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Abstract: The increasing use of technologies, particularly computing and communication paradigms,
has significantly influenced our daily lives. Interconnecting devices and networks provides conve-
nient platforms for information exchange and facilitates pervasive user data collection. This new
environment presents serious privacy challenges. User activities can be continuously monitored
in both digital and physical realms. Gathered data can be aggregated and analysed, revealing as-
pects of user behaviour that may not be apparent from a single data point. The very items that
facilitate connectivity simultaneously increase the risk of privacy breaches. The data gathered to
provide services can also be used for monitoring and surveillance. This paper discerns three novel
categories of privacy concerns relating to pervasive user data collection: privacy and user activity in
cyberspace, privacy in personal cyber–physical systems, and privacy in proactive user-driven data
collection. We emphasise the primary challenges, ranging from identity tracking in browsing histories
to intricate issues in opportunistic networks, situating each within practical, real-world scenarios.
Furthermore, we assess the effectiveness of current countermeasures, investigating their strengths
and limitations. This paper explores the challenges in preserving privacy in user interactions with
dynamic interconnected systems and suggests countermeasures to mitigate identified privacy risks.

Keywords: user privacy; web privacy protection; local differential privacy; wearable device access
control; lightweight encryption; location privacy; opportunistic network privacy

1. Introduction

The increasing use of technologies, particularly computing and communication
paradigms, has significantly influenced our daily lives. The integration of digital tech-
nologies into many aspects of our physical lives has generated a virtual dimension
known as “cyberspace”. For example, the use of embedded sensors, electronic tags,
smart phones, vehicles, and an array of daily-use items generates massive amounts of
data. Much of this is linkable to the actions of individuals and, if aggregated, provides a
profile of the individual.

Interconnecting devices and networks provides convenient platforms for information
exchange. The Internet of Things (IoT) is a well-known example. As the number of
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interconnected ’Things’ increases and computing environments improve, data monitoring
and analysis becomes increasingly sophisticated. This trajectory toward a “hyper-connected
world” [1] promises seamless interactions between the physical world and cyberspace,
potentially enriching user experiences. Technological advances, for instance, now allow
residents to see who is at their front door through a modern IoT-enabled doorbell, even
when they are not at home. Additionally, they can remotely unlock the door, letting
guests in.

Technological advancements have improved data-collection methodologies. Intercon-
nected software and hardware facilitate pervasive user data collection; user activities can
be continuously monitored in both digital and physical realms. For instance, in cyberspace,
tools such as cookies and hyperlinked images enable data gathering, tracing user actions
and revealing user preferences and online behaviours. This action may not be apparent to
the user. Wearable gadgets such as smartwatches and fitness trackers capture a spectrum
of data from health metrics to daily routines. Ubiquitous devices such as mobile phones
capture and transmit real-world data including user location, which reveals patterns of
user behaviour.

This new environment presents serious privacy challenges. The very items that
facilitate connectivity simultaneously increase the risk of privacy breaches. The data
gathered to provide services can also be used for monitoring and surveillance. For example,
the video transmissions used to allow residents to see who is at the front door could
potentially be viewed by others. As this reveals the identity and location of the visitor at
a point in time, unauthorised access to this information is a privacy breach. Gathering
such video data across time reveals patterns of attendance at this location. Collecting such
data from multiple door bells permits mass surveillance. Sometimes, these data-gathering
methods occur without explicit user consent, leading to unauthorised access to stored or
transmitted data.

Westin [2] explains “privacy is the claim of individuals, groups or institutions to determine
for themselves when, how, and to what extent information about them is communicated to others”.
Schoeman [3] explains privacy as “control we have over information about ourselves”.

Information privacy refers to the control of personal information. For systems contain-
ing private information, it is important to assess the risks associated with the collection,
use, and disclosure of that information. Personal information refers to information which
is directly linked to an identifiable individual.

Pervasive user data collection raises new privacy challenges. This paper aims to
address the following research questions:

• How do evolving technological paradigms impact privacy, considering both cy-
berspace and the physical realm?

• What are the challenges associated with privacy preservation associated with various
data-collection scenarios, from web browsing activities to advanced participatory
sensing in real-world environments? What are the risks to user privacy?

• What countermeasures can be employed to mitigate our identified privacy risks? How
effective are existing privacy-protection mechanisms?

To address these three questions, this paper focuses on user privacy in three emerg-
ing scenarios.

1.1. Privacy and User Activity in Cyberspace

In the realm of cyberspace, web browsing emerges as a significant activity that gener-
ates points that can be analysed to reveal information about the user, commonly referred to
as “data exhaust”. These data, collected through technologies like cookies, browser finger-
printing, and flash objects, enable detailed user tracking. Employing advanced techniques
such as machine learning and big data analytics, particularly within the advertising indus-
try, these tools facilitate the reconstruction of individual browsing histories and behaviours
(Figure 1).
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This analysis is critical for advertisers to implement strategies like behavioural target-
ing, frequency capping, retargeting, and conversion tracking, leading to highly personalised
advertising experiences [4–6]. Additionally, publishers leverage these data for content
customisation, significantly boosting their revenues, with reports indicating up to a 52%
increase due to third-party cookie usage [7].

While these practices offer enhanced user experiences and economic benefits for
publishers, they also bring forth significant privacy challenges. The core issue centres on
the implicit nature of user consent in the data-collection process and the resultant lack of
user control over their personal information.

Figure 1. Analysing and tracking activities at the border. User preference information gets collected,
exchanged, and analysed from browsers.

1.2. Privacy in Personal Cyber–Physical Systems

The burgeoning industry of smart devices and wearable gadgets, which collect and
transmit private user data for advanced services, has brought forth significant privacy
concerns. These devices, acting as personal data hubs, are at the forefront of collecting
sensitive information such as activity, location, and health data, as illustrated in Figure 2.
The repercussions of privacy breaches here extend beyond data loss to potentially include
disinformation campaigns, behavioural manipulation, and financial exploitation. The
emotional impact of feeling constantly monitored, or having intimate details exposed, can
undermine public trust in technology.

