
Citation: Li, Y. Hardware

Implementations of Elliptic Curve

Cryptography Using Shift-Sub Based

Modular Multiplication Algorithms.

Cryptography 2023, 7, 57. https://

doi.org/10.3390/cryptography7040057

Academic Editor: Jim Plusquellic

Received: 29 August 2023

Revised: 6 November 2023

Accepted: 7 November 2023

Published: 10 November 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Hardware Implementations of Elliptic Curve Cryptography
Using Shift-Sub Based Modular Multiplication Algorithms
Yamin Li

Computer Architecture Laboratory, Faculty of Computer and Information Sciences, Hosei University,
Tokyo 184-8584, Japan; yamin@hosei.ac.jp

Abstract: Elliptic curve cryptography (ECC) over prime fields relies on scalar point multiplication
realized by point addition and point doubling. Point addition and point doubling operations consist
of many modular multiplications of large operands (256 bits for example), especially in projective
and Jacobian coordinates which eliminate the modular inversion required in affine coordinates for
every point addition or point doubling operation. Accelerating modular multiplication is therefore
important for high-performance ECC. This paper presents the hardware implementations of modular
multiplication algorithms, including (1) interleaved modular multiplication (IMM), (2) Montgomery
modular multiplication (MMM), (3) shift-sub modular multiplication (SSMM), (4) SSMM with ad-
vance preparation (SSMMPRE), and (5) SSMM with CSAs and sign detection (SSMMCSA) algorithms,
and evaluates their execution time (the number of clock cycles and clock frequency) and required
hardware resources (ALMs and registers). Experimental results show that SSMM is 1.80 times faster
than IMM, and SSMMCSA is 3.27 times faster than IMM. We also present the ECC hardware imple-
mentations based on the Secp256k1 protocol in affine, projective, and Jacobian coordinates using the
IMM, SSMM, SSMMPRE, and SSMMCSA algorithms, and investigate their cost and performance.
Our ECC implementations can be applied to the design of hardware security module systems.

Keywords: elliptic curve cryptography; affine, projective, and Jacobian coordinates; modular
multiplication; hardware security module; Verilog HDL; FPGA; cost/performance evaluation

1. Introduction

The use of elliptic curves in cryptography was proposed by Neal Koblitz and Victor
S. Miller independently in 1985 [1,2]. Elliptic curve cryptography (ECC) over the finite
field of a prime number m relies on the fact that scalar point multiplication Q = dP can be
computed, but it is almost impossible to compute the multiplicand d given only the original
point P and the point of the product Q. Scalar point multiplication can be conducted with
point addition (adding two points) and point doubling [3].

In conventional affine coordinates, point addition and point doubling require com-
puting the slope of a line involving division. In both projective and Jacobian coordinates,
divisor multiplication is calculated such that division is eliminated during scalar point
multiplication. One final division is required to convert a point from projective or Jaco-
bian coordinates to affine coordinates to obtain the shared secret key based on the elliptic
curve Diffie–Hellman (ECDH) key exchange. ECDH is a variant of the Diffie–Hellman
key agreement protocol using ECC between two parties to establish a shared secret key
over an insecure network [4,5]. A modular inversion algorithm calculating a−1 mod m is
given in [3]. Based on this, this paper provides a Verilog HDL implementation to calculate
ba−1 mod m. It can be used in affine coordinates to calculate the line slope, or in projec-
tive and Jacobian coordinates to convert points to affine coordinates in the final step for
obtaining the shared secret key.

Point addition and point doubling operations consist of many modular multiplications,
especially in projective and Jacobian coordinates. Accelerating modular multiplication is

Cryptography 2023, 7, 57. https://doi.org/10.3390/cryptography7040057 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7040057
https://doi.org/10.3390/cryptography7040057
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-0069-5629
https://doi.org/10.3390/cryptography7040057
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7040057?type=check_update&version=1


Cryptography 2023, 7, 57 2 of 29

therefore important for high-performance ECC. The interleaved modular multiplication
(IMM) algorithm [6] eliminates the need for division and has a lower hardware cost. To
calculate p = ab mod m with a, b < m, IMM first calculates p ← 2p + bia, where bi is the
ith bit of b. To guarantee p < m, we can subtract at most 2m from p since 2p + a < 3m.
To carry this out, the traditional IMM algorithm performs the following calculation twice
sequentially: if p ≥ m, p ← p − m. The work in [7] is an FPGA implementation of a
processor for elliptic curve point multiplication over prime fields. It uses a modified IMM
algorithm with a three-input multiplexer to select one from p, p−m, and p− 2m. Also,
it uses a multiplexer to select one from 2p and 2p + a for 2p + bia where bi is used as the
multiplexer selection signal. The design in [8] is similar to [7], but uses two-input “AND”
gates to implement 2p + bia so that it will perform 2p + 0 if bi is 0, and 2p + a otherwise.
The work in [9] is a low hardware consumption elliptic curve cryptographic architecture
over prime fields for embedded applications. It performs p← p− p[n + 1 : n]m and uses
a four-input multiplexer to select one from 0, −m, −2m, and −3m, for p[n + 1 : n] = 0, 1,
2, and 3, respectively. In fact, a three-input multiplexer is sufficient because 2p + a < 3m
and hence p[n + 1 : n] 6= 3. The authors in [10] present an ECC architecture that adopts
the modular multiplication algorithm proposed in [9]. The design in [11] implements an
ECC processor over the NIST [5] prime fields. It uses two subtractors to prepare p− m
and p − 2m and then uses a three-input multiplexer to select one from p, p − m, and
p − 2m. It uses two comparison modules to generate the multiplexer selection signals
(Figure 3 of paper [11]). This increases hardware costs. In fact, the most significant bit of
the 258-bit subtractors can be directly used as the multiplexer selection signals to obtain
the final 256-bit product. The authors in [12] describe an implementation of a dual-field
ECC processor. The radix-4 IMM algorithm checks two bits of b in each iteration, which
reduces the number of iterations by half. Modular multiplications with higher radix require
fewer iterations, but the precomputation increases exponentially. The work in [13] is an
ECC processor over the NIST P-256 [5] elliptic curve for real-time IoT (Internet of things)
applications. It splits the 256-bit inputs into four 64-bit parts and uses the schoolbook-
based multiplication algorithm in a pipelined manner to obtain a 512-bit product. Finally,
the P-256 fast modular reduction algorithm is used to realize the modular multiplication.
Such an implementation can only support the P-256 curve. The Montgomery modular
multiplication (MMM) algorithm [14] performs multiplication in the Montgomery domain
and is very efficient for modular exponentiation used by RSA cryptography. The modular
exponentiation can be calculated by repeatedly calling MMM. However, transformations to
the Montgomery domain are required before calculations, and a transformation back to the
regular domain is also required to obtain the final result. Domain transformation requires
the value q = R2 mod m, which is calculated by an expensive modular operation. Using a
precomputation of q for fixed R and m speeds up the calculations but reduces the flexibility
of using different moduli m. The shift-sub modular multiplication (SSMM) algorithm uses
shifts and subtractions to perform modular multiplication. The SSMM algorithm and its
use in RSA cryptography are described in [15,16]. An algorithm using CSA (Carry save
adder) [17] is proposed but it requires either a modular computation after the iterations or
a precomputed look-up table for fixed multiplier and moduli.

This paper focuses on radix-2 algorithms and proposes two enhanced versions of
SSMM: SSMM with advance preparation (SSMMPRE) and SSMM with CSAs and sign
detection (SSMMCSA) algorithms. We also present the ECC implementations based on
Secp256k1 [4] protocol which is used in the Ethereum blockchain. The specific contributions
of this paper are summarized as follows: (1) Based on SSMM, we propose SSMMPRE
(SSMM with advance preparation) and SSMMCSA (SSMM with CSAs and sign detection)
algorithms that have lower latency than SSMM. (2) The hardware implementations of
IMM, MMM, SSMM, SSMMPRE, and SSMMCSA algorithms are presented and their cost
(required adaptive logic modules (ALMs) and registers) and performance (the number
of clock cycles and clock frequency) are evaluated. (3) The hardware implementations of
ECC in affine, projective, and Jacobian coordinates using the IMM, SSMM, SSMMPRE, and



Cryptography 2023, 7, 57 3 of 29

SSMMCSA algorithms are presented and their cost and performance are evaluated and
compared with those proposed in [7–10]. (4) Some important Verilog HDL source codes and
their simulation waveform are included in Appendices A and B. The experimental results
show that SSMM is 1.80 times faster than IMM and SSMMCSA is 3.27 times faster than IMM,
and our ECC implementations perform better than those proposed in [7–10]. Compared to
RSA cryptography, ECC provides stronger encryption with shorter key lengths [18]. The
ECC implementations described in this paper can support other elliptic curves, such as the
NIST P-256 (Secp256r1) [5] curve.

The rest of the paper is organized as follows. Section 2 introduces the background of
ECC, including the point addition, point doubling, scalar point multiplication, modular
inversion, ECDH key agreement protocol, and affine, projective, and Jacobian coordinates.
Section 3 describes the modular multiplication algorithms, including the IMM, MMM,
SSMM, SSMMPRE, and SSMMCSA algorithms. Section 4 presents hardware implemen-
tations of modular multiplications and ECC and evaluates their cost and performance.
Comparisons with [7–10] are also given in this section. And Section 5 concludes the paper.
Verilog HDL codes for SSMM and modular inversion are listed in Appendices A and B.

2. Elliptic Curve Cryptography Algorithms

This section describes ECC algorithms and ECDH that underlie this work. A top view
of the relationship between these algorithms is shown in Figure 1.

ECDH - Elliptic Curve Diffie-Hellman Key Exchange

Scalar Point Multiplication

Point Addition Point Doubling

Modular InversionModular MultiplicationModular Addition Modular Subtraction

Figure 1. ECDH and ECC algorithms. The ECDH key exchange invokes a scalar point multiplication
that uses two computations—point addition and point doubling. Four primitive modular calculations
(addition, subtraction, multiplication, and inversion) are used for these two computations.

Modular multiplication and modular inversion are performed with iterations which
will be described later. Modular addition and modular subtraction are calculated in one
clock cycle. The Verilog HDL codes for modular addition and modular subtraction used in
our ECC implementations are listed below. The most significant bits of 258-bit subtractors
s_m[257] and sum[257] are used as the selection signals of the multiplexers.

module modadd (a, b, m, s); // s = (a + b) mod m
input [255:0] a, b, m;
output [255:0] s;
wire [257:0] sum = {2’b00,a} + {2’b00,b};
wire [257:0] s_m = sum - {2’b00,m};
assign s = s_m[257] ? sum[255:0] : s_m[255:0];

endmodule

module modsub (a, b, m, s); // s = (a - b) mod m
input [255:0] a, b, m;
output [255:0] s;
wire [257:0] sum = {2’b00,a} - {2’b00,b};
wire [257:0] s_m = sum + {2’b00,m};
assign s = sum[257] ? s_m[255:0] : sum[255:0];

endmodule



Cryptography 2023, 7, 57 4 of 29

The interesting computations in ECC are point addition and point doubling. We first
introduce these two computations in an elliptic curve over the real numbers. In the real
number field, an elliptic curve can be defined in Weierstrass form as

y2 = x3 + ax + b (1)

Note that this curve is symmetrical about the x-axis. If point P = [xp, yp] is on an elliptic
curve, then −P = [xp,−yp] is also on the same elliptic curve.

