
Citation: Bikos, A.; Nastou, P.E.;

Petroudis, G.; Stamatiou, Y.C.

Random Number Generators:

Principles and Applications.

Cryptography 2023, 7, 54.

https://doi.org/10.3390/

cryptography7040054

Academic Editor: Josef Pieprzyk

Received: 11 September 2023

Revised: 18 October 2023

Accepted: 25 October 2023

Published: 30 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Random Number Generators: Principles and Applications
Anastasios Bikos 1,2 , Panagiotis E. Nastou 3,4, Georgios Petroudis 3 and Yannis C. Stamatiou 1,5,*

1 Computer Technology Institute and Press “Diophantus”, University of Patras Campus, 26504 Patras, Greece;
mpikos@ceid.upatras.gr

2 Computer Engineering and Informatics Department, University of Patras, 26504 Patras, Greece
3 Applied Mathematics and Mathematical Modeling Laboratory, Department of Mathematics,

University of the Aegean, 83200 Samos, Greece; pnastou@aegean.gr (P.E.N.);
petroudisgeorgios@gmail.com (G.P.)

4 Center for Applied Optimization, University of Florida, Gainesville, FL 32611, USA
5 Department of Business Administration, University of Patras, 26504 Patras, Greece
* Correspondence: stamatiu@ceid.upatras.gr

Abstract: In this paper, we present approaches to generating random numbers, along with potential
applications. Rather than trying to provide extensive coverage of several techniques or algorithms
that have appeared in the scientific literature, we focus on some representative approaches, presenting
their workings and properties in detail. Our goal is to delineate their strengths and weaknesses, as
well as their potential application domains, so that the reader can judge what would be the best
approach for the application at hand, possibly a combination of the available approaches. For instance,
a physical source of randomness can be used for the initial seed; then, suitable preprocessing can
enhance its randomness; then, the output of preprocessing can feed different types of generators,
e.g., a linear congruential generator, a cryptographically secure one and one based on the combination
of one-way hash functions and shared key cryptoalgorithms in various modes of operation. Then, if
desired, the outputs of the different generators can be combined, giving the final random sequence.
Moreover, we present a set of practical randomness tests that can be applied to the outputs of random
number generators in order to assess their randomness characteristics. In order to demonstrate the
importance of unpredictable random sequences, we present an application of cryptographically
secure generators in domains where unpredictability is one of the major requirements, i.e., eLotteries
and cryptographic key generation.

Keywords: random number generation; entropy source; cryptographic key generation; randomness
test; cryptograpically secure pseudo random number generator; cryptography

1. Introduction

Is there a method to generate a sequence of truly random numbers? Can we really
prove that a sequence of numbers is really random? For instance, which of the following
two 26-bit sequences is “random”?

• Sequence S1: 10101010101010101010101010.
• Sequence S2: 01101011100110111001011010.

By which criteria, however? Without a precise definition of “randomness”, no math-
ematical proof of randomness can be attained. “Intuition” is, often, not sufficient, and it
may also be misleading in trying to precisely define “randomness”. Some “randomness”
viewpoints that have been proposed in the literature include the following:

• A process generated by some physical or natural process, e.g., radiation, resistor or
semiconductor noise (the practitioner’s view).

• A process that cannot be described in a “few words” or succinctly (the instance or
descriptional complexity view)—the smaller the description of a sequence of bits can be
made, the less random it is (try to apply this to the two sequences above).

Cryptography 2023, 7, 54. https://doi.org/10.3390/cryptography7040054 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7040054
https://doi.org/10.3390/cryptography7040054
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0001-6236-1707
https://doi.org/10.3390/cryptography7040054
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7040054?type=check_update&version=1

Cryptography 2023, 7, 54 2 of 30

• A process that cannot be guessed in a “reasonable” amount of time (the computational
complexity view).

• A process that is fundamentally impossible to guess (the “philosophical” view).
• A process possessing certain statistical characteristics of the ideally uniform process

(the statistician’s view).

To see that intuition may not be sufficient, observe that each of the two sequences, S1
and S2, has exactly the same probability of appearing as the output of a perfect randomness
source that outputs 0 or 1 with equal probability, i.e., 1

2 . This probability is equal to 1
226 .

Yet, sequence S2 appears “more random” than sequence S1, at least in the descriptional
complexity view.

John Von Neumann’s verdict is the following: “Any one who considers arithmetical
methods of producing random digits is, of course, in a state of sin. For, as has been pointed out
several times, there is no such thing as a random number—there are only methods to produce random
numbers, and a strict arithmetic procedure of course is not such a method”. True randomness is
a tough task. Ideally, a number generated at a certain time must not be correlated with
previously generated numbers in any way. This guarantees that it is computationally
infeasible for an attacker to determine the next number that a random number generator
will produce.

Whether there really exists randomness in the universe (if, indeed, “God plays dice”,
a thesis that Albert Einstein famously denounced) is a fascinating but elusive scientific and
philosophical question that has yet to be definitely answered. Fortunately, the mathematical
theory of computational complexity and cryptography bypasses this difficulty and offers
an “Apostolic Pardon” to the “sin” described by Von Neumann. In this context, a sequence
is considered “random” if its efficient predictability would imply solving, efficiently, a hard
computational problem, most often in number theory. Such problems are the factoring and
the discrete logarithm in certain finite fields. In this way, the elusive concept of “randomness”
acquires a “behavioural” substance, according to which a sequence is judged to be random
based on its “behavior” as seen by an outside observer. In other words, a sequence
is considered random if it is computationally difficult for an observer with reasonable
computational resources at their disposal to predict it. The classical concept of randomness
is, in contrast, rather “ontological” and focuses the observation on the sequence itself (the
“being”, that is) to characterize it as random or non-random. The “behavioristic” approach,
however, leads to interesting and very useful results for use in practical applications such
as electronic lotteries, where unpredictability is a major requirement. An excellent source
of papers focused on philosophical questions about randomness, as well as the interplay
between randomness and computation theory, is the collective volume [1].