Advanced services
Connected experience

Pulse

Blood glucose

Sleep

Location

Transaction

Step

Physical World

Smart
Device

Health
care
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Statistical
Computing

Connected
Service

Figure 2. Personal data hub paradigm. Smart devices and healthcare devices collect personal data for
cyberspace entities to provide advanced services and connected experiences.
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In this context, user autonomy over personal data is crucial. The integration of smart
devices into daily life mandates user control over data storage, sharing, and deletion.
This requires transparent user interfaces and clear mechanisms for consent, ensuring
users can make informed decisions about their data. Additionally, ensuring data security
during storage and transmission, especially considering the heterogeneous nature of device
capabilities, is a vital aspect of protecting user privacy in these systems.

1.3. Privacy in Proactive User-Driven Data Collection

In the digital era, the unprecedented level of proactive data collection through con-
nected devices like smartphones and IoT gadgets has highlighted significant privacy
concerns. As depicted in Figure 3, data collected from the physical world are seamlessly in-
tegrated into cyberspace, contributing to a complex privacy landscape. This paradigm shift
is epitomised by participatory sensing [8,9], where individuals use their devices as sensors
to collect environmental data such as noise levels, traffic conditions, and temperature. This
method of data collection, utilised by billions of smartphone users, offers immense benefits
but also poses serious privacy concerns, especially around identity privacy.

Moreover, the evolution of data collection has sparked interest in leveraging oppor-
tunistic networks. These networks, beneficial in both infrastructure-lacking and well-
connected areas, can augment existing systems and provide localised communication.
However, they introduce unique privacy challenges, particularly in terms of identity pro-
tection and data security. The balance between the convenience and innovation offered
by these technologies and the need to safeguard personal privacy is a central theme in
understanding and addressing the challenges of proactive user-driven data collection.

Physical World

Event

Scenery

People

Cyberspace

User

Figure 3. Information leakage during active data-collecting behaviours. People use smart devices to
collect and upload different types of data that simultaneously get collected in cyberspace.

1.4. Road-Map

The rest of this paper is organised as follows. In Section 2, we discuss privacy concerns
associated with user actions in cyberspace, and two featured scenarios of user activities in
cyberspace are articulated: web privacy protection and user input disclosure. In Section 3,
we investigate privacy concerns within the interactions of cyberspace and the physical
world. We discuss scenarios regarding smart home devices and wearable gadgets. In
Section 4, we explore user activities in the physical world involving pervasive computing
where user privacy in participatory sensing and opportunistic networks raise user privacy
concerns. Open issues are discussed in Section 5 considering privacy protection for complex
applications. We conclude this paper in Section 6.
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2. Privacy Concerns Raised with User Cyberspace Activities

With the boundless interactions in cyberspace come potential risks, particularly con-
cerning user privacy. As we delve deeper into user cyberspace activities, following the
trend of data exhaust collection, several privacy attack vectors surface: data exhaust track-
ing, the use of tracking technologies, identity tracking from browsing exhaust, and user
input data disclosure.

2.1. Data Exhaust Tracing

The concept of data exhaust tracing involves the analysis of user-generated data
during web browsing. These data include browsing habits, clicked links, and interactions
with various web elements. When collated, these data can paint a detailed picture of a
user’s online behaviour [4].

2.2. Use of Tracking Technologies

The advertising industry, particularly through third-party domains connected with
publishers’ websites, employs technologies like cookies, flash storage, and browser fin-
gerprinting to track users [5,6]. These tools enable the identification and tracking of users
across different websites, allowing for the compilation of data to reconstruct individual
browsing histories.

2.3. Identity Tracking from Browsing Exhaust

Identity tracking has emerged as a significant privacy issue, where third parties exploit
browsing history, shopping behaviours, and purchase habits for targeted advertising [6].
This type of tracking often extends beyond the primary website to several other entities,
leading to the creation of comprehensive user profiles.

2.4. User Input Data Disclosure

Beyond passive data collection, the recording and utilisation of user input data during
web browsing poses additional privacy risks. These include the collection of person-
ally identifiable information, potential for data leakage, and misuse of sensitive input
data [10,11].

2.5. Protections and Limitations

Various measures, such as DNS Filtering, Network Proxies, VPNs, and Incognito/Private
Browsing Modes, are employed to combat these privacy risks. However, they face challenges,
such as difficulties against encrypted transmissions and ineffectiveness against fingerprinting
tracking [12–15]. Browser extensions have proven more effective, adept at differentiating
between first-party content and third-party trackers.

For user input, traditional approaches like differential privacy introduce noise into
collected data but face challenges in large-scale applications [16,17]. Local differential
privacy (LDP) offers a viable alternative, allowing users to perturb their data inputs, thus
providing plausible deniability.

A significant limitation arises in the realm of unstructured user input, which includes
free-form text, images, and videos shared or uploaded by users. Protecting the privacy of
such data is challenging because it often contains nuanced and context-specific information
that is difficult to anonymise without losing its inherent value or meaning [18]. Traditional
privacy-preserving techniques like data masking or encryption may not be effective for
unstructured data due to its variability and complexity. Furthermore, automated systems
for processing unstructured data, such as natural language processing (NLP) tools, can
inadvertently expose sensitive information if not designed with robust privacy safeguards.

2.6. Countermeasures

The myriad activities in cyberspace, particularly web browsing, bring forth a range
of privacy concerns. Understanding these risks and adopting comprehensive solutions,
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such as browser extensions and local differential privacy, can mitigate these challenges and
ensure a safer, more private digital environment.

2.6.1. Web Privacy Protection: Browser Extensions

In the digital landscape, browser extensions have risen as pivotal tools for bolstering
online privacy. Beyond merely blocking ads, these tools shield users’ digital interactions
from intrusive third-party tracking, fostering a more private browsing environment. In
the following, we present our survey on several renowned browser extensions, with a
summarised overview presented in Table 1.

We classify surveyed tracking protection extensions by their blocking techniques:
list-based, algorithm-based, and machine-learning-based blocking. For extensions that
are based on lists, a popular subcategory is crowd-sourced-list based. There are many
famous and familiar names such as Ad-Blocker [19], AdBlock [20], Adblock Plus [21], and
uBlock [22]. These extensions have drawn attention in the community since the early
days of the battle against third-party ads. Consequently, a core blocking list EasyList has
been contributed to and maintained by the community. At the time of writing, EasyList
consists of over 17,000 third-party advertisers, 13,500 general third-party and specific URL
patterns, as well as 31,000 advertisement element filters [23]. Extensions like Ad-Blocker
use Easylist’s filter rules to prevent ads from loading, thereby limiting user tracking. In
addition to EasyList, extensions based on rules also adopt other filter lists, including
anticircumvention lists or third-party tracker filter lists. The anticircumvention lists help
advertisement-blocking extensions fight against the detection and circumvention of the
extensions and reinsertion of ads. The third-party tracker filter lists help against tracking
from companies and organisations that do not directly insert advertisements.