2.1. ECC Point Addition and Doubling in Affine Coordinates

Affine coordinates use two coordinates [x, y] to represent an elliptic curve point, as
shown by, for example, P = [xp, yp] and −P = [xp,−yp]. We will see that the ECC point
addition and point doubling in affine coordinates require expensive divisions.

2.1.1. ECC Point Addition in Affine Coordinates

Figure 2 shows the point addition R = P + Q on an elliptic curve y2 = x3 + ax + b.
Given two distinct points P = [xp, yp] and Q = [xq, yq] on the curve, if the line L1 through
P and Q intersects the curve in S = [xs, ys], then R = [xr, yr] = P + Q is defined as xr = xs
and yr = −ys. Because xr = xs, the line L2 through S and R is a vertical line.

−6

−4

−2

2

4

6

−4 −3 −2 −1 1 2 3 4

P(xp, yp)

y2 = x3 + ax + b

Q(xq, yq) S(xs, ys)

R(xr, yr)

L1

L2

R = P + Q

Figure 2. Point addition R = P + Q on an elliptic curve y2 = x3 + ax + b in the real number field.

Below we show how to obtain formulas to calculate xr and yr based on xp, yp, xq, and
yq for y2 = x3 + ax + b. The formula of the line L1 through P and Q is

y = λ(x− xp) + yp (2)

where λ is the slope of the line L1. Squaring both the left side and right side of Equation (2),
we obtain y2 = (λ(x− xp)+ yp)2. Then, replacing y2 of Equation (1) with (λ(x− xp)+ yp)2,
we have

x3 − λ2x2 + (a− 2ypλ + 2xpλ2)x + (b− (yp − λxp)
2) = 0 (3)

Because P, Q, and S are three points on the curve, meaning that xp, xq, and xs are three
roots of Equation (3), based on Vieta’s formulas, we have

(x− xp)(x− xq)(x− xs) = 0 (4)

Expanding Equation (4) gives:

x3 − (xp + xq + xs)x2 + (xpxq + xqxs + xsxp)x− xpxqxs = 0 (5)



Cryptography 2023, 7, 57 5 of 29

Then from Equations (3) and (5) we have xp + xq + xs = λ2. That is, xs = λ2 − xp − xq and
ys = λ(xs − xp) + yp. Considering the L1 line slope λ = (yq − yp)/(xq − xp), xr = xs, and
yr = −ys, we summarize the formulas for point addition R = P + Q = (xr, yr) on elliptic
curve y2 = x3 + ax + b as follows.

λ =
yq − yp

xq − xp
(6)

xr = λ2 − xp − xq (7)

yr = λ(xp − xr)− yp (8)

For Q = −P, the line through P and −P does not intersect the elliptic curve at the
third point. For this reason, the point O at infinity is included in the group of elliptic curves
and defined as P + (−P) = O. By this definition, P + O = P.

In practice, a group of elliptic curves over a finite field of Fm or F2n is used, where Fm
contains numbers from 0 to m− 1 and F2n uses n-bit binary numbers. In the case of Fm,
the results of all the above calculations are modularized by m, where m is usually a prime
number. For example, Secp256k1 [4] elliptic curve used in Ethereum blockchain uses a
256-bit m = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1. Secp256k1 defines y2 = x3 + ax + b =
x3 + 7 and gives a point P = [x, y] on the elliptic curve as follows.

a = 0x0000000000000000000000000000000000000000000000000000000000000000
b = 0x0000000000000000000000000000000000000000000000000000000000000007
m = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
x = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
y = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8

By considering P + O = P, we give the point addition R = P + Q algorithm over the
finite field of Fm in Algorithm 1. In our implementation, O is denoted as [−1,−1]. In the
case of Q = P, we perform the point doubling R = 2P (line 6 in the algorithm).

Algorithm 1 PAA (P, Q, m, a) (point addition in affine coordinates).

inputs: Points P = [Px, Py] and Q = [Qx, Qy]; m and a in y2 = x3 + ax + b mod m
output: R = P + Q = [Rx, Ry] = [xr, yr]
begin
1 xp = Px, yp = Py, xq = Qx, yq = Qy, O = [−1,−1]
2 if P = O return Q /* O + Q = Q */
3 if Q = O return P /* P + O = P */
4 if xp = xq
5 if (yp + yq) mod m = 0 return O /* P + (−P) = O */
6 else return PDA (P, p, a) /* P + P = 2P */
7 λ = ((yq − yp)/(xq − xp)) mod m
8 xr = (λ2 − xp − xq) mod m
9 yr = (λ(xp − xr)− yp) mod m
10 return [xr, yr] /* R = P + Q */
end

An example of point addition R = P + Q on the Secp256k1 curve is shown below
where [Px, Py] = P, [Qx, Qy] = Q, and [Rx, Ry] = R in affine coordinates.

Px = 0xe493dbf1c10d80f3581e4904930b1404cc6c13900ee0758474fa94abe8c4cd13
Py = 0x51ed993ea0d455b75642e2098ea51448d967ae33bfbdfe40cfe97bdc47739922
Qx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Qy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
Rx = 0x2f8bde4d1a07209355b4a7250a5c5128e88b84bddc619ab7cba8d569b240efe4
Ry = 0xd8ac222636e5e3d6d4dba9dda6c9c426f788271bab0d6840dca87d3aa6ac62d6



Cryptography 2023, 7, 57 6 of 29

2.1.2. ECC Point Doubling in Affine Coordinates

Figure 3 shows the point doubling R = 2P on an elliptic curve y2 = x3 + ax + b.
Compared to the point addition shown in Figure 2, here we have Q = P and R = P + Q =
2P. Given a point P = [xp, yp] on the curve, if the tangent line L1 through P intersects the
curve in S = [xs, ys], then R = [xr, yr] = 2P is defined as xr = xs and yr = −ys.

−6

−4

−2

2

4

6

−4 −3 −2 −1 1 2 3 4

P(xp, yp)

y2 = x3 + ax + b

Q(xq, yq)
S(xs, ys)

R(xr, yr)

L1

L2

R = 2P

Figure 3. Point doubling R = 2P on an elliptic curve y2 = x3 + ax + b in the real number field.

Below we show how to obtain formulas to calculate xr and yr based on xp, yp, and a
for y2 = x3 + ax + b. The formula of the line L1 through P is

y = λ(x− xp) + yp (9)

where λ is the slope of the line L1. Squaring both the left side and right side of Equation (9),
we obtain y2 = (λ(x− xp)+ yp)2. Then, replacing y2 of Equation (1) with (λ(x− xp)+ yp)2,
we have

x3 − λ2x2 + (a− 2ypλ + 2xpλ2)x + (b− (yp − λxp)
2) = 0 (10)

Because P, Q (= P), and S are three points on the curve, meaning that xp, xq, and xs are
three roots of Equation (10), based on Vieta’s formulas, we have

(x− xp)
2(x− xs) = 0 (11)

Expanding Equation (11) gives:

x3 − (2xp + xs)x2 + (x2
p + 2xpxs)x− x2

pxs = 0 (12)

Then from Equations (10) and (12) we have 2xp + xs = λ2. That is, xs = λ2 − 2xp and
ys = λ(xs − xp) + yp. The slope of the tangent line L1 of y2 = x3 + ax + b at P can be
obtained as follows.

d
dx

(y2) =
d

dx
(x3 + ax + b) (13)

2y
dy
dx

= 3x2 + a (14)

dy
dx

= (3x2 + a)/(2y) (15)

λ = (3x2
p + a)/(2yp) at P (16)



Cryptography 2023, 7, 57 7 of 29

Considering xr = xs and yr = −ys, we summarize the formulas for point doubling R = 2P
on elliptic curve y2 = x3 + ax + b as follows.

λ =
3x2

p + a
2yp

(17)

xr = λ2 − 2xp (18)

yr = λ(xp − xr)− yp (19)

We give the point doubling R = 2P algorithm over the finite field of Fm in Algorithm 2.
For Py = 0, the tangent at P is vertical and does not intersect the elliptic curve at any other
point. By definition, 2P = O for such a point P (line 2 in the algorithm).

Algorithm 2 PDA (P, m, a) (point doubling in affine coordinates).

inputs: Point P = [Px, Py]; m and a in y2 = x3 + ax + b mod m
output: R = 2P = [Rx, Ry] = [xr, yr]
begin
1 xp = Px, yp = Py, O = [−1,−1]
2 if yp = 0 return O /* vertical tangent */
3 λ = ((3x2

p + a)/2yp) mod m
4 xr = (λ2 − 2xp) mod m
5 yr = (λ(xp − xr)− yp) mod m
6 return [xr, yr] /* R = 2P */
end

An example of point doubling R = 2P on the Secp256k1 curve is shown below where
[Px, Py] = P, and [Rx, Ry] = R in affine coordinates.

Px = 0xb91dc87409c8a6b81e8d1be7f5fc86015cfa42f717d31a27d466bd042e29828d
Py = 0xc35b462fb20bec262308f9d785877752e63d5a68e563e898b4f82f47594680fc
Rx = 0x2d4fca9e0dff8dec3476a677d555896a0980ebccc6bc595a23675496dcc33bb5
Ry = 0xcce413eee9496094256e446b22fd234c03d9258330d77fc8b0d318a6aedba8cb

2.2. ECC Point Addition and Doubling in Projective Coordinates

Point addition and point doubling in affine coordinates require modular inversion
(division) to calculate the line slope λ. We can eliminate the expensive modular inversion
during calculations by using projective coordinates. In projective coordinates, a point is
defined as P = [X, Y, Z]. Initially, we can convert a point [X, Y] in affine coordinates to
a point in projective coordinates by P = [X, Y, 1]. Then, we calculate R = [Xr, Yr, Zr] in
projective coordinates using formulas that do not contain division. At the very final step,
we can obtain the point [xr, yr] in affine coordinates with the transformation of xr = Xr/Zr
and yr = Yr/Zr, which requires divisions.

The formulas for ECC point addition and doubling in projective coordinates can be
derived based on the formulas in affine coordinates. A point P in projective coordinates is
represented by the triple P = [X, Y, Z], corresponding to the point [xp, yp] = [X/Z, Y/Z]
in affine coordinates. That is, xp = X/Z and yp = Y/Z. We derive the point doubling
formulas for R = [Xr, Yr, Zr] = 2P in projective coordinates as follows.