On the practical side, with the rapid development of algorithms for generating ran-
dom numbers used in software testing, simulations, and mathematical modeling, multiple
problems have been observed regarding the randomness properties of these algorithms.
Thus, another interesting problem in the field of random number generation is how to char-
acterize “randomness”, i.e., how to decide if a given, sufficiently long sequence of numbers
is indeed random according to some well-defined and precise criteria. Unfortunately, all
available mathematical characterizations of randomness, such as descriptive complexity,
are formally undecidable. However, a number of statistical tests that can be used to, at least,
provide a scale of measurement that can rank random number generators according to the
statistical characteristics of the sequences they produce have been proposed. Such tests
include the Diehard statistical test suite as well as other similar tests [2–4]. In particular,
George Marsaglia proposed and implemented the Diehard randomness test suite, which
includes several statistical tests that capture different aspects of randomness in sequences
of numbers produced by generators (see Section 4.2 and also [5] for a complete presentation
of the tests and their implementation). These tests are focused, mainly, on rejecting random
number generators that exhibit undesirable, for a random sequence of numbers, properties,
such as short period, patterns within the binary digits, and non-uniform distribution of
the numbers. The Diehard tests are considered among the most reliable randomness tests,

Cryptography 2023, 7, 54 3 of 30

since the algorithms that pass these tests also perform well in practice with respect to the
randomness properties of the produced numbers.

In this paper, our focus is not on wide coverage of several approaches in random
generation and randomness tests but rather to try to explain basic principles and the ratio-
nale behind the tests we will describe. The paper is organized as follows: In Section 2, the
importance of entropy as a measure of the strength of a source of randomness is presented.
Moreover, the structure of an entropy source model as recommended by the NIST and
its two types, physical and non-physical, are given. The operation of some recent true
random number generators (TRNGs for short) are presented. Since existing TRNG designs
are difficult to deploy in real computing systems to greatly accelerate or support target
applications because the entropy sources they are based on need special treatment to be part
of the target application, algorithms that generate pseudorandom numbers (pseudorandom
number generators, or PRNGs for short) were developed. In Section 3, we cover the simple
linear congruential generators, which are nevertheless predictable, given the sufficiently
long sequence they produce as output, and the cryptographically secure generators, with
unpredictability guarantees based on the computational difficulty of number theoretical
problems. Coverage of several statistical tests that can be used to, at least, evaluate the
implementations of the generators in order to identify weak or faulty implementations
whose quality is reflected in the results of the tests is provided in Section 4. Finally, in
Section 5, we present an application of cryptographically secure generators in domains
where unpredictability is one of the major requirements, i.e., cryptographic key genera-
tion and eLotteries. We show how different components, such as true random number
generators, cryptographically secure generators, seed quality enhancement techniques,
post-betting prevention and ciphers, can be combined in order to produce long sequences
of unpredictable numbers.

2. Sources of Randomness

The central mathematical concept involved in random number generation processes is
entropy. Intuitively speaking, entropy reflects the uncertainty associated with predicting the
value of the outcome of an experiment prior to observation (in our case, the experiment is
the generation process). There are many possible measures of entropy. The most common
concepts are Shannon entropy and min-entropy, recommended by the National Institute of
Standards and Technology (NIST) in [4] as a very conservative measure. In [6], the reader
can find more about entropy measures. Let X be an independent discrete random variable
that takes values for S = {x1, x2, . . . , xn} with probability p(X == xi) = pi for i = 1, . . . , n.
The min-entropy of X is defined by

H(X) = − log2(max1≤i≤n pi).

It is obvious that H(X) is maximized when X has a uniform probability distribution,
i.e., p1, p2, . . . pn = 1

n , and equals log2(n). This means that the uncertainty of predicting
the next value of X is maximum when its probability distribution is uniform. A source of
randomness (a source of random values) is modeled as an independent discrete variable
and is considered an entropy source. The NIST model for an entropy source comprises a
noise source; a digitization unit if the noise source is analog; an optional postprocessing
unit, which increases the entropy of the generated output bits; and a health tests unit, which
ensures that the entire entropy source operates as expected. There are two kinds of noise
sources: non-physical and physical (see [2,7]). Depending on the noise source, there are
two kinds of entropy sources: non-physical entropy sources and physical entropy sources.
A non-physical noise source exploits system data (system time, RAM data, etc.) or user
interactions, like mouse movement and clicks, keyboard strokes, etc. [8].

A physical entropy source exploits a physical noise source that exhibits variations in
some of its properties or characteristics. A small change in the source at a certain time
progressively impacts future conditions in the system over time. Such a noise source can be
tapped in order to produce an infinite sequence of bits, e.g., by converting the analogue

Cryptography 2023, 7, 54 4 of 30

values of the variations into digital form. For this reason, it is necessary that the deployed
physical noise sources have sufficiently varying random fluctuations in the properties used
to draw randomness. Physical noise sources with good properties are Geiger counters,
zener diodes, ring oscillators [9,10] and digital-to-analog converters (DACs) [11]. These
sources appear to produce bits that do not follow some easily predictable pattern. However,
as time progresses, they sometimes appear to produce long streaks of 0 s alternating with
long streaks of 1 s, which is undesirable. In [12], a true random number generator (TRNG)
that is composed of an entropy source based on a semiconductor-vacancy junction and a
DAC-based square transformer in the voltage domain is presented. Another example of
TRNG design, named resilient high-speed (RHS)-TRNG, appears in [13]. It is a TRNG circuit
based on a spin-transfer torque magnetic tunnel junction (STT-MTJ) that, by circuit/system
codesign, was integrated into an RISC-V processor as an acceleration component and
driven by customized random number generation instructions.

Nowadays, physical unclonable functions (PUFs), which consist of inherently unclon-
able physical systems, are used as sources of randomness. Their unclonability arises from
their many random constituent components that cannot be controlled. When a stimulus C
is applied to a PUF device, it reacts with a response R. This pair (C, R) is called a challenge–
response pair (CRP). Thus, a PUF can be considered a function that maps challenges to
responses. A response Ri to a challenge Ci cannot be exploited to discover another response
Rj to a different challenge Cj, with i 6= j [14]. Moreover, it is impossible to recover response
Ri corresponding to a challenge Ci without having the right PUF that can produce it. If an
attacker tries to analyze the PUF in order to learn its structure, the response behavior of the
PUF is changed substantially. A PUF is considered strong if along with the above properties,
there is a large number of challenge response pairs (Ci, Ri), i = 1, . . . , N, available for the
PUF [14]. In [15], a hardware random number generator (HRNG) that is based on these
large numbers of (Ci, Ri) pairs is presented. A classical RNG sends challenges to a PUF,
which reacts with the corresponding responses, and these responses are used for the bit
construction of the random number.