While crowd-sourced lists are community-driven, another approach is centralised
maintenance, encompassing extensions like Ghostery [24], Disconnect [25], Blur [26], and
AdGuard [27]. Owing to the centralised control, these extension companies set the blocking
rules, and they typically have considerably fewer rules than crowd-sourced lists [12]. While
these extensions enable rule customisation, they often define certain network requests as
necessary third-party content and thus unblockable. Alongside their primary ad-blocking
features, commercialised versions of these extensions offer added functionalities: Ghostery
Insights [28] provides a time-lined analysis and loading performance details; Disconnect
Premium [29] presents an optional VPN, full IP masking, and data encryption; Blur Pre-
mium [26] offers enhanced protection for personal information; and AdGuard Premium [30]
incorporates advanced tracking and phishing protection, enhanced parental controls, and a
VPN option. Regrettably, unlocking these premium features typically involves payment
and occasionally granting permissions for data collection.

In addition to the conventional list-based blocking paradigm, the Firefox Multiaccount
Containers extension introduces a user-curated containment strategy [31]. Instead of
determining which content to block based on predefined or community-sourced lists, this
extension gives users the autonomy to classify websites into isolated containers, such
as ’Work’, ’Shopping’, and ’Social’. Each container encapsulates its associated browsing
activity, ensuring that cookies, cache, and site data remain confined within its designated
environment. By enabling this segregation, the extension effectively curtails the scope of
third-party trackers, preventing them from correlating a user’s diverse online activities
across different containers. While this method requires a more hands-on approach as
users must manually assign websites to the desired containers, it offers a personalised
and flexible strategy to counter pervasive online tracking, emphasising user control over
data compartmentalisation.

Moving beyond list-based ad-blockers, some extensions utilise algorithms to automat-
ically decide whether a third-party’s content needs to be blocked. A popular example is an
extension called Privacy Badger [32], which monitors third-party organisations, counting
the number of websites they use for user tracking. If an organisation’s count reaches three,
it blocks their content from loading. Additionally, Privacy Badger can detect canvas-based
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browser fingerprinting and block tracking from third-party domains [33]. In the realm of
canvas-based browser fingerprinting, another noteworthy extension is CanvasBlocker [34].
It operates by either blocking or faking the readout of the HTML5 canvas element, a prime
target for fingerprinting techniques aimed at uniquely identifying and tracking users. By
doing so, CanvasBlocker effectively thwarts attempts by websites to exploit this method of
tracking, adding an extra layer of privacy to user browsing sessions [34,35].

A newly emerged ad-blocking tool adopts machine learning techniques based on a
perceptual study from the ads’ loading content. Existing works [36–38] have introduced
a new concept of perceptual ad-blocking, which seeks to improve resilience against ad
obfuscation and minimise the manual effort needed to create ad-blockers. For traditional
ad-blocking relying on crowd-sourced lists or ones based on centralised maintenance,
two downsides have been identified: (1) the consistency of filter lists requires constant
synchronisation with the latest versions and (2) different strategies have been developed for
evading crowd-sourced lists (like EasyList) such as changing domains, moving resources to
the publishers, removing ad keywords from URLs, and removing image dimensions from
URLs. Thus, it became an arms race between ads and tracker-blocking tools and third-party
domains. Researchers claim that the novel approach of using perceptual signals effectively
reduces the arms race with web publishers and ad networks [39]. Storey et al. [36] based
their perceptual ad-blocking on a legal requirement for the recognisable display of ads
by humans. Based on the legal requirement, Storey et al.’s Ad-Highlighter [40] focuses
on learning captured visual and behavioural information that can be used to distinguish
ads, e.g., the text “Sponsored”, the ad’s circled “i” information icon, or an ad network
logo. However, this method has its challenges, as the markup information can be rendered
invisible. To overcome the challenge of this specific rendering, [38] introduced the project
Sentinel, a machine learning version of Adblocker Plus that uses an object-detection neural
network to locate ads in raw website page screenshots [41]. To further enhance rendered
web pages, ref. [37] introduced a new technique to achieve the goal. In their work, a
deep-learning-based ad-blocker module is embedded into Chromium’s rendering engine
so that images of ads can be detected directly [37].

Besides many experimental adoptions of machine learning for perceptual
ad-blocking, ref. [42] showed a different way of using machine-learning-based classifi-
cation to block ads. Iqbal et al. [42] introduced AdGraph, which applies machine learning
approaches to graph representations built from web pages considering aspects such as
the HTML structure, network requests, and JavaScript behaviour. When AdGraph’s mod-
ifications were applied to Chromium, the results showed higher accuracy and reduced
computational overheads compared to traditional ad-blocking extensions.

Table 1. Surveyed web browser extensions.

Technique Ref. Feature

List based

[20]

Crowd-sourced list[19]
[21]
[22]

[24]

Centralised maintenance[25]
[26]
[27]

[31] User-curated list based

Algorithm based
[32]

Detect browser fingerprinting[33]
[34]

Machine learning

[36] On image pattern
[38] On screenshot
[37] On rendering engine
[42] On behaviour pattern
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2.6.2. Local Differential Privacy

Local differential privacy (LDP) is a refinement of differential privacy, aimed at en-
suring that the removal of an individual entry does not significantly alter the overall
data distribution [16,43]. Distinctive for its noise perturbation at the user end, LDP has
been applied in notable projects like Google’s RAPPOR [44] and Apple’s Learning with
Privacy [45].

LDP’s core is based on the Random Response principle [46], ensuring a probability
that collected data reflect the true value. This principle has been adapted for various
applications by major tech companies, including Google, Apple, and Microsoft, spanning
areas like longitudinal collections and itemsets mining.

Google’s RAPPOR uses unary encoding with a permanent randomised response,
integrating Bloom filters for efficient encoding in large-domain surveys [44,47]. This has
led to advances in frequency estimation and heavy hitter identification under LDP [48–50].
Apple, meanwhile, employs discrete Fourier Transformation and sketching algorithms for
noise addition and domain dimensionality reduction, demonstrating centralised differential
privacy applications within an LDP framework [51,52].

