of ~30 km from north to south? Movement rates of fishes can be influenced by a number of
factors, including the presence of suitable habitat [77]. The B. belizanus range on the eastern fringe of
Tampa Bay is bounded by large port facilities to the north and south (Figure 1) which are characterized
by dredged ship channels and several km of extensive seawalls creating deep-water habitat at the
shoreline. As shown in the habitat predictability analysis, the probability of presence of B. belizanus
decreased with increasing depth. On the basis of the present study’s results, it is hypothesized that the
deep port seawall habitats with little cover could function as “soft” ecological barriers (sensu Bond
and Lake [78]) to B. belizanus because of avoidance of such areas as a result of habitat preference [77] or
because predation is high in the deeper water and no individuals survive [79]. Between the two ports,
the shoreline possesses a considerable amount of shallow-depth habitat including natural shorelines,
mosquito ditches, and inland county drainage ditches, which probably facilitated spread of B. belizanus.
The small western population may also be constrained by deep-water, seawalled habitats in the harbor
adjacent to the creeks where the species was found in the present study. Spread of B. belizanus through
the Everglades and south Florida was essentially unhindered by such potential soft barriers, at least
to the south and west, and likely occurred through the extensive system of agricultural canals that
include shallow nearshore areas. Thus, the species has reached the southwest coast to the first major
urban area (near the city of Naples) but has not spread farther north (Figure 1) to other estuaries [80,81].
The BRT habitat predictability analysis indicated that B. belizanus does occur along hardened shorelines
(such as seawalls) in shallower water, albeit at somewhat lower probability of occurrence than other
shoreline types (Figure 6), emphasizing the hypothesis that the deep-water aspect of seawalls in ports
and harbors may be more important than the shoreline type.

4.2. Habitat Predictability

The present study displayed a common feature of species distribution modeling: the performance
of the BRT models fitted to training data was higher than the cross-validation BRT models, which in
turn was higher than the test data prediction model performance [7,46]. Such patterns arise because
prediction to test data is more difficult than simple interpolations to the sampled (training) regions,
as a result of spatial habitat heterogeneity and varying ecological relationships [7]. The BRT model of
B. belizanus probability of presence based on the fixed subset of data had some value in its transferability,
per the >0.6 AUC criterion of Huang and Frimpong [7], but the comparison to the BRT model based
on the randomly selected subset of training data demonstrated that some of the apparent habitat
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relationships were idiosyncratic as opposed to general [8]. The present study’s emphasis on using
prediction as a means of demonstrating ecological understanding [9] drove the need to consider model
transferability not just in terms of cross-validation and prediction to test data, but also the consistency
of observed species–habitat relationships through the comparison of the fixed and randomly selected
subsets of data. Conducting 1000 iterations of the fixed and randomly selected BRT models allowed
generation of 95% intervals, a novel approach that facilitated examination of the consistency of the
observed relationships in order to evaluate which relationships appeared ecologically reasonable and
therefore the predictability of habitat use. This approach is readily applicable to studies of other species
where it is desirable to provide additional validation of observed species–habitat relationships.

Challenges in predictability of B. belizanus presence (Figure 4) may have reflected interannual
differences in recruitment [37]—most waterbodies were sampled in 2006, but two were sampled in
2007—as well as differences between waterbodies in the equilibrium status of B. belizanus spread [82].
In addition, B. belizanus is comparatively rare, even in the waterbodies with the highest percentage
presence (Table 3). Rarity can hinder prediction of species–habitat relationships as a result of overfitting
few presences with many covariates, suggesting that exploration of techniques such as ensemble-based
modeling would be worthwhile in the future [83]. Occupancy modeling based on repeated sampling at
each site to account for imperfect detection may also provide additional insight [84]. Initial colonization
of new waterbodies can result in high abundance of B. belizanus, with numbers declining thereafter [85].
Relatively low abundance generally appears to be typical of the species, even in the native range,
and may reflect a conserved life history trait [37] which could be a function of some of the same factors
influencing spread, e.g., territoriality [73], cannibalism [14], and resource depletion [19].