However, due to the existence of noise while a PUF operates, when it is challenged
with Ci, a response R

′
i, which is a noisy version of Ri, is obtained. For this reason, each

time, a PUF produces helper data, which can be used by error correction code to recover
Ri. On the other hand, random number generators need a non-deterministic source of
entropy. Subsequently, the noise from the PUF response can be used for that purpose. So, it
makes sense to use the noise from a PUF as a source of entropy to extract a true random
seed. In [16], a systematic review of various entropy sources that are based on silicon
primitives, TRNGs and PUFs, is presented. Chaos-based, jitter-based, noise-based and
metastability-based entropy sources are four types of sources that a silicon TRNG can use
to harvest randomness. Moreover, the models of silicon-based PUF devices that harvest
randomness from the physical properties of its integrated circuit are analyzed.

Now, the question that arises is whether we can produce a random (or at least a
“seemingly” random) sequence of numbers using physical entropy sources that are not suf-
ficiently random for the purpose at hand (e.g., they do not follow the uniform distribution).
John von Neumann was one of the first to attempt to address this question. According
to the model he considered, suppose that we have a randomness source that produces a
sequence of bits Xi with the property that for all i, P[Xi = 1] = δ, for some 0 ≤ δ ≤ 1. Then,
from this source, we can generate a random sequence with the following algorithm: For
each pair 01 of bits produced by the source we consider, 0 is returned, while 1 is returned for
each pair 10. For 00 or 11, no bit is returned. The von Neumann model is limited, because
the probability value (δ) is assumed to be fixed, while it also has the disadvantage that from
a source that may produce a very large number of bits, several of them are discarded.

Santha and Vazirani’s model is less restrictive. A source is called an SV source (Santha–
Vasirani source) if for some real number 0 ≤ δ ≤ 1

2 , it holds that δ ≤ P[Xi = 1] ≤ (1− δ)
for all i. A random sequence is called minimally random if it has been produced by an
SV source. When δ = 1

2 , then the sequence is considered random. Santha and Vazirani

Cryptography 2023, 7, 54 5 of 30

proved that if δ < 1
2 , then a truly random sequence cannot be produced from a minimally

random sequence. That is, for every algorithm that produces a sequence X with a minimally
random sequence as input, there is a corresponding algorithm for which P[Xi = 1] = d or
P[Xi = 1] = 1− d.

The next question that thus arises is whether the combination of several SV sources can
produce a more random sequence. Before answering this question, we define the concept
of a semi-random source. A source is said to be semi-random if for every t > 0 and every
function f : {0, 1}? → [0, 1], the following holds for all large integers n and for all n-bit
sequences x = x1 . . . xn:∣∣∣∣∣∣ 1

2n ∑
|x|=n

f (x)− ∑
|x|=n

P[X1 . . . Xn = x1 . . . xn] f (x)

∣∣∣∣∣∣ ≤ 1
tn (1)

Semi-random sources, as defined by (1), are almost indistinguishable from truly
random sources. Therefore, if we can produce a semi-random sequence from a minimally
random source (or several such sources together, e.g., by XORing their outputs), we have
constructed a sufficiently strong randomness source.

Given m independent, minimally random sources S1, . . . , Sm as input, the following
algorithm produces a semi-random sequence. We assume that δ is given and m =
dδ−1(log n log n)e, where n is a large integer.

Algorithm 1 can be used in practical applications using the outputs of several physical
entropy sources. It is convenient and one of the most efficient algorithms for converting,
possibly, minimally random physical random sequences into semi-random sequences.

Algorithm 1 Combining the outputs of several physical entropy sources

for i = 1, . . . , m do
Generate minimally random sequences Bi = (xi1 , xi2 , . . . , xin) from source Si

end for
return B = B1 ⊕ B2 ⊕ · · · ⊕ Bm

3. Pseudorandom Number Generation

As we discussed in Section 2, using physical sources of randomness may not be
convenient in several application domains. Existing TRNG designs are difficult to deploy
in real computing systems to greatly accelerate or support target applications because the
entropy sources they are based on need special treatment to be part of the target application.

Fortunately, for almost all cryptographic applications, pseudorandom numbers can
be used, i.e., numbers that appear to be truly random to someone attempting to interfere,
maliciously, with the application. Algorithms that generate pseudorandom numbers,
i.e., pseudorandom sequences of bits, are called pseudorandom number generators, or PRNGs
for short.

The generation of pseudorandom numbers involves the production of long sequences
of bits starting from a small, preferably truly random initial value called seed. Among
the desirable properties that are expected from a PRNG is the generation of uniformly
distributed bits, i.e., bits that could have been produced by successive flips of an unbiased
coin. Naturally, pseudorandom sequences can never be completely random in the sense
of predictability. In particular, given any pseudorandom sequence that has been produced
by an algorithm using an initial seed value, an exhaustive search among all possible seed
values could identify the seed from which the observed numbers were produced. However,
the required time may be prohibitively long. For some classes of PRNGs, however, such as
the linear congruential generators discussed in Section 3.1, there are more efficient ways to
uncover future values given an initial segment of the pseudorandom sequence.

This fact leads to the question of how to design PRNGs that are unpredictable in reason-
able (i.e., polynomial) time. As an answer to this question, the concept of cryptographically

Cryptography 2023, 7, 54 6 of 30

secure PRNGs was first proposed by Blum and Micali [17] and Yao [18]. A PRNG is called
cryptographically secure if it passes all polynomial time statistical tests or, in other words,
if the distribution of bit sequences it produces cannot be separated from truly random
sequences by any polynomial time algorithm. On the other hand, a PRNG is called polyno-
mially predictable if there exists a polynomial time algorithm that, given a sufficiently long
sequence of bits produced by the generator, can predict its next outputs. For example, the
linear congruential (LCGs—see Section 3.1) and 1

P generators are polynomially predictable.
In contrast, BBS and RSA (see Section 3.2.1 for a discussion on BBS) are polynomially
unpredictable. For this reason, such generators are the generators of choice in applications
where unpredictability is a major requirement, such as in the implementation of electronic
lotteries (see [19,20] and Section 5), key generation and network security protocols.

A key definition in the area of cryptographically secure PRNGs is the following
(see [21]).