Microsoft has further expanded LDP’s scope to include telemetry collection [53], graph
data analysis [54], language data analysis [55], iterative interactions [56], and incorporat-
ing prior knowledge [57]. These developments illustrate the evolving landscape of LDP,
addressing the intricacies of various data types and privacy concerns.

Additionally, Federated Learning exemplifies the integration of LDP principles with
decentralised data processing, emphasising privacy in training directly on source data,
such as user devices. This approach is complemented by ongoing research in optimising
noise injection in LDP to balance data utility and privacy [58–60].

The realm of LDP is also making strides in handling time-series data, a growing
concern due to the rise of IoT devices and financial analyses. This type of data, characterised
by its sequential nature, poses unique challenges in privacy protection. Techniques like
adaptive noise strategies and the sliding window approach are being explored to address
these challenges, providing flexibility in data collection granularity and enabling varied
privacy tiers based on data sensitivity [61].

In recent developments, the application of LDP to unstructured user inputs like
voiceprints, face graphs, and sensitive texts presents new challenges. These include the
complexity of data types, maintaining data utility post-transformation, and ensuring com-
putational feasibility on personal devices. Adaptations of current DP works to LDP models
are underway, focusing on the localised processing of sensitive data while maintaining its
semantic integrity and functional utility. This expansion of LDP into diverse domains of
unstructured data marks a significant progression in the field, addressing the increasing
demand for robust privacy solutions in our digital age.

Voice data, known for their variability, pose unique challenges in LDP implementation,
especially in preserving essential characteristics for applications like voice recognition. Han
et al. extend differential privacy to voiceprints, introducing a metric privacy model that
accounts for the similarity between voiceprints [62]. Adapting this approach to LDP entails
developing localised voiceprint sanitisation methods. These methods should perturb voice
data at the source, balancing the privacy–utility trade-off and ensuring computational
efficiency for feasible implementation on standard user devices. The goal is to protect
voiceprint privacy while maintaining the utility for voice recognition and other voice-
based applications.

The complexity and sensitivity of facial images require intricate processing to maintain
privacy while preserving utility in applications like facial recognition. Jia-Wei Chen et al.
provide a framework for facial image obfuscation based on perceptual indistinguishabil-
ity [63]. Similarly, Liyue Fan proposed methods for pixelizing images to protect identifiable
features [64]. For adapting these approaches to an LDP model, efficient, local obfuscation
techniques are needed. This involves customising algorithms for on-device processing,
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ensuring facial data are privatised before leaving the user’s device and maintaining the
balance between privacy protection and the utility of the obfuscated images.

Sensitive text data present complex challenges for LDP. Maintaining the semantic
and contextual relevance of text after privacy transformations is a key difficulty. Current
DP works, such as Natasha Fernandes et al.’s work [65], focus on text obfuscation by
using ’bags-of-words’ models. This approach aims to obscure authorship clues while
preserving content. Feyisetan et al. demonstrate advanced text perturbation methods
to balance privacy and analytical utility [66]. The potential development for LDP in this
domain involves adapting these methodologies for local implementation on user devices.
This adaptation would ensure privacy from the initial data-generation stage, possibly
through the use of lightweight, efficient algorithms suitable for real-time processing on
personal devices.

2.7. Discussion

We surveyed protections on browsing exhaust and user-response disclosure for data
collection at the traditional border between the physical world and cyberspace. For brows-
ing exhaust protection, there is an ongoing arms race between web browser extensions
and exhaust-tracking techniques. Core concepts for the developing browser extensions
have evolved from elementary rule-based filters to perceptual blocking involving machine
learning technologies, where further research can be focused. For private user-response
disclosure, LDP has shown its promising applications from Google and Apple’s implementa-
tion. Despite the current research streams on LDP data utilisation, the realisation of LDP
on special survey domains and approaches requires more research.

3. Privacy Concerns in Personal Cyber–Physical Systems

Recent incidents, such as the unintentional revelation of secret military bases by a
fitness tracking app in 2018 [67] and a substantial data breach at a smart toy manufacturer in
2015 [68], have brought to light significant privacy concerns within personal cyber–physical
systems. These events highlight the criticality of addressing two primary privacy concerns,
which also represent key attack vectors: unauthorised data access in smart devices and
vulnerabilities in the secure transmission of data.

3.1. Unauthorised Data Access in Smart Devices

Smart devices and wearable gadgets, which play a pivotal role in health monitoring,
are increasingly vulnerable to unauthorised data access. These devices, diverse in their
computing and communication capabilities, are prime targets for cyberattacks. The most
prevalent attack vectors involve exploiting software vulnerabilities through sophisticated
hacking methods and gaining unauthorised access via deceptive phishing attacks. The data
at stake, encompassing sensitive health records and precise location information, are at risk
of being misused, resulting in substantial privacy violations.

3.2. Vulnerabilities in Data Transmission

A significant concern in the realm of personal cyber–physical systems, especially in
healthcare, is the secure transmission of sensitive patient data, including medical histories
and physiological metrics. This data transmission necessitates robust encryption to ensure
privacy and maintain data integrity. Nevertheless, the challenge arises with healthcare
devices constrained by limited resources, where traditional encryption methods like the
Advanced Encryption Standard (AES) encounter operational difficulties. These limitations
make the devices susceptible to sophisticated cyber threats, such as man-in-the-middle
attacks, during the data-transmission process.

3.3. Protections and Limitations

To address privacy concerns in personal cyber–physical systems, several protective
measures have been developed, though they come with inherent limitations.
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Rigorous data-access controls are implemented to prevent unauthorised access to
sensitive data on smart devices. However, these controls often falter when users inadver-
tently grant permissions to third-party applications, leading to potential security loopholes.
Developing user-friendly yet secure access-control mechanisms remains a critical challenge.

In terms of data transmission, AES is a widely adopted method in well-resourced
devices [69]. However, AES is less feasible for resource-limited healthcare devices due
to its high computational demand. As a result, there is an increasing need for adaptable
encryption solutions that balance security with the operational capabilities of these devices.

The overarching challenge is striking a balance between efficiency and security. While
lightweight encryption techniques offer promise, there is still a pressing need for innova-
tions in encryption technology that can provide robust security without compromising the
operational efficiency of various devices in these systems.

3.4. Countermeasures

With rising privacy concerns as many devices become connected and transform into
personal physical cyber systems, several countermeasures have been developed to protect
users. In our survey, we focus on the emerging technology of access-control enforcement
for wearable equipment and lightweight encryption in healthcare devices.