From Equation (17), we have

λ =
3x2

p + a
2yp

=
3(X/Z)2 + a

2(Y/Z)
=

3X2/Z2 + a
2Y/Z

=
3X2 + aZ2

2YZ
From Equation (18), we have

xr = λ2 − 2xp = (
3X2 + aZ2

2YZ
)2 − 2X/Z =

(3X2 + aZ2)2

(2YZ)2 − 8XY2Z
(2YZ)2



Cryptography 2023, 7, 57 8 of 29

From Equation (19), we have

yr = λ(xp − xr)− yp =
3X2 + aZ2

2YZ
(X/Z− (3X2 + aZ2)2 − 8XY2Z

(2YZ)2 )−Y/Z

=
(3X2 + aZ2)(4XY2Z− ((3X2 + aZ2)2 − 8XY2Z))

(2YZ)3 − 8Y4Z2

(2YZ)3

Let Zr = (2YZ)3.

Because xr = Xr/Zr = Xr/(2YZ)3, i.e., Xr = (2YZ)3xr, then

Xr = 2YZ((3X2 + aZ2)2 − 8XY2Z)

Because yr = Yr/Zr = Yr/(2YZ)3, i.e., Yr = (2YZ)3yr, then

Yr = (3X2 + aZ2)(4XY2Z− ((3X2 + aZ2)2 − 8XY2Z))− 8Y4Z2

Given P = [X, Y, Z], the formulas for point doubling R = 2P in projective coordinates are
summarized below.

Xr = 2YZ((3X2 + aZ2)2 − 8XY2Z) (20)

Yr = (3X2 + aZ2)(4XY2Z− ((3X2 + aZ2)2 − 8XY2Z))− 8Y4Z2 (21)

Zr = (2YZ)3 (22)

We can use a similar method to derive the formulas for point addition in projec-
tive coordinates. The derivation is omitted here but the calculations are shown in the
following algorithm. It can be seen that the calculations require many more multiplica-
tions. Algorithm 3 gives the algorithm for point addition in projective coordinates. And
Algorithm 4 gives the algorithm for point doubling in projective coordinates.

Algorithm 3 PAP (P, Q, m, a) (point addition in projective coordinates).

inputs: Points P = [Px, Py, Pz] and Q = [Qx, Qy, Qz]; m and a in y2 = x3 + ax + b mod m
output: R = P + Q = [Rx, Ry, Rz] = [xr, yr, zr]
begin
1 u = Px, v = Py, w = Pz, x = Qx, y = Qy, z = Qz, O = [−1,−1,−1]
2 if P = O return Q /* O + Q = Q */
3 if Q = O return P /* P + O = P */
4 if u = x
5 if (v + y) mod m = 0 return O /* P + (−P) = O */
6 else return PDP (P, p, a) /* P + P = 2P */
7 s = vz− wy, t = uz− wx, h = uz + wx /* level 1 calculations */
8 k = s2wz− t2h, n = t3z /* level 2 calculations */
9 xr = tk mod m /* level 3 calculations */
10 yr = (s(uzt2 − k)− vn) mod m /* level 3 calculations */
11 zr = wn mod m /* level 3 calculations */
12 return [xr, yr, zr] /* R = P + Q */
end

An example of point addition R = P + Q on the Secp256k1 curve is shown below
where [Px, Py, Pz] = P, [Qx, Qy, Qz] = Q, and [Rx, Ry, Rz] = R in projective coordinates.

Px = 0x61bac660b055382e5906bd6e56e316542194b799b7bcf5ad05ee2171fd81735a
Py = 0xbe44ac0a2b712ccb6bb3ea933e4db0a4213c139078aef594cf8c2c5c2924d54d
Pz = 0x2b6da6fb02877584dc4d5111c88783772d7be5ac2866cce3707d53913384bf49
Qx = 0x6789c1137724f1f3f585337a1814eebc23ea329a0390fd9b1b9ece7af3e71ce1
Qy = 0xc9563c5035ccafec8673f56185141f720073ab3063bb417bf0e70e9d9128c232
Qz = 0x58990cd022b711912676c0451bdab6be04a06c1871b0139214bdbe81fd965555
Rx = 0xf4e9cb9ba9c18876b7b0ad000ce921b35e23139456f4f6c3f70e2fea149500a0
Ry = 0xc06176a9221b6d8b49a22130fb934b21358a1775df68d93ec308aca3ece072b5
Rz = 0x878fb153f0690416ba0ee136ec663debf8472f3ee92d350f9b3a42b4fd53fb27



Cryptography 2023, 7, 57 9 of 29

Algorithm 4 PDP (P, m, a) (point doubling in projective coordinates).

inputs: Point P = [Px, Py, Pz]; m and a in y2 = x3 + ax + b mod m
output: R = 2P = [Rx, Ry, Rz] = [xr, yr, zr]
begin
1 x = Px, y = Py, z = Pz, O = [−1,−1,−1]
2 if yp = 0 return O /* vertical tangent */
3 s = 3x2 + az2, t = 4y2z /* level 1 calculations */
4 h = 2yzt, k = s2 − 2xt /* level 2 calculations */
5 xr = 2yzk mod m /* level 3 calculations */
6 yr = (s(xt− k)− yh) mod m /* level 3 calculations */
7 zr = zh mod m /* level 3 calculations */
8 return [xr, yr, zr] /* R = 2P */
end

An example of point doubling R = 2P on the Secp256k1 curve is shown below where
[Px, Py, Pz] = P and [Rx, Ry, Rz] = R in projective coordinates.

Px = 0x24fd537e9a5125438a02848f6b74725f678723f5c1450b8fb82a68f0c88c9764
Py = 0xe42e83a1d3d7c2241535b5c0ba5f2462c24bd87aaf9f15b05f3775d168b9bf6c
Pz = 0xe00794d20b32e0e94472c36b89cf5e5d6ec769b53dd6c1422e9467090c272305
Rx = 0x24d00c48ac8bbe61ceb0ac5daf5defd913af9220a07650642a3a41cad9030ee6
Ry = 0x75d429714ea6ce1ab3811d9adc16961a219e2812210fa8465042c18ecd5a0de6
Rz = 0x644a5a2964435364b74d7fa79fe0f06a5b1d2782e7f7b8d1e835db6d6b8786bc

2.3. ECC Point Addition and Doubling in Jacobian Coordinates

A point P in Jacobian coordinates is represented by the triple P = [X, Y, Z], corre-
sponding to the point [xp, yp] = [X/Z2, Y/Z3] [2] (p. 424) in affine coordinates. That is,
xp = X/Z2 and yp = Y/Z3. We derive the point doubling formulas for R = [Xr, Yr, Zr] =
2P in Jacobian coordinates as follows.

From Equation (17), we have

λ =
3x2

p + a
2yp

=
3(X/Z2)2 + a

2(Y/Z3)
=

3X2/Z4 + a
2Y/Z3 =

3X2 + aZ4

2YZ

From Equation (18), we have

xr = λ2 − 2xp = (
3X2 + aZ4

2YZ
)2 − 2X/Z2 =

(3X2 + aZ4)2

(2YZ)2 − 8XY2

(2YZ)2

From Equation (19), we have

yr = λ(xp − xr)− yp =
3X2 + aZ4

2YZ
(X/Z2 − Xr/(2YZ)2)−Y/Z3

=
(3X2 + aZ4)(4XY2 − Xr)

(2YZ)3 − 8Y4

(2YZ)3

Let Zr = 2YZ.
Because xr = Xr/Z2

r = Xr/(2YZ)2, we have

Xr = (3X2 + aZ4)2 − 8XY2

Because yr = Yr/Z3
r = Yr/(2YZ)3, we have

Yr = (3X2 + aZ4)(4XY2 − Xr)− 8Y4

Given P = [X, Y, Z], the formulas for point doubling R = 2P in Jacobian coordinates are
summarized below.

Xr = (3X2 + aZ4)2 − 8XY2 (23)



Cryptography 2023, 7, 57 10 of 29

Yr = (3X2 + aZ4)(4XY2 − Xr)− 8Y4 (24)

Zr = 2YZ (25)

An example of point doubling R = 2P on the Secp256k1 curve is shown below where
[Px, Py, Pz] = P and [Rx, Ry, Rz] = R in Jacobian coordinates.

Px = 0xe43306185ef298127aef469d577aed78acafaddfc28ad0857491c38ffbedc475
Py = 0x4d83871239769596f65c180546c170a28cffca37bf6393025c457f406f54c517
Pz = 0xdafa620812722dceda7d93a91158dadbe11fee894e71eafa054d5f5fd274377e
Rx = 0x7d7cd6974d7e127a5fdf3f3c9c9eb5dcd9c15e033794466de63bcf2b9548ff85
Ry = 0x8f967b514296945a6dd052bca59ec1418a35cde3c6dd7b269d2e71daa80f851e
Rz = 0xcf89daf8b6c736cc851882b7e85c8ea8f703a9323a3d627909582b7904766035

Based on Equations (6)–(8), and x = X/Z2 and y = Y/Z3, the formulas for point
addition in Jacobian coordinates can be derived which are omitted here. An example of
point addition R = P + Q on the Secp256k1 curve is shown below where [Px, Py, Pz] = P,
[Qx, Qy, Qz] = Q, and [Rx, Ry, Rz] = R in Jacobian coordinates.

Px = 0xb7bae589ec8a8c722c1ffb2c37fd4bbeda59074675c3eb50f1673ed46bbedfbe
Py = 0x81dee3398bdd718591c10762f61a0e41c4d609dffddcbeeb3894b8c4ce75e027
Pz = 0x51ec57b21350ad3d3466be5a7d28742279fbac1146fb4143767ee368a7dc741e
Qx = 0x0aa20a04dba4788e9b99e10f2e9f4d43b7f53916a5cacf2050dc70bc34c18d21
Qy = 0x60f318d01180b303f4b20a49c2b7e2b498405f88bd423a9a7cb92bab5f1b6abf
Qz = 0x3e1dcb6efa88b113f40b5858ea8c3cb5ddae2277c4683af9487e27023cba690d
Rx = 0x348248c47ad5d3186bd807c382659263840ba7ea13e61128d24337db9b0e5278
Ry = 0xb38573698dd6fef9ec93a9d68ae0a997191b678474cc00a13961defa3ed763e9
Rz = 0x76da2008046aae9901e6b96a7b54c42fd480de5cbc8cef6c0d0a9b3d7086f0f4

The point [xr, yr] in affine coordinates can be obtained from Jacobian coordinates by
xr = Xr/Z2

r and yr = Yr/Z3
r . This is only performed one time at the final step. It can be

conducted with the modular inversion which we will introduce next.

2.4. Modular Inversion

In affine coordinates, the point addition and point doubling algorithms must compute
the slope λ of a line. Projective and Jacobian coordinates require the point to be transformed
into affine coordinates at the final step to obtain the shared secret key. These calculations or
transformations require division and modulo operations.