Definition 1 (Pseudorandom function). A family of functions Fs : {0, 1}k → {0, 1}l , indexed
by a key s ∈ {0, 1}n, is said to be pseudorandom if it satisfies the following two properties:

• Easy to evaluate: The value of Fs(x) is efficiently computable given s and x.
• Pseudorandom: Function Fs cannot be efficiently distinguished from a uniformly random

function R : {0, 1}k → {0, 1}l , given access to pairs (xi, Fs(xi)), where the xi can be
adaptively chosen by the distinguisher.

More specifically, we say that a pseudorandom generator is polynomially unpre-
dictable if and only if, for every finite initial part of the sequence produced by that generator
and for every bit erased from that part, a probabilistic Turing machine cannot guess this bit
in polynomial time. In other words, there is no better way to determine the value of this bit
than flipping an unbiased coin.

In cryptographically secure generators, the difficulty of predicting their outputs is
based on the difficulty of solving a mathematical problem, most often from algorithmic
number theory. For these problems, there is no algorithm that solves them in probabilistic
polynomial time. Integer factorization (factoring problem), the discrete logarithm prob-
lem in finite fields and elliptic curves (discrete logarithm problem), and the quadratic
residuosity assumption are among the most prominent of these problems. Thus, we may
say that a generator is cryptographically secure if the solution to a difficult mathematical
problem, like the ones listed above, is reduced to predicting the next bit of the sequence
given the first polynomially numerous bits of the sequence. Formally, a (k, l)-PRNG is
a polynomial (in k) time function f : {0, 1}k → {0, 1}l . Input s0 is the seed, and l, k are
positive integers, with l ≥ k + 1. Output f (s0) is a sequence of bits b0, b1, b2, . . . and is
called pseudorandom bit string. Function f is said to be a cryptographically strong PRNG if it
has the following properties:

• Bits bi are easy to calculate (for example, in polynomial time in some suitable definition
of the size parameter, e.g., the size of a modulus).

• Bits bi are unpredictable in the sense that it is computationally intractable to predict bi
in sequence with probability better than 1/2; i.e., for any computationally feasible
next-bit predictor algorithm Bi,

P[bi = B(b0...bi−1)] = 1/2 (2)

for i = 2, . . . , l.

3.1. The Linear Congruential Generator

The well-known linear congruential generator (LCG) produces a recursively defined
sequence of numbers calculated with the following equation:

xi+1 = (a · xi + c) mod m. (3)

Cryptography 2023, 7, 54 7 of 30

In this equation, x0 is the initial state or seed; a is the multiplier; c is the increment; and
m is the modulus. The various choices for generator parameters a, c and m define period q of
the generator. This is the minimal value of q such that xq = x0 (see the excellent exposition
in [22]).

The range of most common LCGs is limited to values of m ≤ 264; thus, they do not
have good statistical properties. Therefore, their use in simulations (e.g., Monte Carlo) is
limited. In applications where m can be arranged to be of the size of several hundred or even
thousand of bits, this issue can be addressed. However, although current microprocessor
technology has progressed significantly and allows for the implementation, in hardware,
of increased precision integer arithmetic, for such values of m, it is necessary to implement,
in software libraries, arbitrary precision integer arithmetic, which may be too expensive for
practical purposes.

It is easy to see that the maximum period for an LCG is equal to m. To obtain this
upper bound, however, the following conditions should be met (see, e.g., [22]):

• Parameter c should be relatively prime to m.
• If m is a multiple of 4, then a− 1 should also be a multiple of 4.
• For all prime divisors p of m, the value of a− 1 should be a multiple of p.

The reader may consult [22] for more mathematical properties and details of LCGs in
the form shown in Equation (3). Popular programming languages most often deploy LCGs
for the generation of pseudorandom number sequences, since strong security properties
(mainly unpredictability) are not of concern in customary programming projects where
the focus is on the randomness (i.e., statistical) properties of the sequences. See, however,
Section 5 of this survey paper for the presentation of an application domain, electronic
lotteries, where unpredictability properties are essential.

There exist several variations of the LCGs as given in (3). It is possible, for instance, to
set c = 0 as the increment value. The resulting generator is termed multiplicative or mixed
generator (in short MCG) and has the form

xn+1 = axn (mod m), n ≥ 0. (4)

As a consequence of setting c = 0, less operations are needed; thus, the generation of
numbers using (4) is faster (albeit slightly) than the generation of numbers using (3) when
c 6= 0. However, it is not possible to obtain the maximum period (i.e., m), since, for instance,
the value 0 cannot appear unless the sequence itself is composed of all 0 s.

In addition, if c = 0 and xn is relatively prime to m for all values of n, then the length of
the period of the sequence cannot exceed ϕ(m), which is the cardinality of the set of integers
between 0 and m that have the property of being relatively prime to m (see, e.g., [22]). Now,
if m = pe, where p is a prime number and e ∈ N, Equation (4) reduces to

xn = anx0 (mod pe).

If a is relatively prime to p, then the period of the MCG is the least λ, such that x0 = aλx0
(mod pe). If p f is the GCD of x0 and m = pe, then this condition reduces to aλ = 1
(mod pe− f).

If a is relatively prime to m, then the smallest integer λ for which aλ = 1 (mod pe− f)
is termed order of a modulo m, and all values a that have maximum possible order modulo m
form the set of primitive elements modulo m. Thus, the maximum possible period for MCGs
is equal to the order of a primitive element (i.e., maximum possible order) modulo m. This
is equal to m− 1 (see, e.g., [22])) whenever the following apply:

• m is prime;
• a is a primitive element modulo m;
• x0 is relatively prime to m.

Cryptography 2023, 7, 54 8 of 30

With respect to predictability, LCGs do not possess good properties. In [23–25], efficient
algorithms are presented for predicting the next value given past values of the LCG even if
some bits of these values are missing (i.e., they have not been given publicly).

3.2. Cryptographically Secure Generators

Since cryptographically secure PRNGs are accompanied by strong security (unpre-
dictability) evidence, we present some of the most powerful cryptographically secure PRNGs,
and we discuss design directions for the construction of such PRNGs.

3.2.1. The BBS Generator

The BBS generator, proposed by L. Blum, M. Blum and M. Shub in [26], is one of
the most often deployed cryptographically strong PRNGs. Its security (unpredictability) is
founded on the difficulty of the quadratic residue problem.