3.4.1. Access-Control Enforcement for the Wearable Equipment

The technology of access-control enforcement plays a core protection role in many
IoT network systems since it directly answers the privacy issue of accessibility mentioned
above. It applies a range of selective policies, setting the criteria of who can access the data.
The main purpose of an access-control-enforcement mechanism is to block unauthorised
and random queries towards a protected data repository. Besides the passive protection,
rather than blocking arbitrary connections, it sets up a bottom line against insider attacks
or general platform sharing with an efficient privilege update and revocation mechanism.
Access-control mechanisms for IoT systems have drawn much research attention, and
several works have been proposed as effective and practical solutions for wearable technol-
ogy in different scenarios. Since access-control enforcement has a wide research scope, in
the following section we survey a few typical works and focus on wearable gadgets and
connected healthcare devices.

One research focus required for wearable gadgets is to develop context-aware access
control with a more expressive policy. In 2010, Garcia-Morchon and Wehrle [70] proposed
a modular context-aware access-control mechanism that allows a system administrator to
compose each module with a well-defined goal so that access policies for different required
functionalities can be assigned to different modules. Ray et al. [71] tried to improve the
expressiveness by using attribute-based access control from the NIST NGAC framework
and achieved the first conceptual prototype for an IoT infrastructure. Later in the same
year, Salama et al. [72] successfully combined public key infrastructure and attribute-based
access control for a multilevel access control on patient healthcare monitoring.

Another research focus for wearable gadgets and connected healthcare devices is
usability. This feature is neglected by most of the existing access-control works since an
administrative model is generally assumed for access-control scenarios. However, espe-
cially for wearable gadgets, there is no administrative staff for these private devices, and
the users are the ones who configure, manage, and protect the devices and resources. Thus,
for the users who often lack the necessary security knowledge, an easy-to-use interface
and enhanced presentation need to be provided for policy configuration [73]. In 2011,
Kim et al. [74] proposed the first access-control mechanism that provides a full solution to
usability. Their newly introduced automated Clairvoyant access right assignment mecha-
nism can suggest suitable access-control policies. Unfortunately, their work is designed
for smart home scenarios where its inherent overprivilege property can be tolerated [73]. To
address this issue of overprivilege, Tian et al. [75] proposed an automated access policy
generation based on checking the functionality and behaviour of the entity that asks for
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access. Their access-control mechanism was oriented towards smartphone applications
accessing local resources, which can be extended to other IoT systems like accessing data in
wearable gadgets. After an appropriate access policy is generated, it is then provided to
the user for review.

Other research focuses include distributed environments [76,77], dynamic access
control [78], scalability [79], and multilateral security [80]. These works will be compared
with aforementioned works with other focuses in Table 2.

Table 2. Comparative analysis of access-control mechanisms for wearable equipment.

Ref. Primary Focus Strengths Limitations/Applications

[70] Modular Context-Aware
Access Control

Flexibility in module
composition for diverse
functionalities

Complex administration

[71] NIST NGAC Framework
Application

Enhanced expressiveness
with attribute-based control Conceptual prototype

[72] Multilevel access control
with PKI

Combination of PKI and
attribute-based control for
layered security

Focused on patient
monitoring

[74] Usability in Access Control
Automated Clairvoyant
access right assignment for
user convenience

Overprivilege issues

[75]
Automated Policy
Generation for
Smartphones

Functionality and
behavior-based policy
suggestion

Oriented towards
smartphone apps

[76] BiLayer Access Control
Model

Secure and scalable model
for IoT environments

Additional infrastructure
support

[77] Virtual Patient Record
Security

Protects patient data in
distributed environments

Specific to healthcare data
management

[78] Indeterminacy-Tolerant
Access Control

Robust in dynamic and
uncertain environments

Complexity in
implementation and
management

[79] RFID Tag Access Control in
Healthcare

Scalable solution for RFID
systems in healthcare

Specific to RFID technology
and healthcare context

[80] Multilevel and Multilateral
Security

Lightweight approach
suitable for IoT devices

Multilateral security
requirements

3.4.2. Lightweight Encryption in Healthcare Devices

Lightweight symmetric encryption can provide encryption requirements from con-
nected healthcare devices, especially implantable medical devices like pacemakers where
other protections are difficult to implement. Connected healthcare devices are usually
computationally weak and restrained by battery life, and implantable medical devices
often are additionally restricted with a minimal physical size that leads to implementation
constraints in hardware [81–83].

With these limitations, some features/properties in lightweight encryption become
rather more acceptable and welcome. These features include implementation flexibility, a
smaller block size, encryption rounds saving, and restricted versatility.

• Implementation Flexibility—For the implementation of encryption on resource-restrained
devices, the trade-off is only determined when applied to a specific scenario [84]. Thus,
when a feature is specifically needed for a deployment scenario, the encryption algo-
rithm should be optimised with acceptable sacrifice to other aspects.

• Lower Size—For healthcare devices that have a small physical size and need to run for
an extended period with limited battery, the design of an encryption algorithm may
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need to prioritise resource limitations. In this case, a smaller block size or internal
state becomes acceptable.

• Less Rounds—For healthcare devices, a particular nature is that its total amount of
output messages is considered relatively fewer. For example, a pacemaker working
for ten years outputs less than 230 pairs of plaintext and ciphertext, which may lead to
the relaxation of the total number of primitive rounds while retaining approximately
the same security level [85].

• Limited Versatility—The healthcare device where the encryption algorithm is to be
implemented is usually function- and operation-focused, which makes encryption
algorithms that have limited versatility rather welcome.

Considering the above implementation difficulties, security requirements, and feature
preferences, our survey on lightweight symmetric encryption focuses on the algorithms
that have a small block size or internal state and can manage short keys. Most of the
candidate algorithms lie in block ciphers and stream ciphers due to the restrained resource.
For hash function-based algorithms, only PHOTON [86] and Spongent [87] have ideally a
small internal state size. A summary of the surveyed algorithms is shown in Table 3.

Table 3. Comparison among suitable lightweight encryption schemes.