Generally, the modular inversion calculates c = ba−1 mod m, where m is an n-bit odd
number and {a, b} < m. An example of modular inversion is shown below.

b = 0x9cfa1c993911914be0f15bd74a878abe0079c6254b961b82e1abda76387d1d85
a = 0xd5076ae274e874c2eb0f7778717c39460236549ddd9fc651e68a0c0e787b4ce8
m = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
c = 0xe8e5ac2e1d3358894ce1b3342737b38c39b89059dd55d3c4741626de8270228e

Algorithm 2.22 in [3] gives an algorithm to calculate a−1 mod m using the extended
Euclidean algorithm. Based on this, we give a Verilog HDL implementation of the modular
inversion that calculates c = ba−1 mod m in Appendix B. Figure A2 shows the simulation
waveform generated with ModelSim.

In affine coordinates, every point addition or point doubling invokes modular in-
version to calculate the line slope λ. In projective or Jacobian coordinates, this modular
inversion can be removed during point addition or point doubling calculations, but a final
division is required to transform a point from projective or Jacobian to affine coordinates to
obtain the shared secret key. This division can be achieved using modular inversion.



Cryptography 2023, 7, 57 11 of 29

2.5. Scalar Point Multiplication

Scalar point multiplication performs Q = dP where P and Q are elliptic curve points
and d = 〈dn−1 · · · d1d0〉 is an n-bit scalar. Scalar point multiplication can be conducted
with the “double-and-add” method [3]. Algorithm 5 formally gives the algorithm for scalar
point multiplication. The algorithm invokes point addition and point doubling. Point
doubling can be calculated simultaneously with point addition.

Algorithm 5 ScaMul (d, P, m, a) (scalar point multiplication).

inputs: d = 〈dn−1 · · · d1d0〉 and point P = [Px, Py]; m and a in y2 = x3 + ax + b mod m
output: Q = dP
begin
1 Q = O, R = P, k = d /* Q = O and R = P */
2 while k 6= 0 to
3 if k0 = 1
4 Q = Q + R /* point addition */
5 R = 2R /* point doubling */
6 k = k� 1
7 endwhile
8 return Q /* Q = dP */
end

Below we give an example to show the calculation steps of the scalar point multiplica-
tion. For a 5-bit d = 110112 = 27, we calculate Q = dP in 5 steps to obtain Q = 27P.

Weight Point Addition Point Doubling

Initial Q = O R = P

d0 = 1 1 Q = Q + R = O + P = P R = 2R = 2P
d1 = 1 2 Q = Q + R = O + 2P = 3P R = 2R = 4P
d2 = 0 4 R = 2R = 8P
d3 = 1 8 Q = Q + R = 3P + 8P = 11P R = 2R = 16P
d4 = 1 16 Q = Q + R = 11P + 16P = 27P R = 2R = 32P

2.6. Elliptic Curve Diffie–Hellman Key Exchange

The elliptic curve Diffie–Hellman (ECDH) algorithm is a variant of the Diffie–Hellman
key agreement protocol using ECC between two parties to establish a shared secret key over
an insecure network [4,5]. Then, this shared secret key can be used by the two parties to
encrypt and decrypt subsequent communications using fast symmetric-key cryptography
over the insecure network. The ECDH key exchange protocol is shown in Table 1.

Table 1. Elliptic curve Diffie–Hellman key exchange.

Expose an elliptic curve y2 = x3 + ax + b mod m and a point P on the elliptic curve to the world

Alice Bob

Generate a secret da Generate a secret db
Calculate Qa = daP (Algorithm 5) Calculate Qb = dbP (Algorithm 5)

Expose Qa Expose Qb

Get Qb from Bob Get Qa from Alice
Calculate Qab = daQb (Algorithm 5) Calculate Qba = dbQa (Algorithm 5)

Use x of Qab as the key Use x of Qba as the key

Because Qab = daQb = dadbP, Qba = dbQa = dbdaP, and dadb = dbda, we have
Qba = Qab. Below is an ECDH key exchange example using Secp256k1. We can see that
two parties have the same shared secret key (Qabx = Qbax).



Cryptography 2023, 7, 57 12 of 29

Alice generates and exposes Qa = daP:

da = 0x650aa7095daeaa37ab9051541f0ce304f8969a6d88bb3bebb4fe680fca9a2595
Qax = 0x167d2537aa6bbd8d978b58be0f9466520b7b184e205ff96a9ff567b35b32c7b7
Qay = 0xde3961553d36551f92726fee0e332133960edddccd2784b98b2af730d2fc6e14

Bob generates and exposes Qb = dbP:

db = 0xedc68f194c4e30d6ef90467df822b00e5ef122dea48c9d1c54817080d1a341f4
Qbx = 0x839da64a414c2243a5526230603109be9c615613a9e98c3d650bb0488580bbda
Qby = 0x96e88e99304a5afcdd77c4f3b3327a28162627ebe08194baa0c78dfb67a11042

Alice obtains Qb and calculates Qab = daQb:

Qabx = 0x1f254c7da15899275cdcab9d992f58251a4ab630fe9864d20cf317ab57749947
Qaby = 0xd6cb400b3c49d33d3df28f9d34fa09f8b6c8edf117a378c5a45d0a51e6c0debc

Bob obtains Qa and calculates Qba = dbQa:

Qbax = 0x1f254c7da15899275cdcab9d992f58251a4ab630fe9864d20cf317ab57749947
Qbay = 0xd6cb400b3c49d33d3df28f9d34fa09f8b6c8edf117a378c5a45d0a51e6c0debc

Now, Alice and Bob have a same secret key (Qabx = Qbax). They can use a symmetric-key
cryptography for the subsequent communications.

3. Modular Multiplication Algorithms

Point addition and point doubling use many modular multiplications. This section
describes interleaved modular multiplication (IMM), Montgomery modular multiplication
(MMM), and shift-sub modular multiplication (SSMM) algorithms, and proposes shift-sub
modular multiplication with advance preparation (SSMMPRE) and shift-sub modular
multiplication with CSAs and sign detection (SSMMCSA) algorithms.

3.1. Interleaved Modular Multiplication Algorithm

The IMM algorithm [6] is formally given in Algorithm 6. It computes p = ab mod m
where a, b < m < 2n, and m is an n-bit odd number. That is, the (n− 1)th bit and 0th bit of
n-bit m are 1. IMM begins with checking the (n− 1)th bit of multiplier b. Therefore, in each
iteration, the product p is shifted to the left by one bit (line 3). Because a, b < m, 2p+ a < 3m
(lines 3 and 4). Therefore, it is enough to subtract 2m from 2p + a (lines 5 and 6), ensuring
p < m.

Algorithm 6 IMM (a, b, m) (interleaved modular multiplication).

inputs: a = ∑n−1
i=0 ai2i, b = ∑n−1

i=0 bi2i, a, b < m < 2n, m: n-bit odd number
output: p = ab mod m
begin
1 p← 0 /* product */
2 for i = n− 1 downto 0
3 p← p� 1 /* p = 2p */
4 p← p + bia /* add multiplicand a to p if bi = 1 */
5 if p ≥ m, p← p−m /* subtract m from p */
6 if p ≥ m, p← p−m /* subtract m from p */
7 return p
end

Figure 4 shows a possible IMM hardware implementation of Algorithm 6. Red rect-
angles are registers, others are combinational circuits. Clearly, the critical path is the right
part that computes the new p in each iteration. It consists of three carry propagate adders
(CPAs) and three multiplexers. The most significant bit of the adder output (sign) can be
used as the select signal of multiplexers. Note that p� 1 can be realized by wiring.



Cryptography 2023, 7, 57 13 of 29

register p

258-bit
subtractor

m 0

p

clk start

2×8
multiplexor

255

control unit

ready

startclk

258-bit
adder

sign

b

sign

a

cnt

register cnt

bit selector

1 0
sel

8

8

258

2×258
multiplexor

2×258
multiplexor

2×258
multiplexor

2×258
multiplexor

1 0

1 0

0 1

0 1

258-bit
subtractor

258

258

[257]

[257]

8-bit
subtractor

sel

sel

sel

sel
1

1

1

1

256 256 256 1

00

00

00

8 8

8

258

cnt

b a b a

ab

ab

1 1 8

≪ 1

b[cnt]
1

Figure 4. Block diagram of interleaved modular multiplication (IMM). It implements Algorithm 6.

3.2. Montgomery Modular Multiplication Algorithm

The MMM algorithm [14] performs modular multiplication in the Montgomery do-
main. It is very efficient for modular exponentiation used by RSA cryptography. MMM
calculates p = abR−1 mod m, where R = 2n, a, b < m < R, and m is an n-bit odd number
with mn−1 = m0 = 1. It performs reduction R−1 during the multiplication ab because a
and b are represented in the Montgomery domain as follows.

a = a′R mod m (26)

b = b′R mod m (27)

where a′ and b′ are the operands in the conventional domain. Such a reduction ensures that
the product p is an operand still in Montgomery domain:

p = abR−1 mod m = a′Rb′RR−1 mod m = a′b′R2R−1 mod m = a′b′R mod m (28)

MMM is widely used in RSA cryptography where the modular exponentiation is
realized with the repeated modular multiplications. A bit-level MMM algorithm is formally
given in Algorithm 7. For the reduction, we perform

R−1 =
1
2n =

n−1

∏
i=0

1
2

(29)

in n iterations and divide p by 2 in each iteration. Line 3 performs multiplication. Line
4 makes p even for the reduction where p0 is the least significant bit of p. Line 5 shifts p
to the right by one bit (p/2). Line 6 ensures p < m. The reason is shown below. In the
loop body, p is ensured to be less than 2m. Then, p = p + a < 3m (line 3), p = p + m < 4m
(line 4), and p = p/2 < 2m (line 5). In the finalization, p = p−m < m if p >= m (line 6).



Cryptography 2023, 7, 57 14 of 29

Algorithm 7 MMM (a, b, m) (Montgomery modular multiplication).

inputs: a = ∑n−1
i=0 ai2i, b = ∑n−1

i=0 bi2i, R = 2n, a, b < m < R, m: n-bit odd number
output: p = abR−1 mod m
begin
1 p← 0 /* product */
2 for i = 0 to n− 1
3 p← p + bia /* add multiplicand a to p if bi = 1 */
4 p← p + p0m /* make p even */
5 p← p� 1 /* p = p/2: reduction */
6 if p ≥ m, p← p−m /* subtract m from p in the finalization */
7 return p
end

Figure 5 shows a possible MMM hardware implementation of Algorithm 7. Red
rectangles are registers, and others are combinational circuits. The critical path is the
right part that computes the new p in each iteration. It consists of three CPAs and three
multiplexers. The most significant bit of the adder output (sign) or the least significant bit
p0 of p can be used as the select signal of multiplexers. Note that p � 1 can be realized
by wiring.

register p

258-bit
adder

m 0

p

clk start

2×8
multiplexor

255

control unit

ready

startclk

258-bit
adder

[0]

b

sign

a

cnt

register cnt

bit selector

1 0
sel

8

8

258

2×258
multiplexor

2×258
multiplexor

2×258
multiplexor

2×258
multiplexor

1 0

1 0

1 0

0 1

258-bit
subtractor

258

258

[257]

8-bit
subtractor

sel

sel

sel

sel
1

1

1

256 256 256 1

00

00

00

8 8

8

258

cnt

b a b a

ab

ab

1 1 8

≫ 1

b[cnt]
1

Figure 5. Block diagram of Montgomery modular multiplication (MMM). It implements Algorithm 7.