For every integer N, |N| is its length in bits, and |N|b, its length in base b > 2. If
Σ = {0, 1, . . . , b− 1}, Σ? is the set of finite sequences with elements from Σ, and Σ∞, the set
of sequences with an infinite number of elements from Σ. Also, we define Σk = {x ∈ Σ? :
|x| = k}, i.e., the set of finite sequences of length k. For all sequences x ∈ Σ∞, we denote by
xk the initial part of sequence x of length k (i.e., its first k elements), and we denote by xk
the k-th element of x (its first element is x0).

We denote by x mod N the smallest non-negative integer remainder from dividing
x by integer N. A quadratic residue mod N is any number x for which there exists an
integer u such that x = u2 mod N. Recall that Z∗N = {integers x | 0 < x < N and
gcd(x, N) = 1}, i.e., the set of integers that are smaller than N and relatively prime with
N. Set Z∗N has order, i.e., number of elements, equal to φ(N). The set of quadratic residues

modulo N is denoted by QRN. This is a subset of ZN and has order φ(N)
4 . Additionally, we

denote by Z∗N(+1) the subset of Z∗N consisting of its elements that have a Jacobi symbol
equal to 1 and by Z∗N(−1) the subset of its elements Z∗N that have Jacobi symbol −1. All
quadratic residues mod N belong in subset Z∗N(+1).

Each quadratic remainder u2 mod N has four different roots in ZN , which are ±u
mod N and ±y mod N. If, however, we assume that N ≡ 3 mod 4, then every quadratic
residue has exactly one square root, which is also a quadratic residue. In other words, the
function f (x) = x2 mod N is a 1− 1 and onto mapping (i.e., bijection) from QRN to itself.

Finally, we state the definition of Carmichael’s function, which will also be needed for
the concept of special primes. Carmichael’s λ-function [27] is closely related to Euler’s
totient function. However, while Euler’s totient function φ(n) provides the order of unit
group U(Z/nZ), Carmichael’s function λ(n) provides its exponent. In other words, λ(n)
is the smallest positive integer for which it holds that aλ(n) ≡ 1 (mod n) for any a that
is coprime to n. Carmichael’s λ function is not multiplicative but has a related property,
which can be called lcm-multiplicative, as follows:

λ(lcm[m, n]) = lcm[λ(m), λ(n)], for each pair of positive integers m, n. (5)

Some special values include λ(pk) = φ(pk), for pk an odd prime power, λ(1) = λ(2) = 1,
λ(4) = 2, as well as λ(2k) = 2k−2 for k ≥ 3. Based on these special values and Equation (5),
λ(n) can be computed for any positive integer n.

A prime number P is called special if P = 2P1 + 1 and P1 = 2P2 + 1, where P1, P2 are
primes greater than 2. A composite number N = PQ is special if and only if P, Q are two
distinct special primes and PQ ≡ 3 mod 4.

Set N of the generator parameters consists of all positive integers N = PQ, where P,
Q are distinct prime numbers of equal length (i.e., |P| = |Q|) and PQ ≡ 3 mod 4. For any
integer N, set XN = {x2 mod N : x ∈ Z∗N} is the set consisting of the quadratic residues
mod N. The domain of the generator seeds is X = {XN | N ∈ N}. The seeds should be
selected from X according to the uniform distribution for increased generator security.

Cryptography 2023, 7, 54 9 of 30

Given as input a pair (N, x0), the BBS pseudorandom number generator outputs a
pseudorandom sequence of bits b0b1b2 . . . , where bi = Parity(xi) and xi + 1 = x2

i mod N.
Parity(x) is the least significant bit of integer x. The construction of the pseudorandom
sequence obviously takes place in polynomial time. As it is shown in [26], the period (π) of
the pseudorandom sequence divides or is equal to (under some condition) λ(λ(N)). Given

x0, N and λ(N), we can efficiently calculate xi = x2i

0 mod N = x2i mod λ(N)
0 mod N for

i > 0. To calculate xi for i < 0, we use the equality xi = xi mod λ(λ(N)). As we will see below,
if x0 and N are known, but not the values of P and Q, we can construct the pseudorandom
sequence forward (i.e., for i > 0) but not backwards (for i < 0). thus, it appears that the
prediction of the sequence is as hard as factoring a large integer N = PQ. Alexi et al. [28]
proved that the BBS generator remains cryptographically secure even if it outputs up to
O(log log N) low-order bits instead of only one. With this result, the generator’s efficiency
is greatly improved. Practically, a BBS generator can be realized as follows:

1. Find primes p and q such that p ≡ q ≡ 3 mod 4.
2. Set N = pq.
3. Start with x0 = seed (a truly random value), i = 0.
4. Set xi = x2

i−1 mod N.
5. Output the least significant bit of xi.
6. Set i = i + 1, go to step 3.

Now, regarding the security of this generator, as mentioned above in the introduction,
all cryptographically secure generators base their security on the difficulty of solving
number theory problems. This problem, in the case of the BBS generator, is the quadratic
residuosity problem. The problem is defined as follows: Given N and x ∈ Z∗N(+1), decide
whether x is a quadratic residue mod N. Recall that exactly half the elements of Z∗N(+1)
are quadratic residues.

The quadratic residuosity assumption states that any efficient algorithm for solving the
quadratic residuosity problem would give wrong results for at least a percentage of the
inputs to the algorithm. More formally, the assumption is as follows: Let poly() be a
polynomial and P[N, x] be a polynomial algorithm that, when given as input N and x, with
|N| = |x| = n, returns 0 if x is not a quadratic residue mod N and 1 otherwise. Also, let
0 < δ < 1 be a constant and t be a positive integer. Then, for n very large and for a fraction
d of numbers N, with |N| = n, the probability that process P[N, x] gives the wrong answer
for integer x (given that x is chosen according to the uniform distribution from Z∗N(+1))

exceeds 1
nt , that is, ∑ Prob(P[N,x] is not correct)

Φ(N)
2

> 1
nt . The quantity 1

nt can be replaced with

1
2 −

1
nt .
The details of the discussion that follows can be found in [26]. We also recall that

in what follows, N = PQ, with P, Q prime numbers and PQ ≡ 3 mod 4, and that the
function f (x) = x2 mod N is a 1− 1 mapping from QRN to QRN.