Block Ciphers

Name Ref. Key Block Rounds

Joltik [88] 64/80/96/128 64 24/32
Mantis [89] 128 64 14
Skinny [89] 64–384 64/128 32–56
Qarma [90] 128/256 64/128 16/24
T-TWINE [91] 80/128 64 36
GIFT-64 [92] 128 65 28
SPARX-64/128 [93] 64 64 32

Stream Ciphers

Name Ref. Key IV IS

A2U2 [94] 61 64 95
Sprout [95] 80 70 89
Plantlet [96] 80 90 110

Hash

Name Ref. Digest Block IS

PHOTON [86] 80–256 16/32/64 100–288
Spongent [87] 80–256 8/16 88–272
ISAPv1-A-128a [97] 64 128 320
Saturnin [98] 192 256 256

While lightweight encryption offers optimised solutions tailored for resource-constrained
devices, it is pivotal to be cognisant of potential trade-offs. Balancing efficiency with robust
security is a delicate act. In some instances, the efficiency of lightweight encryption might
come at the cost of reduced security when compared to their heavyweight counterparts.
Such trade-offs necessitate meticulous evaluation, especially when patient health and data
are at stake.

3.5. Discussion

For private data stored in many smart devices including wearable equipment that
builds a personal data hub, we explored how the data collected by these devices can be
accessed and the challenges associated with transmitting sensitive data from resource-
constrained devices. Existing access-control approaches help with the general purpose of
controlling accessibility. However, most research works have not considered the usability
that presents an essential requirement for personal scenarios. Another field in access control
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for future research is how to delicately assign accessibility according to the sensitivity of
the collected data. An example would be that location information in residential areas,
compared to public places, should be considered highly private and not suitable to be
accessed by most applications. In terms of protection during transmission, lightweight
encryption has shown practical promise in many IoT devices. For healthcare devices, which
could benefit from the seamless 5G network in the near future, characterised lightweight
encryption schemes are expected to fit the challenging privacy scenarios.

4. Privacy Concerns during User-Driven Data Collection

With the rise of user-driven data collection through connected devices and partici-
patory sensing platforms, privacy risks have become increasingly prevalent. This section
delves into the specific attack vectors in these scenarios, focusing on the inadvertent leak-
age of personal information and the vulnerabilities in decentralised networks, particularly
opportunistic networks (OppNets).

As participatory sensing becomes more integrated into our daily lives through the
proliferation of smart devices, users frequently encounter decentralised network structures,
including OppNets. This trend of leveraging sensors in devices for data collection exposes
users to notable privacy risks. Often, media containing sensitive information like loca-
tion, time, and identity is uploaded unknowingly by users, leading to inadvertent data
exposure [99].

OppNets, serving as a common alternative to traditional network infrastructures,
are increasingly relevant in a variety of contexts, not just in remote or poorly connected
areas. These networks are characterised by their decentralised and dynamic nature, which
presents unique privacy challenges. Understanding these challenges is essential for ad-
dressing the specific attack vectors that arise within these networks, which are becoming
more commonplace as participatory sensing grows.

4.1. Inadvertent Data Leakage

A major attack vector in user-driven data collection is the inadvertent leakage of
personal information. Users often share media files embedded with sensitive data such as
geolocation and timestamps without realising the potential privacy implications. This type
of accidental exposure underlines the need for increased awareness and more stringent
control over data-sharing practices in the era of widespread participatory sensing.

4.2. Residual Data Traces

Residual data traces in digital content pose another significant privacy concern. At-
tempts to remove personal data from uploads often leave behind remnants vulnerable to
exploitation. Addressing this risk requires effective data-sanitation methods capable of
thoroughly eliminating personal traces and protecting user privacy in the digital space.

4.3. Collector Vulnerability

In the realm of participatory sensing, the entities collecting data—whether individuals
or applications—face distinct vulnerabilities. As aggregators of sensitive user information,
these collectors can become targets for cyberattacks. Ensuring their security is crucial and
necessitates robust protective measures for both the data and the collectors.

4.4. OppNets Network Node Vulnerability

The decentralised structure of OppNets inherently makes intermediate nodes suscep-
tible to compromise or malicious activities. These nodes, critical for ensuring seamless data
transmission in the absence of stable, centralised networks, can become potential targets
for various cyber threats. Security breaches in these nodes, ranging from data interception
to unauthorised access, can have far-reaching consequences, jeopardising the safety and
privacy of transmitted information. The studies by Kumar et al. [100], Tsai et al. [101], and
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Irshad et al. [102] highlight the vulnerabilities and potential security breaches that can
occur in these scenarios.

OppNets Network Authentication Risks

The decentralised framework of OppNets introduces complexities in authentication
processes, representing significant privacy risks. Ensuring the secure transmission of
sensitive personal information in OppNets requires robust, adaptable authentication mech-
anisms [103,104]. Developing these mechanisms is essential for safeguarding data against
unauthorised access and maintaining the integrity of information within these versatile
networks.

4.5. Countermeasures

Addressing privacy concerns in user-driven data collection, particularly in partici-
patory sensing and OppNets, involves diverse countermeasures including access control,
advanced encryption, location privacy protection, and robust authentication. While the
ample computational power of modern smartphones enables the use of sophisticated
encryption methods without significant limitations, our research primarily focuses on en-
hancing location privacy in participatory sensing and ensuring anonymous authentication
within OppNets. This targeted approach allows us to concentrate on specific challenges
and vulnerabilities inherent in these systems, such as protecting sensitive location data and
securing decentralised network interactions, which are crucial in the dynamics of pervasive
user data collection.

4.5.1. Location Privacy in Participatory Sensing

The issue of location privacy sits at the forefront of concerns in participatory sensing.
The very act of sharing location details within the sensing communication network or with
third-party entities can jeopardise an individual’s privacy. However, the dichotomy arises
when considering the utility of location data. Low-quality or imprecise location data could
diminish the overall value of participatory sensing. Consequently, there is an ongoing
struggle to strike a balance between preserving location quality and ensuring location
privacy, a topic of much interest to researchers. Over the years, various methodologies have
been explored to address this challenge. The most impact among these can be distilled into
three primary techniques:

• Dummy locations—Initially introduced by Kido et al. [105], the concept of dummy
locations involves sending queries with the user’s actual location and several fake
locations. This technique effectively confounds service providers, making it difficult to
pinpoint the user’s true location. Further advancements in this area include the work
of Liu et al. [106], who developed a spatiotemporal correlation-aware dummy-based
privacy-protection scheme, and Hara et al. [107], who focused on dummy-based user
location unionisation under real-world constraints. These developments enhance the
method’s effectiveness, particularly in scenarios where individual location information
is crucial.