3.3. Shift-Sub Modular Multiplication Algorithm

The SSMM algorithm [15,16] is formally given in Algorithm 8. It calculates p =
ab mod m, where a, b < m < 2n and m is an n-bit odd number. It begins with checking the
0th bit of multiplier b. Therefore, in each iteration, the multiplicand u (=a) is shifted to the
left by one bit (line 5). Because a, b < m, p + u < 2m (line 3), it is enough to subtract m from
p + u (line 4), ensuring p < m. Because a, b < m, 2u < 2m (line 5), it is enough to subtract
m from 2u (line 6), ensuring u < m.



Cryptography 2023, 7, 57 15 of 29

Algorithm 8 SSMM (a, b, m) (shift-sub modular multiplication).

inputs: a = ∑n−1
i=0 ai2i, b = ∑n−1

i=0 bi2i, a, b < m < R, m: n-bit odd number
output: p = ab mod m
begin
1 u← a; p← 0 /* multiplicand, product */
2 for i = 0 to n− 1
3 p← p + biu /* add multiplicand u to p if bi = 1 */
4 if p ≥ m, p← p−m /* subtract m from p */
5 u← u� 1
6 if u ≥ m, u← u−m /* subtract m from u */
7 return p
end

Figure 6 shows a possible SSMM hardware implementation of Algorithm 8. Red
rectangles are registers, and others are combinational circuits. Compared to Figures 4 and 5,
here, we reduce the critical path to two CPAs and two multiplexers. The bit bi (b[cnt] in the
figure) is used as a selection signal for the last (bottom) multiplexer. If it is a 0, the value
in register p is selected (unchanged). The register u and its corresponding combinational
circuits are added for performing lines 5 and 6 in Algorithm 8. Note that the implementation
is slightly different from the algorithm. Regardless of bi, we calculate p + u and p + u−m
first. If p + u − m is non-negative, select it; otherwise, select p + u. Finally, the value
selected by bi is written to register p. Note that instead of using a multiplexer in the bottom,
bit bi (b[cnt] in the figure) can be used as a write enabler for register p.

1 1 8

00

00

00

≪ 1

startclk cnt

pready

m 0clk start255 b a

2×258
multiplexor

1 0
sel

sign

2×258
multiplexor

0 1
sel

1

258-bit
subtractor[257]

ab

258-bit
adder

b a

register p

258

2×258
multiplexor

1 0
sel

258

register uregister cnt

2×8
multiplexor

1 0
sel

1 256 256 18 8

8

2×258
multiplexor

1 0
sel

256

bit selector

b[cnt]
1

258-bit
subtractor

sign

[257]

1

ab

2×258
multiplexor

0 1
sel

00

control unit

8-bit
subtractor

1

8

a

8 cnt

b

258

Figure 6. Block diagram of shift-sub modular multiplication (SSMM). It implements Algorithm 8.

3.4. Shift-Sub Modular Multiplication with Advance Preparation Algorithm

From the implementation of the SSMM algorithm, we can see that the critical path is the
computation of p + u−m = p + (u−m). m is a modulus and does not change during the
multiplication. u is the multiplicand and doubles with each iteration. Then, we can prepare
u− m in advance in the previous iteration. u is generated as follows. If 2u′ − m is non-
negative, 2u′ −m is written to register u; otherwise, 2u′ is written to register u, where u′ is
the value of u in the previous iteration. In the current iteration, we have two cases for u−m.
Case 1: u−m = 2u′ −m if 2u′ −m is negative. Case 2: u−m = 2u′ −m−m = 2u′ − 2m if
2u′ −m is non-negative. Then, we just prepare x = 2u′ −m and y = 2u′ − 2m, and store



Cryptography 2023, 7, 57 16 of 29

them in registers. That is, if x < 0, p + (u−m) = p + x; otherwise, p + (u−m) = p + y.
The algorithm SSMMPRE is formally given in Algorithm 9.

Algorithm 9 SSMMPRE (a, b, m) (shift-sub modular multiplication with preparation).

inputs: a = ∑n−1
i=0 ai2i, b = ∑n−1

i=0 bi2i, a, b < m < 2n, m: n-bit odd number
output: p = ab mod m
begin
1 u← a; p← 0; x ← 0; y← a
2 for i = 0 to n− 1
3 v← p + u
4 if x < 0, w← p + x /* x: prepared in previous clock cycle */
5 else w← p + y /* y: prepared in previous clock cycle */
6 if bi = 1
7 if w < 0, p← v
8 else p← w
9 x ← 2u−m; y← 2u− 2m /* prepare for use in next clock cycle */
10 if 2u < m, u← 2u
11 else u← 2u−m
12 return p
end

Figure 7 shows a possible SSMMPRE hardware implementation of Algorithm 9. Reg-
isters x and y hold 2u′ − m and 2u′ − 2m, respectively, where u′ is the value of u in the
previous iteration.

0

p

start

subtractor
2u − 2m

adder
p + u

adder
p + z

0 a

subtractor
2u − m

aclk255

subtractor
cnt −1 b[cnt]

b

ready

startclk cnt

sign

m

z

w v

mux
1 0

mux
1 0

mux
0 1

mux
0 1

mux
1 0

mux
1 0

mux
0 1

mux
1 0

mux
0 1

control unit

reg cnt reg u reg x reg y reg p

sign

sign

8 8 256 256 1
00

258 256 258258 258 258 258
00

256

[257] [257]

00 00

1

8 258 258 258 258

8

Figure 7. Block diagram of shift-sub modular multiplication with advance preparation (SSMMPRE).
It implements Algorithm 9.

3.5. Shift-Sub Modular Multiplication with CSAs and Sign Detection Algorithm

The algorithm SSMMCSA (SSMM with CSAs and sign detection) is formally given
in Algorithm 10. Figure 8 shows a possible implementation of SSMMCSA. The two CPAs in
Figure 6 are replaced with CSAs. Through our hardware implementation, we find that the
part of CSAs that generates c and s is no longer the critical path. We use another register q
to store c + s calculated with a CPA, and generate p from q. The critical path of this circuit



Cryptography 2023, 7, 57 17 of 29

contains a CPA and a multiplexer. The output of CSAs consists of carry c and sum s. The
result value p will be (c + s) mod m.

Algorithm 10 SSMMCSA (a, b, m) (shift-sub modular multiplication with CSAs).

inputs: a = ∑n−1
i=0 ai2i, b = ∑n−1

i=0 bi2i, a, b < m < 2n, m: n-bit odd number
output: p = ab mod m
begin
1 (c, s)← 0; u← a
2 for i = 0 to n− 1
3 q← c + s
4 if bi = 1
5 (g, h)← CSA(c, s, u) /* add multiplicand u to (c, s) */
6 (x, y)← CSA(g, h,−m)
7 if sign(x, y) = 1 (negative)
8 (c, s)← (g, h)
9 else (c, s)← (x, y) /* subtract m from (c, s) */
10 u← u� 1
11 if u ≥ m
12 u← u−m /* subtract m from u */
13 if q ≥ m
14 p← q−m /* subtract m from q */
15 return p
end

CSA

−ma 0clk start255

CSA

csasign

p

0

signx y g h

b[cnt]

b

ready

startclk cnt

mux
1 0

mux
1 0

mux
1 0

mux
0 1

mux
0 1

mux
1 0

mux
0 1

control unit

reg cnt reg u regs c s reg q

subtractor
cnt −1

adder
2u − m

adder
q − m

adder
c + s

sign

8 8 256 256
00

258 258

[257]

1

8 258

[257]

1

258 258258

8
a b c

a b c

Figure 8. Block diagram of shift-sub modular multiplication with CSAs and sign detection (SSMM-
CSA). It implements Algorithm 10.

We will later propose an easy way to determine the sign of c + s from c and s without
using CPA to calculate c + s. The upper CSA performs (g, h)← CSA(c, s, u) and the other
CSA performs (x, y)← CSA(g, h,−m), corresponding to p + u and p + u−m in Figure 6.
One CSA’s output will be selected with the “csasign” (CSA’s sign) signal and stored in the
CS register in case bi = 1 (b[cnt] = 1).



Cryptography 2023, 7, 57 18 of 29

Note that we can obtain −m from m quickly. Usually −m = m + 1 where +1 needs a
CPA. But here, m is an n-bit odd value (m[0] = 1), so that we can invert the left n− 1 bits of
m and leave the least significant bit unchanged, that is, −m = {m[n− 1 : 1], 1’b1}.

Now, we describe how to generate the signal of “csasign”. Figure 9 shows an example
of determining the sign of C+ S from 17-bit C and S for a 16-bit ab mod m when using CSAs.
We divide the 17 bits into four windows, namely W3, W2, W1, and W0. W3 has 5 bits and
each of W2, W1, and W0 has 4 bits. We use one 5-bit and three 4-bit CPAs, carry lookahead
adders (CLAs), for instance, to perform additions in four windows simultaneously as
follows. Note that each of the adders generates a 5-bit result.

W3[4 : 0] = C[16 : 12] + S[16 : 12] (Add 5-bit, 5-bit sum)
W2[4 : 0] = C[11 : 8] + S[11 : 8] (Add 4-bit, 5-bit sum)
W1[4 : 0] = C[7 : 4] + S[7 : 4] (Add 4-bit, 5-bit sum)
W0[4 : 0] = C[3 : 0] + S[3 : 0] (Add 4-bit, 5-bit sum)

0/1 1 1 1 1

1 x x x x

16

W3

C

S

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

W2

0 1 1 1 1

0 1 1 1 1

1 x x x x

W2

W1

W0

0 1 1 1 1

1 x x x x

W2

W1

Case 2

Case 1

Case 0

Figure 9. Determining the sign of P = C + S based on the 17-bit outputs C and S of CSAs. We
divide 17 bits into four windows. There are five bits in the left-most window. Each of the other three
windows has four bits. The C and S are inputs; others are outputs of adders. W3[4] indicates the sign
except for Case 0, Case 1, or Case 2, where the sign is the inverse of W3[4] when W3[3 : 0] == 4′b1111.