Dissolved oxygen was the second most important (after Julian day) of the habitat variables
predicting B. belizanus presence in the studied estuarine waterbodies of Tampa Bay, although there
was a considerable difference in the relationship between the BRT models based on the fixed and
random subsets of data (Figure 6). The fixed data model showed occurrence was high at hypoxic
conditions, reflecting a short-term event in Cockroach Creek during September 2007. Similar to other
cyprinodontoids, B. belizanus may employ aquatic surface respiration in hypoxic conditions [86,87],
possibly allowing the species to occupy such areas in relatively high numbers and prey successfully
on species less adapted to low dissolved oxygen [88]. Alternatively, aquatic surface respiration
may have allowed B. belizanus to remain within low dissolved oxygen habitat, albeit with greater
susceptibility to capture during sampling, akin to greater susceptibility to predation observed in
other fishes exhibiting aquatic surface respiration [88]. Although B. belizanus appears sufficiently
physiologically flexible to cope with low dissolved oxygen, as observed in other invasive fishes in
Florida [89], the relationships suggested in the present study were somewhat idiosyncratic rather than
general and useful for prediction.

The greater probability of presence of B. belizanus with declining pH was consistent between fixed
and random subset BRT models (Figure 6), and there are both similarities and differences with the
patterns observed in previous studies. In freshwater habitat of south Florida’s Everglades National
Park, Kerfoot et al. [37] found a positive relationship between pH (range: ~7.4–8.0) and B. belizanus
density at one site, a weak positive relationship at another site (pH range: ~7.2–7.4), and negative
relationships at two other sites (pH ranges: ~7.3–7.6 and ~7.6–8.1). Multispecies ordination analyses
within the native range do not demonstrate strong or consistent relationships between pH and
B. belizanus populations [33–36]. As noted by Kerfoot et al. [37], changes in pH are known to directly
affect ion uptake across gills and internal acid–base balance in fishes, ultimately affecting survival rates.
For example, low concentration of calcium ions was found to negatively affect the predation functional
response of invasive N. melanogobius [90]. Given potential future changes in pH as a result of climate
change [91], future laboratory studies on B. belizanus could assess whether physiology and behavior
(e.g., predation) are significantly affected by pH in a manner consistent with the lower probability of
presence at higher pH observed in the present study.
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The Environmental Matching Hypothesis predicts that the impacts of an invader decline as habitat
conditions move further from its physiological optimum [90]. The present study found that B. belizanus
is widely distributed across the salinity gradient, with evidence for greatest presence in polyhaline
conditions (Figure 6). The observed effects of B. belizanus on small prey fish abundance in Tampa Bay
estuarine waterbodies were consistent over a broad salinity gradient [24]. The present study contrasts
with that of Kerfoot et al. [37], who found decreasing B. belizanus density with increasing salinity
in south Florida red mangrove habitats; a negative relationship with salinity has also been found
in the native range [33]. Water temperature in the coldest month is 2–3 ◦C cooler in the Tampa Bay
watershed than south Florida [92], so that occupation of higher salinity by B. belizanus could ameliorate
low-temperature effects. Such an effect was found for Tilapia mossambica (now Oreochromis mossambicus,
a euryhaline freshwater species), which is restricted to estuaries near the southern limit of its range
in Africa, possibly in order to maintain near-normal sodium and chloride ion concentrations during
low winter temperatures [93]. A similar mechanism was not found for C. urophthalmus, however [94].
Nekton abundance often increases with increasing salinity because of the increasing contribution of
marine-derived juveniles [43,95] and this may provide a greater potential pool of prey resources for
B. belizanus at higher salinity. The estuarine focus of the sampling in the present study precludes
any firm conclusions about the distribution or abundance of B. belizanus in the permanent, non-tidal
freshwater reaches upstream of the study area; expansion of sampling in this habitat using similar
seining methods would clarify the significance of the present study’s findings with respect to salinity.

Lower lethal temperature (~9.5 ◦C) for B. belizanus is surprisingly low and rarely experienced
in Tampa Bay [96]; feeding is, however, reduced (or ceases) at ~11–16 ◦C [92,97], which are more
commonly observed winter temperatures in the area. During an 80-year cold front in south Florida,
water temperature in some areas dropped below the laboratory-determined B. belizanus mean lethal
temperature, yet the species persisted [98]. It would be informative to repeat Shafland and Pestrak’s [92]
and Kerfoot’s [97] experiments, which were undertaken in freshwater aquaria, at a variety of salinity
levels to assess potential ameliorating effects on low temperature effects. The present study found
a consistent drop-off in B. belizanus probability of presence below about 19.5 ◦C (Figure 6), whereas
Kerfoot et al. [37] found that density of B. belizanus in south Florida red mangroves increased as
temperature decreased, although the lowest temperature in their dataset was 23 ◦C. Long-term
temperature increases may favor the species’ increased expansion [38], as noted for C. uropthalmus [71],
producing effects on native species that may not yet have been manifested [99].