• Obfuscation—Duckham and Kulik’s novel approach [108] involves negotiating the
degradation of location information. This technique allows for a tailored balance
between privacy protection and service quality. Through negotiation algorithms,
users can dynamically adjust the level of obfuscation applied to their location data,
ensuring adequate privacy while maintaining the efficacy of the service. The method
has evolved to include various forms of perturbation [109] and generalisation [110],
making it adaptable to a wide range of participatory sensing applications.

• k-anonymity—Stemming from the foundational concept of k-anonymity [111], Gruteser
and Grunwald [112] developed a method that conceals a user’s location within a
group of k − 1 other users. This approach has been further refined in studies like
Niu et al. [113], offering enhanced anonymity in privacy-aware location-based services.
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While effective in specific scenarios, it is less robust for continuous location tracking
and can suffer from reduced accuracy [114], potentially affecting service reliability.

4.5.2. Anonymous Authentication for OppNets

In OppNets, ensuring both authentication and anonymity is crucial. While authen-
tication validates nodes and secures the network, anonymity protects users’ identities, a
critical aspect in today’s privacy-conscious digital landscape.

The authentication procedure in OppNets serves a dual purpose: verifying a node’s
credentials and shielding the network from unauthorised intrusion. It also maintains
the integrity of the packets received by nodes. The absence of direct paths between
distant nodes in OppNets intensifies the challenge of constructing efficient authentication
algorithms. Add to this the pursuit of preserving anonymity in these dynamic settings and
we are faced with an intricate problem. A few novel algorithms that have navigated this
complex maze are discussed in the literature and encapsulated in Table 4.

Carver and Lin’s 2012 proposition represents one of the earlier forays into this domain.
They advocated an authentication scheme for OppNets that capitalised on group-oriented
broadcast encryption, deeply rooted in pairing [115,116] and identity-based signatures.
Optimised for Bluetooth and 3G communications [117], their methodology ensured packet
forwarding without necessitating recipient knowledge, thereby preserving user privacy to
an extent. However, this method unveiled the sender’s details after authentication. An in-
herent limitation was the dependency on a trusted third-party entity for key generation and
group taxonomy, a potential Achilles’ heel if this third party were ever compromised [118].

Exploring complete user privacy, Guo et al.’s 2015 framework set a new bench-
mark [119]. Designed for constrained wireless network environments with short-lived
connectivity, their strategy assigned a super node for node registration. Their security
approach blended both symmetric and asymmetric encryption techniques, buttressed by
the use of hash functions to cloak user identities. Kumar et al. in 2017 built upon this
foundation, emphasizing dynamic user identities for key exchanges and integrating RSA
encryption to safeguard data during transmission.

Taking a divergence from conventional encryption methodologies, Kuo et al. charted
fresh waters with their authentication scheme, deeply entrenched in hash functions and
point operations [120]. Though not originally crafted for OppNets, its roaming authenti-
cation capability indicated potential compatibility, promising enhanced performance and
bolstered security.

Table 4. Comparison among anonymous authentication for OppNets.

Ref. Technique Feature

[117] Broadcast encryption Partial privacy
[119] Symmetric and asymmetric encryption Hashed user ID
[100] RSA encryption Dynamic user ID

[120] Hash functionality
Point operation Encryption free

4.6. Discussion

The existence of users and data generated by users raise concerns about protecting
user privacy during active data-collecting activities. From these concerns, we survey the
problems of location privacy in participatory sensing and anonymous authentication in
OppNets. To protect a participant’s location data, a compromise in the quality of the
location data is usually the trade-off, although many efforts have been made to miti-
gate the effect. Concerning identity privacy in OppNets, existing solutions heavily rely
on encryption techniques, which can be expensive considering heterogeneous devices.
Encryption-free anonymous authentication requires more research as it potentially has
more application scenarios.
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5. Future Vision on Complex Privacy Problems

There are many complex privacy problems already identified that soon could have a
considerable impact on industry as well as our daily lives. We deliver our future vision
on three of these privacy concerns, i.e., trajectory privacy, privacy in smart metering, and
involuntary information leakage with ambient intelligence.

5.1. Trajectory Privacy

When we apply the traditional scenario of cookie privacy concerns to mobile applica-
tions, users’ trajectories become at risk due to location information embedded in cookie
logs. Cookie logs in cyberspace may contain high-quality user location information, which
can be collected directly by using GPS coordinates with a user’s fast consent to an unex-
plained location service permission requirement or indirectly collected with location tags
from a local network or service provider in the physical world. This potential privacy
breach should be categorised to a more dangerous level than web browsing history or
personal preference logs. More detailed physical activities, routine habits, or even mental
status can be inferred by analytical work on user trajectories. The infamous Uber travel
history leakage lawsuit in 2017 [121] is a relevant example. Ref. [122] developed a privacy
analysis system on user login records and physical context information and deepened the
understanding of user physical-world privacy leakage via cyberspace privacy leakage. It
becomes clear that user trajectories can be discovered and confirmed when third parties
analyse their cookie logs as users move and browse in their daily lives let alone potential
exogenous records of GPS coordinates. These cookie logs may further be exchanged with
other analytics companies for centralised analysis connecting with other web activities,
exposing the private physical trajectory to more entities. Compared with other private data,
physical trajectory is more effective for reidentification by auditing relevant activity logs at
locations and comparing differential timelines. The balance between utility and privacy
with location data has drawn much research attention. However, for this physical-world
trajectory leakage via user cyberspace data, further research efforts are required.

5.2. Privacy in Smart Metering

As part of the pervasive data collection in cyberspace, smart metering in smart energy
supply networks represents a critical evolution in data interaction between consumers
and service providers. This evolution aligns with the broader theme of our paper, which
examines how technological advancements in data collection impact user privacy [123].

For smart energy supply, smart metering collects detailed consumption data and helps
evaluate the status of a smart energy grid for more efficient resource distribution. This data
transmission, often in plaintext, raises significant privacy concerns, especially when linked
with the personal activities of consumers [124–126].

Consumption data, inherently tied to the private activities of consumers, form the core
of sensitive information valuable to service providers [127]. Alongside these data, location
tags and physical address information significantly contribute to the risk profile. While lo-
cation tags provide a dynamic geospatial context, physical addresses link the consumption
data directly to a fixed, real-world location. This amalgamation of consumption patterns,
location’s context, and identifiable addresses creates a substantial attack surface, attracting
the attention of potential adversaries.