We summarize the three cases shown in Figure 9 as follows. The signal “sign_inverse”
is true, meaning that the original sign (W3[4]) is inverted when W3[3 : 0] == 4’b1111.

sign_inverse = (W2[4] == 1) Case 2
| (W2 == 5’b01111) & (W1[4] == 1) Case 1
| (W2 == 5’b01111) & (W1 == 5’b01111) & (W0[4] == 1) Case 0

The sign bit is a 1 if P = C + S is negative; otherwise, it is 0. When W3[4] is a 0 and
“sign_inverse” is true, the sign will be 1 at the condition of W3[3 : 0] == 4’b1111. Similarly,
when W3[4] is a 1 and “sign_inverse” is true, the sign will be 0 at the condition of W3[3 :
0] == 4’b1111. Thus, we have the following expression for determining the “csasign”.

csasign = W3[4] ⊕ (sign_inverse & (W3[3 : 0] == 4’b1111)) (30)

The symbol ⊕ denotes an exclusive OR (XOR) operation. When W3[3 : 0] 6= 4’b1111,
the sign equals W3[4], regardless of the case for W2, W1, or W0. Note that W2, W1, and
W0 are sums of two 4-bit values c and s, so they do not have the pattern 5’b11111. The
maximum sum is 5’b11110 when both c and s have a maximum value of 4’b1111.



Cryptography 2023, 7, 57 19 of 29

In the example described above, the window size is 4. We can let the window size be
2 or 8. Then, we can use eight 2-bit adders or two 8-bit adders to determine the sign of
P = C + S. The former has a shorter latency introduced by adders, but the logic equation
for determining the sign is more complicated. On the other hand, the latter has a simpler
logic equation but the adder has a longer latency to determine the sign.

For a 256-bit ECC, there are more options for the number of adder bits and the number
of windows. In order to design a low-cost and high-performance circuit, we instigate the
cost (the number of ALMs) and performance (the circuit frequency) of the sign detection
circuit for using CSAs in 256-bit ECC on FPGA (Field-programmable gate array) chip. There
are seven configurations. The experimental results are shown in Table 2 and Figure 10.

Table 2. Cost and performance of sign detection with different configurations. The FPGA chip device
is Cyclone V 5CGXFC7D7F31C8.

Windows × Adder Bits 2 × 128 4 × 64 8 × 32 16 × 16 32 × 8 64 × 4 128 × 2

ALMs 129 63 33 19 9 7 3
Frequency (MHz) 205.30 248.57 282.09 326.90 342.58 392.46 355.75

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

2 × 128 4 × 64 8 × 32 16 × 16 32 × 8 64 × 4 128 × 2

R
el

at
iv

e
va

lu
e

The number of windows × adder bits = 256

ALMs
Frequency

Figure 10. Cost and performance of sign detection with different configurations.

In general, decreasing CPA bits increases the frequency. However, in our simulations,
the frequency of the last configuration (128 windows and a 2-bit adder) is lower than the
configuration with 64 windows and a 4-bit adder. This is because the logic equation for sign
detection becomes complicated. We can also see that larger adders require more ALMs.

Based on the experimental results, our 256-bit ECC implementations use 4-bit adders,
so there are 64 windows (4× 64 = 256). A frequency of 392.46 MHz is measured when
the FPGA chip implements only the sign detection circuitry. Implementing both the sign
detection circuit and the CSAs results in a frequency of 343.76 MHz, lower than 392.46 MHz.
The latency of the CSAs is the same as that of a 1-bit full adder. Clearly, it is less than that
of the sign detection circuit. These experimental results imply that the frequency decreases
as the circuit becomes larger.

Note that the sign detection circuit itself is a combinational circuit. If we want to test
its latency, we can add registers on both the input and output sides. These registers are for



Cryptography 2023, 7, 57 20 of 29

testing purposes only and should be removed for ECC implementations. Otherwise, there
will be a delay of two clock cycles, resulting in incorrect timing.

4. Hardware Implementations of Modular Multiplications and ECC

We have implemented modular multiplication algorithms and ECC in Verilog HDL.
Unlike sequential program code in software, hardware modules can operate simultaneously.
Considering data dependency, we must handle the synchronization between hardware
modules using signals such as “start” and “ready”. This section describes these implemen-
tations and evaluates their cost and performance.

4.1. Hardware Implementations of Modular Multiplications

We have implemented the five modular multiplication algorithms described in the
previous section. Since we use the 256-bit key proposed in Secp256k1 [4], the Verilog HDL
code for modular multiplication also uses 256-bits. As an example of the Verilog HDL
code shown in Appendix A, the circuit calculates p = ab mod m, where m is a 256-bit
odd number and {a, b} < m, as described in Algorithm 8 (SSMM). The input “start” is
a one-clock cycle active signal that tells the module to start modular multiplication. The
outputs “ready”, “busy”, and “ready0” are synchronization signals with other modules.
The simulation waveform generated with ModelSim can be found in Figure A1.

When developing Verilog HDL code, it is recommended to use continuous assignment
to perform calculations outside of “always” statements that use the clock signal. Verilog
HDL code for other modular multiplications can be easily developed by referring to the
SSMM example code and the corresponding algorithms and figures.

Table 3 gives the cost performance of the five modular multiplication algorithms. The
column of clock cycles shows the required number of clock cycles when executing the
modular multiplication algorithm. The column of frequency (MHz) shows the frequency
in MHz at which the circuit can work. The column of latency (µs) shows the time in
microseconds calculated by dividing the clock cycles by the clock frequency. The column
of ALMs shows the required number of adaptive logic modules. The column of registers
shows the required number of flip-flops. The last column shows the static/dynamic (S/D)
power dissipation estimated using the Quartus Prime “Power Analyzer Tool” function
when using Intel/Altera Cyclone V 5CGXFC7D7F31C8 FPGA chip.

Table 3. Comparison of modular multiplication algorithms. SSMM is 1.80 times faster than IMM and
SSMMCSA is 3.27 times faster than IMM. The FPGA chip device is Cyclone V 5CGXFC7D7F31C8.

Algorithm Cycles Freq. (MHz) Latency (µs) ALMs Registers Power S/D (mw)

IMM 258 35.61 7.25 656 268 358.61/176.66
MMM 258 51.97 4.96 742 277 359.09/162.15
SSMM 258 63.97 4.03 606 527 353.73/117.67
SSMMPRE 258 66.92 3.86 847 1043 354.06/214.35
SSMMCSA 259 116.58 2.22 1117 1048 353.98/161.25

SSMM has a higher frequency than IMM and MMM due to its shorter critical path.
IMM only stores the product p, but SSMM needs to store both the product p and the
multiplicand u, so SSMM uses about twice as many registers compared to IMM. The
number of ALMs used by SSMM is a little bit smaller than that used by IMM. Figure 11
plots the relative cost performance of the modular multiplication algorithms where the
cost performance of IMM is set to 1.0, and the data for other implementations are obtained
by dividing the corresponding value by the value of IMM. The figure and table show that
SSMMCSA provides the highest frequency and lowest latency at the highest hardware cost.



Cryptography 2023, 7, 57 21 of 29

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Cycles Frequency Latency ALMs Registers

R
el

at
iv

e
va

lu
e

to
IM

M

Cost and performance

IMM
MMM
SSMM

SSMMPRE
SSMMCSA

Figure 11. Cost performance comparison of modular multiplication algorithms (set IMM to 1.0).

4.2. Hardware Implementations of ECC

We have implemented ECC in affine, projective, and Jacobian coordinates using the
IMM, SSMM, SSMMPRE, and SSMMCSA modular multiplication algorithms. Referring to
Algorithm 5, in affine coordinates, the module of scalar point multiplication (scalarmult)
invokes the module of point addition (addpoints) and the module of point doubling
(doublepoint), as follows (simplified).

module scalarmult (clk, rst_n, start, x, y, d, m, a, rx, ry, ready);
// ... signal declarations
addpoints ap (clk, rst_n, start_ap, x1, y1, x2, y2, m, a, apx, apy, ready_ap);
doublepoint dp (clk, rst_n, start_dp, x1, y1, m, a, dpx, dpy, ready_dp);
always @(posedge clk or negedge rst_n) begin

// ... to generate start_ap and start_dp and register results
// ... to check completeness and generate signals for ready

end
endmodule

Based on the start signal of module scalarmult, we can generate the start signals of
start_ap for addpoints and start_dp for doublepoint. The result of scalarmult is calcu-
lated in iterations on the scalar d. Note that in each iteration, addpoints and doublepoint
can be executed in parallel. An important synchronization is to allow addpoints to start
only after the previous iteration’s doublepoint has finished.

Referring to Algorithm 5, we use a 256-bit register k to control the iterations. It is
initialized with the scalar d at the start and shifted one bit to the right at each iteration.
After 256 iterations, k becomes 0 and the addition point [apx, apy] is the result point [rx,
ry]. The modules of scalar point multiplication in projective and Jacobian coordinates
invoke the point addition and doubling modules in projective and Jacobian coordinates,
respectively. In the addpoints and doublepoint modules, the result point is calculated
based on the algorithms of point addition and point doubling, as described in Algorithm 1
(or 3) and Algorithm 2 (or 4). These modules invoke (1) modadd (modular addition),
(2) modsub (modular subtraction), (3) modmul (modular multiplication), and (4) modinv
(modular inversion). The first two modules are combinational circuits which take one



Cryptography 2023, 7, 57 22 of 29

clock cycle. The last two modules, modmul and modinv, are sequential circuits for which we
must generate the start signals. The Verilog HDL source codes of these two modules are
given in the Appendices A and B. Referring to Table 1, in affine coordinates, x of the Qab
and Qba can be used as the shared secret key for two parties. In projective and Jacobian
coordinates, x must be calculated once by X/Z and X/Z2, respectively. Such calculations
can be performed using modmul and modinv, as shown in the Appendices A and B.

Table 4 gives the cost performance of the ECC in affine, projective, and Jacobian co-
ordinates using the IMM, modular multiplication algorithms proposed in [7–10], SSMM,
SSMMPRE, and SSMMCSA. The [7–10] implementations used three-input multiplexers,
while the SSMM implementations used only two-input multiplexers. The implementation
in [7] used a multiplexer to perform p + bia. If bi = 1, p = p + a. Instead, the implementa-
tion in [8] used “AND” gates to perform p + bia: p = p + (a & {256{b_i}}), which is a
little slower than the implementation in [7].

As mentioned before, instead of using a multiplexer, bit bi (b[cnt] in Figure 6) can
be used as a write enabler for register p. The line labeled “SSMM-WE” shows the cost
performance of such an implementation. We can see that it achieves exactly the same cost
performance as “SSMM”. This is because a DFFE is actually implemented using a DFF
and a 2-to-1 multiplexer. The line labeled “SSMM-AND” shows the cost performance of
an implementation that uses neither multiplexers nor write-enabled registers. Instead, it
uses 256 “AND” gates and a CPA to perform p + bia. Its performance is lower than using a
multiplexer or a write-enabled register. In conclusion, we recommend using a multiplexer
for calculating p + bia, as shown in Figure 6.

Table 4. Comparison of ECC in three coordinates with modular multiplication algorithms.