4.3. Management Implications

The range of shoreline habitats and physicochemical conditions at which B. belizanus was present
in this study suggests that within certain parameters (i.e., nearshore, shallow-water habitat), the species
has generally broad environmental tolerance, a key trait of successful invasive fishes [6]. The consistent
importance of Julian day in predicting probability of presence suggests that future studies aiming to
assess the occurrence of B. belizanus in Tampa Bay estuarine waterbodies should be focused on the
period from September to December/January in order to maximize the likelihood of capture (Figure 6).
The present study suggests that B. belizanus in estuarine areas of Tampa Bay spread at a modest rate
compared to the most notable invasive fishes and that its distribution may be constrained by soft
ecological barriers, i.e., deep seawall habitat. The recent classification as moderately invasive [23]
appears appropriate. Nevertheless, strong evidence for negative effects on small-bodied fishes [24]
and potential competition with C. undecimalis [15] indicates that consideration of possible management
actions is warranted. Under current climate conditions, B. belizanus would be predicted to be able to
occur 150–200 km farther north than Tampa Bay based on lower lethal temperature [92,97]. However,
the present study’s hypothesis that spread of B. belizanus is restricted by deep, anthropogenically
altered habitats leads to the conclusion that movement north may be very much dependent on
human-facilitated pathways, recently referred to as “jump dispersal” [100], for which the main vectors
are releases from aquaria and bait buckets [75]. Internet-based sales of ornamental fish allow species to
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be spread easily within the U.S., suggesting that education of hobbyists and retailers is paramount [74]
and particularly important in the case of B. belizanus, given that aggression by piscivores is one reason
for release of fish from aquaria [101].

Regarding bait bucket releases, B. belizanus is not raised commercially as bait, but releases
could occur as surplus fish from anglers cast-netting [102] and catching the species along with
other small-bodied fishes. This is particularly true within the eastern portion of the B. belizanus
Tampa Bay range, which is notably good habitat for sub-adults and adults of the primary inshore
sportfish C. undecimalis [103]. One possible means of limiting spread by this vector would be to
produce simple educational materials for anglers (e.g., posters at boat ramps) illustrating the current
range of B. belizanus, emphasizing the need to not release it beyond this range, and giving warnings
about its potential effects through competition with prized sportfishes that anglers may be targeting.
Such materials could be combined with similar warnings for other spreading invasive fishes, such
as C. uropthalmus [56]. Emphasis on not releasing B. belizanus from aquaria or bait buckets is also
relevant for freshwater habitat because of the similarity in prey capture and potential competition with
juveniles of another prized sportfish, Largemouth Bass Micropterus salmoides [104].

Restoration is being undertaken in the Tampa Bay watershed with the goal of approximately
restoring the balance of estuarine habitat observed ca. 1950 [41]. Projections of habitat change as
a result of sea level rise suggest that mangrove habitat will increase its percentage of coastal habitat
coverage from ~74% to 85–89% by 2100, with a concomitant decrease in salt marsh from 25% to
10–14% [41]. The habitat predictability analysis demonstrated that B. belizanus is sufficiently flexible in
terms of shoreline habitat occupation (Figure 6) that such changes would not be expected to result in
considerable effects to the species. With a spread rate of several km year−1, it would be expected that
B. belizanus would colonize restored areas relatively quickly, particularly because some of the major
restored sites are directly upstream of two of the waterbodies in the present study, Andrews Creek
and Cockroach Creek [105]. This could disrupt typical successional fish assemblage dynamics that are
observed in restored areas [106–108], as evidenced by effects on small-bodied resident fishes elsewhere
in Tampa Bay [24] and potential competition for prey with transients using restored areas as a nursery,
in particular C. undecimalis [15].

Supplementary Materials: The following are available online at www.mdpi.com/2410-3888/2/2/6/s1. Table S1.
Presence-absence data from Figure 1; Table S2. Upstream spread data from Figure 2; Table S3. BTR data;
Table S4. Metadata.
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