According to the definition of the BBS generator, knowledge of N is sufficient for
the efficient generation of the sequence x0, x1, . . . starting from a seed value x0. However,
knowing only N and not its two factors P and Q does not suffice for the generation of
the sequence in reverse direction, i.e., the sequence x0, x1, x2, . . . starting from x0. For this
purpose, factors P and Q are needed. This necessity follows from the following argument:
Suppose that we can efficiently calculate x1 without knowing the factors of N. Then, in
order to factor N, we choose an x ∈ ZN(−1), and we set x0 = x2 mod N and calculate
x1. We then compute gcd(x + x1, N) = P or Q. Therefore, the ability to compute x1 for
at least a percentage of the values of x would allow us to factor N efficiently with a high
probability of success.

On the other hand, if we could factor N, we could generate the pseudorandom
sequence backwards. This fact follows from the following theorem: There exists an effi-
cient deterministic algorithm A that, when given as inputs N, factors P and Q, and any
quadratic residue x0 ∈ ZN , computes the unique quadratic residue x1 mod N for which
x2

1 mod N = x0. In other words, A(P, Q, x0) = x1.

Cryptography 2023, 7, 54 10 of 30

Moreover, the factors of N are necessary to have an ε-advantage in finding the parity
bit of x1 in polynomial time, given x0. A probabilistic process P that returns 0 or 1 is
said to have an ε-advantage, with 0 < ε

1
2 , in guessing the parity bit of x1 if and only if

∑ Prob(P[N,x0]=parity(x1))
Φ(N)

4

> 1
2 + ε. Similarly, we can define a probabilistic procedure that

would have an ε-advantage in deciding whether some x ∈ Z∗N(+1) is a quadratic residue
(which is the quadratic residuosity problem). More simply, we would say (according to a
lemma of [26]) that an ε-advantage in finding the parity bit of x1 can be converted into an
ε-advantage for the quadratic residuosity problem.

In [26], a theorem that proves the unpredictability of the BBS generator is given. By
this theorem, for any constant 0 < δ < 1 and any positive integer t, any probabilistic
polynomial process P has at most a 1

nt advantage in predicting the sequences generated by
BBS backwards (for sufficiently large n =| N | and for all but a fraction δ of N). In short,
if the BBS generator were predictable, the quadratic residuosity assumption described
previously would not hold. For this reason, the generator can be safely assumed to also
pass every probabilistic, polynomial, statistical test on its long-term output.

Having shown that the output of the generator cannot be efficiently predicted, its
period remains to be calculated. The fact that the sequence x0, x1, x2, . . . cannot be predicted
shows that the period of π(x0) should be very large. According to a theorem proved in [26],
period π(x0) divides λ(λ(N)). However, it would be best for the period to be as long as
possible, i.e., equal to λ(λ(N)). The equality π(x0) = λ(λ(N)) can indeed hold under two
conditions. The first is that integer N is special as defined earlier, and the second is to choose
a seed x0 so that its order is equal to λ(N)/2.

Finally, we define the linear complexity of a sequence of pseudorandom numbers
x0, x1, . . . as the smallest number L for which the linear relationship

xn+L = aL−1xn+L−1 + . . . + a0x0

holds for n = 1, 2, . . .
The linear complexity of any pseudorandom sequence does not exceed the period

of the sequence. Obviously, the higher the linear complexity of a sequence is, the more
cryptographically secure it is with respect to the prediction of its output. As demonstrated
in [29], the BBS generator does not exhibit any particular form of linear structure, a property
that excludes the possibility of applying attacks such as the Lattice Reduction attack on
its outputs.

3.2.2. The RSA/Rabin Generator

The second cryptographically secure generator is the RSA/Rabin generator. It is based
on the RSA function, and it works as follows:

1. Find primes p and q as well as a small prime e such that gcd((p− 1)(q− 1), e) = 1.
2. Set N = pq.
3. Start with x0 = seed (a truly random value), i = 0.
4. Set xi = xe

i−1 mod N.
5. Output the least significant bit of xi.
6. Set i = i + 1 and repeat from Step 3.

The RSA/Rabin generator is cryptographically secure under the RSA function assump-
tion. According to this assumption, given N, e and y, where y = xe mod N, the problem
of determining x is computationally intractable. More details about this generator can be
found in [28].

3.2.3. Generators Based on Block Ciphers

The other two generators that are deployed in the lottery are based on the encryption
algorithms DES (Data Encryption Standard) and AES (Advanced Encryption Standard).

Cryptography 2023, 7, 54 11 of 30

The implementations provided by version 2.5.3 of the mcrypt library (available at [30])
were used with key sizes of 64 bits for DES and 192 bits for AES.

DES and AES are used in their CFB (cipher-text feed-back) mode, and they are operated
as follows: An initial random seed is constructed from the combined output of the true
random generators; then, DES and AES are invoked, using the seed as the Initial Vector
(IV), as many times as the values we need to generate. In particular, every time the
encryption function is called, a byte with all zeros is encrypted (always in CFB mode), and
the encryption result is the output of the corresponding generator.

The cryptographic strength of these two generators is based on the security of the
corresponding encryption algorithms and not on a presumed computationally hard mathe-
matical problem, like RSA and BBS. However, both generators have passed, separately, all
the Diehard tests; thus, their output is considered secure.

Bruce Schneier et al., in [31], present the design and analysis of the Yarrow crypto-
graphically secure PRNG. Yarrow relies on a one-way hash function h(x) with an m-bit
digest and a block cipher E() with a k-bit key and an n-bit block size. The designer should
select a one-way hash function that is collision-intractable (e.g., one from the SHA-2 family
of hash functions) and a block cipher (e.g., AES) that is highly resistant to known-plaintext
and chosen-plaintext attacks.

The major components of Yarrow are an entropy accumulator, which collects samples
from entropy sources in two pools; a reseeding mechanism, which periodically reseeds the
key with new entropy from the pools; and a block-cipher-based generation mechanism, which
generates random numbers (Figure 1). The basic idea behind the generation mechanism
is that if an attacker does not know the block-cipher key, they cannot distinguish the
generated outputs from a truly random sequence of bits.

Figure 1. Yarrow PRNG structure.