Algorithm Cycles Freq. (MHz) Latency (ms) ALMs Registers Power S/D (mw)

ECC implementations in affine coordinates

IMM 402,146 13.50 29.79 14,828 7181 351.63/544.03
[7] 402,146 16.10 24.98 14,790 7046 351.47/511.51
[8] 402,146 15.55 25.86 14,526 6593 351.35/484.90
[9,10] 402,146 16.74 24.02 13,139 7739 351.16/447.03
SSMM 402,146 20.16 19.95 15,096 8354 351.63/543.72
SSMM-WE 402,146 20.16 19.95 15,096 8354 351.63/543.72
SSMM-AND 402,146 16.18 24.85 15,088 8353 351.55/527.63
SSMMPRE 402,146 20.02 20.09 16,782 13,111 352.25/688.02
SSMMCSA 403,166 19.56 20.56 18,372 13,119 352.11/640.69

ECC implementations in projective coordinates

IMM 396,550 17.17 23.10 30,286 15,333 352.33/694.29
[7] 396,550 21.27 18.64 29,958 14,944 352.30/688.05
[8] 396,550 19.72 20.11 28,467 13,001 352.00/628.22
[9,10] 396,550 21.19 18.71 20,253 13,179 351.05/434.50
SSMM 396,550 29.97 13.23 29,826 23,811 352.24/676.44
SSMM-AND 396,550 20.30 19.53 29,771 23,736 352.18/664.67
SSMMPRE 396,550 29.36 13.51 37,508 42,198 353.50/926.33
SSMMCSA 398,080 21.81 18.25 47,083 48,424 353.46/919.52

ECC implementations in Jacobian coordinates

IMM 369,079 14.11 26.16 27,861 14,237 351.98/625.50
[7] 369,079 16.63 22.19 27,630 13,561 351.78/583.41
[8] 369,079 16.33 22.60 26,306 11,733 351.71/568.49
[9,10] 369,079 17.63 20.93 19,311 12,124 350.90/403.49
SSMM 369,079 21.23 17.38 28,993 21,862 352.74/777.09
SSMM-AND 369,079 16.44 22.45 28,734 22,296 352.51/730.81
SSMMPRE 369,079 20.75 17.79 35,840 39,724 354.46/1114.60
SSMMCSA 370,502 16.79 22.07 44,624 45,382 354.09/1042.09



Cryptography 2023, 7, 57 23 of 29

The relative cost performance of the ECC implementations in affine, projective, and
Jacobian coordinates are plotted in Figures 12, 13 and 14, respectively, where the cost
performance of ECC with IMM is set to 1.0, and the data for other implementations are
obtained by dividing the corresponding value by the value of the ECC with IMM.

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Cycles Frequency Latency ALMs Registers

R
el

at
iv

e
va

lu
e

to
EC

C
w

it
h

IM
M

Cost and performance

IMM
[7]

[9,10]
SSMM

SSMMPRE
SSMMCSA

Figure 12. Cost performance comparison of ECC in affine coordinates (set ECC with IMM to 1.0).

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Cycles Frequency Latency ALMs Registers

R
el

at
iv

e
va

lu
e

to
EC

C
w

it
h

IM
M

Cost and performance

IMM
[7]

[9,10]
SSMM

SSMMPRE
SSMMCSA

Figure 13. Cost performance comparison of ECC in projective coordinates (set ECC with IMM to 1.0).



Cryptography 2023, 7, 57 24 of 29

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

Cycles Frequency Latency ALMs Registers

R
el

at
iv

e
va

lu
e

to
EC

C
w

it
h

IM
M

Cost and performance

IMM
[7]

[9,10]
SSMM

SSMMPRE
SSMMCSA

Figure 14. Cost performance comparison of ECC in Jacobian coordinates (set ECC with IMM to 1.0).

The ECC implementations in projective coordinates use more ALMs and registers than
those in the other two coordinates. The ECC implementations in affine coordinates have a
lower hardware cost than those in the other two coordinates. For all coordinates, the ECC
implementations using SSMM, SSMMPRE, and SSMMCSA have higher clock frequencies
than those with IMM.

As shown in Table 3, the circuit SSMMCSA has the highest frequency, but applying
it to the ECC design does not achieve a higher frequency than the other circuits, such as
SSMM. This is because, in ECC design, there are other modules that have longer latency
than CSAs and sign detection. For example, modadd takes one clock cycle to perform an
addition on two operands a and b, a subtraction (subtracting the modulus m from the sum),
and a selection using a multiplexer based on the sign of the subtraction result. Another
example is modinv. Referring to Appendix B, the calculation of c = ba−1 mod m in modular
inversion takes even longer time than modadd, as shown as follows, where r is the result
in the source code and m is the modulus.

if r - 2m >= 0
c = r - 2m // c = r - 2m

else if r - m >= 0
c = r - m // c = r - 1m

else if r >= 0
c = r // c = r + 0m

else
c = r + m // c = r + 1m

endif
endif

endif

Such calculations take longer time than the CSAs and sign detection operations.
Meanwhile, the SSMMCSA circuit is larger than SSMM, this also decreases the frequency.

Figure 15 shows the relative latency of ECC implementations. The value of ECC with
IMM is set to 1.0, and the values for other implementations are obtained by dividing the
corresponding latency by the latency of the ECC with IMM. We can see that the SSMM in
projective coordinates has the lowest latency. This is because, SSMMPRE and SSMMCSA



Cryptography 2023, 7, 57 25 of 29

use a lot of hardware resources, which reduces the frequency. Interestingly, the latency in
projective coordinates is lower than that in Jacobian coordinates. The formulas for point
addition and point doubling in Jacobian coordinates look simpler than those in projective
coordinates, but the calculation of Yr depends on Xr, resulting in a sequential execution.
On the other hand, Yr and Xr in projective coordinates can be calculated in parallel.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

IMM [7] [9,10] SSMM SSMMPRE SSMMCSA

R
el

at
iv

e
la

te
nc

y
to

EC
C

w
it

h
IM

M

Modular multiplication algorithm

Affine

Projective

Jacobian

Figure 15. Relative latency of ECC implementations (set the latency of ECC with IMM to 1.0).

The ECC implementations presented in this paper are based on the Secp256k1 curve. It
is easy to use the NIST Secp256r1 (P-256) curve [4,19]. We have also implemented the ECC
based on the Secp256r1 curve. Our experimental results show that the cost performance of
ECC implementations based on both curves is almost the same.

5. Conclusions and Future Work

This paper introduced ECC modular multiplication algorithms and their hardware
implementations. Experimental results show that the proposed SSMMPRE (shift-sub
modular multiplication with advance preparation) and SSMMCSA (shift-sub modular
multiplication with CSAs and sign detection) have lower latencies than SSMM (shift-
sub modular multiplication). We proposed a fast and simple method to determine the
sign based on the separate output sum and carry of the CSAs (carry save adders). For a
256-bit SSMMCSA, it is recommended to use 64 windows and 4-bit CPAs (carry propagate
adders). At the current time, SSMMCSA should be used. We also investigated the ECC
implementations in affine, projective, and Jacobian coordinates using the IMM (interleaved
modular multiplication), a modified IMM, SSMM, SSMMPRE, and SSMMCSA algorithms.
Experimental results show that the ECC implementation in projective coordinates using
SSMM has the lowest latency among all the ECC implementations.

The SSMMCSA circuit itself has a higher frequency (116.58 MHz) than SSMM
(63.97 MHz), but the ECC circuits using SSMMCSA have the same or even lower fre-
quency than that using SSMM. The next challenge is to find and shorten the critical path
to make the SSMMCSA ECC circuit faster than the SSMM ECC circuit. Also, high-radix
SSMM algorithms and their use in ECC implementations are worth investigating.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.



Cryptography 2023, 7, 57 26 of 29

Conflicts of Interest: The author declares no conflict of interest.

Appendix A. Verilog HDL Code of Shift-Sub Modular Multiplication (SSMM)

‘timescale 1ns/1ns
module modmul (clk, rst_n, start, a, b, m, p, ready, busy, ready0); // p = a * b mod m

input clk, rst_n;
input start;
input [255:0] a, b, m;
output [255:0] p;
output ready;
output reg busy;
output reg ready0;
reg ready1;
assign ready = ready0 ^ ready1;
reg [257:0] u, s;
reg [7:0] cnt;
wire [7:0] next_cnt = cnt + 8’d1;
wire bi_is_1 = b[cnt];
wire [257:0] plus_u = s + u; // s + u
wire [257:0] minus_m = plus_u - {2’b00,m}; // s + u - m
wire [257:0] new_s = bi_is_1 ? minus_m[257] ? plus_u : minus_m : s; // new s
wire [257:0] two_u = {u[256:0],1’b0}; // 2u
wire [257:0] two_u_m = two_u - {2’b00,m}; // 2u - m
wire [257:0] new_u = two_u_m[257] ? two_u : two_u_m; // new u
assign p = s[255:0];
always @(posedge clk or negedge rst_n) begin

if (!rst_n) begin
ready0 <= 0;
ready1 <= 0;
busy <= 0;

end else begin
ready1 <= ready0;
if (start) begin

u <= {2’b0,a}; // u <= a
s <= 0; // s <= 0
ready0 <= 0;
ready1 <= 0;
busy <= 1;
cnt <= 0;

end else begin
if (busy) begin

s <= new_s; // s <= new_s;
if (cnt == 8’d255) begin // finished

ready0 <= 1;
busy <= 0;

end else begin // not finished
u <= new_u; // u <= new_u;
cnt <= next_cnt; // cnt++

end
end

end
end

end
endmodule

This code implements Algorithm 8. Its block diagram is shown in Figure 6. The signal
“start” is active for one clock cycle to tell the module to start modular multiplication. The
signal “ready” remains active for one clock cycle to indicate that the modular multiplication
result is available. “ready0” remains active until the multiplier is cleared. This signal is
used to confirm the readiness of multiple modules to initiate another module’s operation.
Figure A1 shows the simulation waveform generated with ModelSim.

Figure A1. Waveform of SSMM that calculates p = ab mod m. The Verilog HDL code is given in
Appendix A.