To mitigate these risks, the application of cryptography is vital. By employing ad-
vanced cryptographic techniques, the sensitive attributes of the data—including consump-
tion patterns, location tags, and physical addresses—can be securely encrypted. This
ensures that even if data are intercepted or accessed by unauthorised entities, the critical
components remain unintelligible and protected. Moreover, cryptographic solutions can
be tailored to safeguard the integrity and confidentiality of this information, both during
transmission and storage, thereby significantly reducing the attractiveness of the data to
potential attackers and minimising the risks associated with data breaches.
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However, a key obstacle is the limited resources that the smart meters have to perform
strong cryptography [127]. Therefore, it remains a challenge for future research focusing
on cryptography-based mechanisms that must provide confidentiality while minimising
resource consumption.

5.3. Privacy Challenges in Vehicular Ad Hoc Networks

The evolution of transportation systems, driven by the integration of vehicles and
infrastructure, has given rise to Vehicular Ad Hoc Networks (VANETs) [128]. VANETs
represent another aspect of the pervasive data-collection paradigm discussed in this paper.
The integration of these networks in transportation systems, especially in autonomous
vehicles, brings forth unique privacy and cybersecurity challenges.

One of the primary vulnerabilities in VANETs is the potential for data breaches. In au-
tonomous vehicles, vast amounts of data are collected and transmitted, including sensitive
personal information such as location, travel patterns, and in some cases, user identity [129].
The interception of these data by unauthorized entities can lead to privacy violations and
identity theft. Additionally, the high mobility of vehicles complicates the network’s security,
making it challenging to establish stable and secure communication channels.

In response to these challenges, VANETs require robust authentication protocols to
ensure that only legitimate vehicles and infrastructure components participate in the net-
work [130]. Advanced cryptographic techniques and secure communication protocols are
essential to protect data transmission from eavesdropping and tampering. The scalability
of these security measures is crucial due to the high number of vehicles and the dynamic
nature of VANETs [131,132].

Anonymity in VANETs is another critical countermeasure to safeguard user privacy.
While ensuring the authenticity of messages and the reliability of data sources, it is vi-
tal to anonymize data to prevent the tracking and profiling of individual vehicles or
drivers [133,134]. Techniques like pseudonymization, where vehicles periodically change
their identifiers to prevent long-term tracking, are employed to strike a balance between
security and privacy [135–142].

Moreover, data-minimisation strategies are essential in autonomous vehicles to col-
lect only the data necessary for the intended purpose, reducing the volume of sensitive
information that could be compromised.

As we envision a future marked by interconnected vehicular systems, understanding
and mitigating these cybersecurity vulnerabilities becomes paramount. Dedicated research
and the development of innovative solutions are required to address these intricate privacy
issues effectively, ensuring that VANETs can realise their transformative potential for the
transportation sector in a secure and privacy-preserving manner.

5.4. Involuntary Privacy Leakage with Ambient Intelligence

Ambient intelligence renders environments more perceptive to users. Sensors de-
tect environmental state changes, which accelerates computing services tailored to user
needs [143]. As smart devices become integral in daily routines, a mobile ambient intelli-
gence ecosystem, replete with diverse functionalities, gradually emerges. The enhanced
user experiences from smartphones and wearable gadgets have led users to permit data col-
lection. However, this inadvertently paves the way for potential private information leaks.

These devices, connected to the internet, bridge the real world and cyberspace, render-
ing them susceptible to threats from both domains. An instance of cyber threat is outlined
in [144], detailing smartwatches unintentionally revealing users’ real-time location data.
Such vulnerabilities, as Manuel puts it, are “pretty common”. Though software-centric
cyberattacks can be rectified promptly, breaches might still happen due to subpar testing,
even with robust security mechanisms [144].

On the other end, threats emanating from the physical realm can be either inadvertent
or deliberate. An inadvertent breach could be an unknown individual’s image being unin-
tentionally captured and uploaded on social media. While the uploader remains unaware
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of the individual’s identity, sophisticated algorithms might recognize them, revealing when
and where the image was captured.

The onset of advanced smartphone capabilities has amplified our ability to chronicle
every intricate detail of daily life. Consequently, the destiny of information about those
inadvertently captured is vested in the hands of device users. The digital doorbell serves
as another poignant example in this context. With an increasing number of households
installing them, these devices constantly monitor front-door activities, often recording
passersby or neighbours without their consent. Such recordings might get stored, shared,
or even analysed without the knowledge of those captured.

In the face of these challenges, it becomes imperative for smart devices to evolve
in their capacity to discern environments and adopt suitable privacy measures while
also equipping users with the awareness and tools to navigate their surroundings with
due diligence.

6. Conclusions

Emerging technologies continually change the ways user data are gathered and pro-
cessed, and the scale at which this can be performed. This presents an evolving challenge
to user privacy. In this paper, we explored multifaceted privacy concerns arising from the
integration of cyberspace and the physical world.

From our examination, we identify three central themes: data exhaust tracing, personal
data hub, and active data collection. These categories aptly represent the diverse privacy
challenges currently prevalent. Within these, we further detailed six primary concerns,
from identity tracking in browsing exhaust to data-transmission security and privacy
implications in opportunistic networks. We situated these concerns in practical application
scenarios, elucidating their distinct characteristics and their departures from traditionally
understood problems.

In addition to highlighting these concerns, we assessed existing technological coun-
termeasures. Through a comparative analysis, we identified both the strengths and weak-
nesses of current solutions, thereby pinpointing existing research gaps and potential obsta-
cles to their practical implementation.

Moreover, the evolving technological landscape brings forth complex privacy chal-
lenges. We extend our analysis to the realms of user trajectories, smart metering, and
ambient intelligence. These scenarios, encompassing elements from various domains,
underline the growing intricacy of privacy-related challenges.

To conclude, as the boundary between the digital and physical blurs further, the
imperative for robust privacy safeguards amplifies. While we have delineated possible
research avenues and directions in this survey, the overarching takeaway remains: the quest
for privacy in a hyperconnected era is dynamic, demanding constant vigilance, innovation,
and adaptation.
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Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of Things
DP Differential privacy
LDP Local differential privacy
NLP Natural language processing
AES Advanced Encryption Standard
CGMs Continuous Glucose Monitors
OppNets Opportunistic networks
VANETs Vehicular Ad Hoc Networks
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