The entropy accumulator determines the next unguessable internal state of the PRNG.
Each source of entropy sends samples to the entropy accumulator, and their hashed values
are stored to either a fast pool or a slow pool. The fast pool is used for frequent key
reseeding, while the slow one, for rare reseeding. It is obvious that the collected entropy
is no more than the size of the hash digest, i.e., m-bit entropy. Initially, the entropy
accumulator collects samples until the collected estimated entropy is high enough for
reseeding the block cipher with a new key. Recommendations for entropy estimation can
be found in [4].

3.2.4. Algorithms M and B

Given two sequences of pseudorandom numbers X and Y, algorithm M produces
a sequence X′ significantly “more random”. Essentially, the numbers in X′ are the same
as those that make up X, except that they are in different positions (i.e., they form a
permutation of the original sequence, X) in the new sequence. These positions are dictated
by sequence Y.

Cryptography 2023, 7, 54 12 of 30

More specifically, an array N with k elements is formed, where k is an integer depend-
ing on the application, often close to 100. The elements in array N are the first k elements of
sequence X. The steps of algorithm M (applied iteratively) appear in Algorithm 2.

Algorithm 2 Description of the algorithm M

1: The next elements of the sequences X and Y are placed in the variables x and y. Initially
x = Xk and y = Yk where Xk, Yk are the k-th elements of the sequences X and Y
respectively.

2: if m is the modulus of the sequence Y then
3: j = b ky

m c, i.e., j is a random integer between 0 and k− 1 specified by y.
4: end if
5: The next element in the sequence X′ is set equal to N[j].
6: N[j] = x.

It turns out that in most cases, the period of the sequence produced by algorithm M is
the least common multiple of the periods of sequences X and Y.

However, there is a more effective way to transpose the elements of a sequence X.
The corresponding algorithm is called Algorithm B. It is similar to M, but it achieves
better results in practice. At the same time, it has the advantage that only one sequence of
pseudorandom numbers is needed, and not two as in the case of M.

Initially (as in M), the first k elements of sequence X are placed in array N. Then,
variable y takes the value Xk, and the following steps are applied iteratively:

1. j = b ky
m c, where m is the modulus of sequence X.

2. N[j] is the next new element of sequence X′.
3. We set y = N[j], and N[j] is set to the next element of sequence X.

Although algorithm M can produce satisfactory pseudorandom number sequences,
given as input even non-random sequences (e.g., the Fibonacci numbers sequence, for
example), it is still likely to produce a less random sequence than the original sequences if
they are strongly correlated. Such issues do not arise with algorithm B. Algorithm B does not,
in any way, reduce the “randomness” of the given sequence of pseudorandom numbers.
On the contrary, it increases it with a small computational cost. For these reasons, it is
recommended to use algorithm B with any PRNG. Both algorithms are described in detail
in Knuth’s book [22].

A notable disadvantage of algorithms M and B is that they only modify the order of
the numbers in a sequence and not the numbers of the sequences themselves. Although,
for most applications, the ordering of the numbers is important, if the initial generators we
choose do not pass some basic statistical tests, permuting their elements with the M and
B algorithms does not render them stronger. For this reason, in applications that require
pseudorandom number sequences with strong randomness properties with theoretical
guarantees that imply unpredictability, it is better to deploy cryptographically secure PRNGs,
such as BBS and RSA, optionally using algorithms M and B.

4. Randomness Tests

In general, the quality of a pseudorandom number generator is based on a specific
theoretical framework that provides the assumptions and requirements that lead to a
series of theoretical results demonstrating various quality aspects, such as long period and
unpredictability.

Although mathematical evidence should be sufficient, an implementation of a gen-
erator should be able to demonstrate, in practice, specific quality aspects. For this reason,
the design and implementation of pseudorandom number generation algorithms should
also be accompanied by the results of statistical or randomness tests that attest to the quality
properties of the algorithms or, at least, their specific implementations.

Cryptography 2023, 7, 54 13 of 30

Before we continue, in the probability calculations for some of the tests that follow,
Stirling numbers of the second kind are needed. A Stirling number of the second kind
denotes the number of ways a set of n indistinguishable elements can be partitioned into
k non-empty indistinguishable subsets, where each subset should contain at least one

element. The notation for Stirling numbers of the second kind is
{

n
k

}
, and they are

defined, algebraically, as follows:{
n
k

}
=

1
k!

k

∑
j=0

(−1)k−j
(

k
j

)
jn. (6)

As we discussed in the Section 1, some quality properties of random number genera-
tors are hard to define and evaluate using practical, i.e., finite and computable, approaches.
For instance, unpredictability and randomness themselves are elusive concepts with various
theoretical characterizations, most of which do not lead to practical, computable tests. After
all, algorithms and computers are deterministic entities whose time evolution follows a
well-defined sequence of steps in order to produce results.

On the other hand, the science of statistics can provide approaches and tools for
evaluating, empirically, some measurable properties related to the “randomness” of a
number sequence. The generated sequences are evaluated with respect to their randomness
behavior according to certain statistical tests’ assumptions and rules.

These tests are designed so that the expected values of a test’s statistical indicators are
known to hold for a uniform distribution. Then, the generated sequence is subjected to
the test, and the results are compared with the results that a perfectly uniformly random
generated sequence would give. Although a variety of tests can be applied to a sequence
produced by a PRNG, research in this field has provided guidelines as to which tests are
most appropriate and efficient. In general, PRNGs that pass these tests are considered
acceptable for generating pseudorandom numbers. For instance, a number of tests are
described in [22], several of which are implemented in the Diehard randomness test suite
(see [5]), and some of them are recommended by the NIST in [3]. In what follows, we will
describe a number of these tests and discuss the randomness properties they evaluate.

4.1. Practical Statistical Tests

In this section, we will present a number of statistical tests described in Knuth’s
book [22]. Most of the tests, however, suit mainly truly random number sequences, while
some of the test parameters are not provided numerically. Thus, we follow the modifications
of these tests as described in [32], which are appropriate for integer number sequences,
while specific parameter values are provided for the tests.

In particular, the basic theory of tests for real number sequences is provided in [22].
The proposed applicability criteria are also suitable for integer sequences in some tests.
However, integer sequences cannot be tested, since the same assumptions as for real number
sequences may not be applicable to integers. For instance, the Permutation Test gives test
probabilities based on the premise that no two consecutive terms of the tested sequence can
be equal. However, for integer sequences, equality of consecutive terms may occur with a
non-negligible probability. Thus, in [32], new combinatorial calculations were developed in
order to adapt Knuth’s test suite to integer and binary sequences. Additionally, some of
the required parameters for the tests, such as the sequence length, the alphabet size, the
block size, and other similar parameters, are also provided in [32]. Taking into account
the aforementioned issues, the authors of [32] provide the test details and the required
probability calculations for testing binary and integer sequences, which are of interest for
our purposes.