Cryptography 2023, 7, 57 27 of 29

Appendix B. Verilog HDL Code of Modular Inversion

‘timescale 1ns/1ns
module modinv (clk, rst_n, start, b, a, m, c, ready, busy, ready0); // c = b * a^{-1} mod m

input clk, rst_n;
input start;
input [255:0] b, a, m;
output [255:0] c;
output ready, ready0;
output reg busy;
reg ready0, ready1;
assign ready = ready0 ^ ready1;
reg [259:0] u, v, x, y, q, result;
wire [259:0] x_plus_m = x + q; // x + m
wire [259:0] y_plus_m = y + q; // y + m
wire [259:0] u_minus_v = u - v; // u - v
wire [259:0] r_plus_m = result + q; // r + m
wire [259:0] r_minus_m = result - q; // r - m
wire [259:0] r_minus_2m = result - {q[258:0],1’b0}; // r - 2m
assign c = r_minus_2m[259] ? r_minus_m[259] ? result[259] ? r_plus_m[255:0] :

result[255:0] : r_minus_m[255:0] : r_minus_2m[255:0]; // c = b * a^{-1} mod m
always @(posedge clk or negedge rst_n) begin

if (!rst_n) begin
ready0 <= 0;
ready1 <= 0;
busy <= 0;

end else begin
ready1 <= ready0;
if (start) begin

u <= {4’b0,a}; // u <= a
v <= {4’b0,m}; // v <= m
x <= {4’b0,b}; // x <= b
y <= {260’b0}; // y <= 0
q <= {4’b0,m}; // q <= m
ready0 <= 0;
ready1 <= 0;
busy <= 1;

end else begin
if (busy && ((u == 1) || (v == 1))) begin // finished

ready0 <= 1;
busy <= 0;
if (u == 1) begin // if u == 1

if (x[259]) begin // if x < 0
result <= x_plus_m; // c = x + m

end else begin // else
result <= x; // c = x

end
end else begin // else

if (y[259]) begin // if y < 0
result <= y_plus_m; // c = y + m

end else begin // else
result <= y; // c = y

end
end

end else begin // not finished
if (!u[0]) begin // while u & 1 == 0

u <= {u[259],u[259:1]}; // u = u >> 1
if (!x[0]) begin // if x & 1 == 0

x <= {x[259],x[259:1]}; // x = x >> 1
end else begin // else

x <= {x_plus_m[259],x_plus_m[259:1]}; // x = (x + m) >> 1
end

end
if (!v[0]) begin // while v & 1 == 0

v <= {v[259],v[259:1]}; // v = v >> 1
if (!y[0]) begin // if y & 1 == 0

y <= {y[259],y[259:1]}; // y = y >> 1
end else begin // else

y <= {y_plus_m[259],y_plus_m[259:1]}; // y = (y + m) >> 1
end

end
if ((u[0]) && (v[0])) begin // two while loops finished

if (u_minus_v[259]) begin // if u < v
v <= v - u; // v = v - u
y <= y - x; // y = y - x

end else begin // else
u <= u - v; // u = u - v
x <= x - y; // x = x - y

end
end

end
end

end
end

endmodule



Cryptography 2023, 7, 57 28 of 29

This code is developed based on Algorithm 2.22 in [3]. The signal “start” is active for
one clock cycle to tell the module to start modular inversion. The signal “ready” remains
active for one clock cycle to indicate that the modular inversion result is available. “ready0”
remains active until the multiplier is cleared. This signal is used to confirm the readiness of
multiple modules to initiate another module’s operation. The testbench is listed below.

‘timescale 1ns/1ns
module modinv_tb;

reg clk, rst_n, start;
reg [255:0] b, a, m;
wire [255:0] c;
wire ready, busy, ready0;
modinv inst (clk, rst_n, start, b, a, m, c, ready, busy, ready0);
initial begin

#0 clk = 1;
#0 rst_n = 0;
#0 start = 0;
#0 b = 256’h9cfa1c993911914be0f15bd74a878abe0079c6254b961b82e1abda76387d1d85;
#0 a = 256’hd5076ae274e874c2eb0f7778717c39460236549ddd9fc651e68a0c0e787b4ce8;
#0 m = 256’hfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f;
#1 rst_n = 1;
#2 start = 1;
#2 start = 0;
wait(ready);
#40 $stop;

end
always #1 clk = !clk;

endmodule

Figure A2 shows the simulation waveform generated with ModelSim.

Figure A2. Waveform of modular inversion that calculates c = ba−1 mod m. The Verilog HDL code
is given in Appendix B.

References
1. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209. Available online: https://www.ams.org/journals/

mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf (accessed on 15 October 2023 ). [CrossRef]
2. Miller, V.S. Use of Elliptic Curves in Cryptography. In Proceedings of the Advances in Cryptology—CRYPTO’85 Proceedings; Springer:

Berlin/Heidelberg, Germany, 1986; pp. 417–426. Available online: https://link.springer.com/content/pdf/10.1007/3-540-39799-
X_31.pdf?pdf=inline%20link (accessed on 15 October 2023 ).

3. Hankerson, D.; Menezes, A.; Vanstone, S. Guide to Elliptic Curve Cryptography; Springer: New York, NY, USA, 2004. [CrossRef]
4. Certicom Corp. Standards for Efficient Cryptography. SEC 2: Recommended Elliptic Curve Domain Parameters; Certicom Corp:

Mississauga, ON, Canada, 2010. Available online: http://www.secg.org/sec2-v2.pdf (accessed on 15 October 2023 ).
5. Barker, E.; Chen, L.; Roginsky, A.; Vassilev, A.; Davis, R. SP 800-56A Rev. 3, Recommendation for Pair-Wise Key-Establishment Schemes

Using Discrete Logarithm Cryptography; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2018. Available
online: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf (accessed on 15 October 2023 ).

6. Blakely, G.R. A Computer Algorithm for Calculating the Product AB Modulo M. IEEE Trans. Comput. 1983, C-32, 497–500.
[CrossRef]

7. Islam, M.M.; Hossain, M.S.; Hasan, M.K.; Shahjalal, M.; Jang, Y.M. FPGA Implementation of High-Speed Area-Efficient Processor
for Elliptic Curve Point Multiplication over Prime Field. IEEE Access 2019, 7, 178811–178826. [CrossRef]

8. Islam, M.M.; Hossain, M.S.; Shahjalal, M.; Hasan, M.K.; Jang, Y.M. Area-Time Efficient Hardware Implementation of Modular
Multiplication for Elliptic Curve Cryptography. IEEE Access 2020, 8, 73898–73906. [CrossRef]

9. Hu, X.; Zheng, X.; Zhang, S.; Cai, S.; Xiong, X. A Low Hardware Consumption Elliptic Curve Cryptographic Architecture over
GF(p) in Embedded Application. Electronics 2018, 7, 104. [CrossRef]

https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
https://www.ams.org/journals/mcom/1987-48-177/S0025-5718-1987-0866109-5/S0025-5718-1987-0866109-5.pdf
http://doi.org/10.1090/S0025-5718-1987-0866109-5
https://link.springer.com/content/pdf/10.1007/3-540-39799-X_31.pdf?pdf=inline%20link
https://link.springer.com/content/pdf/10.1007/3-540-39799-X_31.pdf?pdf=inline%20link
http://dx.doi.org/10.1007/b97644
http://www.secg.org/sec2-v2.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar3.pdf
http://dx.doi.org/10.1109/TC.1983.1676262
http://dx.doi.org/10.1109/ACCESS.2019.2958491
http://dx.doi.org/10.1109/ACCESS.2020.2988379
http://dx.doi.org/10.3390/electronics7070104


Cryptography 2023, 7, 57 29 of 29

10. Cui, C.; Zhao, Y.; Xiao, Y.; Lin, W.; Xu, D. A Hardware-Efficient Elliptic Curve Cryptographic Architecture over GF(p). Math.
Probl. Eng. 2021, 2021, 8883614. [CrossRef]

11. Hossain, M.S.; Kong, Y.; Saeedi, E.; Vayalil, N.C. High-performance elliptic curve cryptography processor over NIST prime fields.
IET Comput. Digit. Tech. 2017, 11, 33–42. [CrossRef]

12. Liu, Z.; Liu, D.; Zou, X. An Efficient and Flexible Hardware Implementation of the Dual-Field Elliptic Curve Cryptographic
Processor. IEEE Trans. Ind. Electron. 2017, 64, 2353–2362. [CrossRef]

13. Di Matteo, S.; Baldanzi, L.; Crocetti, L.; Nannipieri, P.; Fanucci, L.; Saponara, S. Secure Elliptic Curve Crypto-Processor for
Real-Time IoT Applications. Energies 2021, 14, 4676. [CrossRef]

14. Montgomery, P.L. Modular Multiplication without Trial Division. Math. Comput. 1985, 44, 519–521. Available online:
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf (accessed on
15 October 2023 ). [CrossRef]

15. Li, Y.; Chu, W. Shift-Sub Modular Multiplication Algorithm and Hardware Implementation for RSA Cryptography. In Hybrid
Intelligent Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 541–552. [CrossRef]

16. Li, Y.; Chu, W. Verilog HDL Implementation for an RSA Cryptography using Shift-Sub Modular Multiplication Algorithm. J. Inf.
Assur. Secur. 2022, 17, 113–121. http://www.mirlabs.org/jias/secured/Volume17-Issue3/Paper11.pdf.

17. Bunimov, V.; Schimmler, M. Area and time efficient modular multiplication of large integers. In Proceedings of the IEEE
International Conference on Application-Specific Systems, Architectures, and Processors, The Hague, The Netherlands, 24–26
June 2003; pp. 400–409. [CrossRef]

18. Gayoso Martínez, V.; Hernández Encinas, L.; Sánchez Ávila, C. A Survey of the Elliptic Curve Integrated Encryption Scheme. J.
Comput. Sci. Eng. 2010, 2, 7–13.

19. Chen, L.; Moody, D.; Regenscheid, A.; Robinson, A.; Randall, K. Recommendations for Discrete Logarithm-based Cryptography:
Elliptic Curve Domain Parameters. NIST Special Publication NIST SP 800-186. 2023. Available online: https://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-186.pdf (accessed on 15 October 2023 ).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2021/8883614
http://dx.doi.org/10.1049/iet-cdt.2016.0033
http://dx.doi.org/10.1109/TIE.2016.2625241
http://dx.doi.org/10.3390/en14154676
https://www.ams.org/journals/mcom/1985-44-170/S0025-5718-1985-0777282-X/S0025-5718-1985-0777282-X.pdf
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1007/978-3-030-96305-7_50
http://www.mirlabs.org/jias/secured/Volume17-Issue3/Paper11.pdf
http://dx.doi.org/10.1109/ASAP.2003.1212863
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf

	Introduction
	Elliptic Curve Cryptography Algorithms
	ECC Point Addition and Doubling in Affine Coordinates
	ECC Point Addition in Affine Coordinates
	ECC Point Doubling in Affine Coordinates

	ECC Point Addition and Doubling in Projective Coordinates
	ECC Point Addition and Doubling in Jacobian Coordinates
	Modular Inversion
	Scalar Point Multiplication
	Elliptic Curve Diffie–Hellman Key Exchange

	Modular Multiplication Algorithms
	Interleaved Modular Multiplication Algorithm
	Montgomery Modular Multiplication Algorithm
	Shift-Sub Modular Multiplication Algorithm
	Shift-Sub Modular Multiplication with Advance Preparation Algorithm
	Shift-Sub Modular Multiplication with CSAs and Sign Detection Algorithm

	Hardware Implementations of Modular Multiplications and ECC
	Hardware Implementations of Modular Multiplications
	Hardware Implementations of ECC

	Conclusions and Future Work
	Appendix A
	Appendix B
	References