Each of the tests is applied, in general, to a sequence < Un >= U0, U1, . . . , Un−1
of real numbers, which, assumedly, have been chosen independently from the uniform
distribution in the interval (0, 1). However, some of the tests are designed for sequences
of integers rather than sequences of real numbers. Thus, we form the auxiliary integer

Cryptography 2023, 7, 54 14 of 30

sequence < Yn >= Y0, Y1, . . . , Yn−1, where Yn = bdUnc. Parameter d should be sufficiently
large so that the tests’ results are meaningful for our PRNGs (e.g., the Yi that fall in the
PRNG’s range) but not so large as to render the test infeasible in practice. Accordingly, this
sequence has been assumedly produced through independent choices from the uniform
distribution over the integers 0, 1, . . . , d− 1.

Below, we discuss some of the tests in Knuth’s book [22]. One may also consult their
modified form provided in [32]. We first discuss two fundamental tests that are used in
combination with other empirical tests that we describe afterwards.

4.1.1. The “Chi-Square” Test

In probability theory and statistics, the “chi-squared” distribution, also called “chi-
square” with k degrees of freedom and denoted by χ2, is defined as the distribution of the
sum of the squares of k standard normal random variables. The “chi-square” distribution
of k degrees of freedom is also denoted by χ2(k) or χ2

k . The “chi-squared” distribution is
one of the most frequently used probability distributions in statistics, e.g., in hypothesis
testing and in the construction of confidence intervals.

In our case, the “chi-square” distribution is used to evaluate the “goodness-of-fit” of
the monitored frequencies of a sequence of observations to the expected frequencies of
the distribution under test (this is the hypothesis). The test statistic (stochastic distribution)
is of the form χ2 = ∑ ((oi − ei)

2/ei), where oi and ei are the observed and expected
frequencies of occurrence of the observations, respectively. This chi-square test is one of
the most widespread statistical tests of a sequence of data derived from observations of a
process, in general. In our case, this process is the generation of pseudorandom numbers,
and our data are the generated numbers.

We assume the following:

1. Each observation can belong to one of k categories.
2. We have obtained n independent observations.

According to this test, we perform n independent observations from a pseudorandom
number generator (n should be large enough). In our case, the observations are pseudo-
random numbers. Then, we count how many times each number appears. Let us assume
that the number s appears Ys times. Also, let ps be the probability of appearance of s. We
calculate the following statistical indicator (we assume that the numbers generated by the
pseudorandom number generator are within the range 1, . . . , n):

V = ∑
1≤s≤n

(Ys − nps)2

nps
=

1
n ∑

1≤s≤n

(
Y2

s
ps

)
− n. (7)

Next, we compare V to the entries of the distribution tables of χ2 with the degree of
freedom k equal to m− 1. If V is less than the table entry corresponding to 99% or greater
than the entry corresponding to 1%, then we do not have sufficient randomness. If it is
between the entries of 99% and 95%, then insufficient randomness may exist. A value
below 95% is a good indication that the numbers under test are close to random.

Knuth suggests applying the test to a sufficiently large sequence of numbers, i.e., for
large values of n. Also, for test reliability purposes, he suggests, as a rule of thumb, that n
should be sufficiently large to render the expected values of nps greater than 5. However, a
large value of n presents some undesirable properties, such as locally non-random behavior
through, for instance, an entrance into a cycle in the sequence. This fact is addressed not by
using a smaller value for n but by applying the test for several different large values of n.

4.1.2. Kolmogorov–Smirnov Test

The “Kolmogorov-Smirnov” test measures the maximum difference between the
expected and the actual distribution of the given number sequence. In simple terms, the
test checks whether a dataset (a PRNG sequence in our case) comes from a particular
probability distribution.

Cryptography 2023, 7, 54 15 of 30

In order to approximate the distribution of a random variable X, we target distribution
function F(x), where F(x) = Pr(X ≤ x). If we have n different independent observations
of X, then from the values corresponding to these observations, X1, X2, . . . , Xn, we can
empirically approximate function Fn(x) as follows:

Fn(x) =
The number of X1, X2, . . . , Xn that is ≤ x

n
.

To apply the “Kolmogorov-Smirnov” test, we use the following statistical quantities:

K+
n =

√
n max
−∞<x<∞

(Fn(x)− F(x))

K−n =
√

n max
−∞<x<∞

(F(x)− Fn(x))

where K+
n measures the maximum deviation when Fn is greater than F and K−n measures

the maximum deviation when Fn is less than F.
Subsequently, the test applies the following steps, based on these functions:

1. First, we take n independent observations X1, X2, . . . , Xn corresponding to a certain
continuous distribution function F(x).

2. We rearrange the observations so that they occur in non-descending order: Xi1 Xi2 . . . Xin .
3. The desired statistical quantities are given by the following formulas:

K+
n =

√
n max

1≤j≤n

(
j
n
− F(Xij)

)

K−n =
√

n max
1≤j≤n

(
F(Xij)−

j− 1
n

)
After we have calculated quantities K+

n and K−n , we compare them to the values in
the test’s tables in order to decide whether the given sequence is uniformly random or
not. Knuth recommends to apply the test with n = 1000 using only two decimal places
of precision.

Further to these two fundamental tests, we give below some more empirical tests that
are used in conjunction with them.

4.1.3. Equidistribution or Frequency (Monobit) Test

The Monobit Test checks if the number of occurrences of each element a, i.e., the
number produced by the PRNG, is as it would be expected from a random sequence of
elements. The Monobit case examines bits, i.e., it is applied on bit sequences, but it can also
be applied to any range of numbers. Knuth suggests two methods for applying the test:

1. Using the “Kolmogorov-Smirnov” test with distribution function F(x) = x, for
0 ≤ x < d.

2. For each element a, 0 ≤ a < d, we count the number of occurrences of a in the given
sequence; then, we apply the “chi-square” test with degree of freedom k = d− 1, and
probability pa =

1
d for each element (“bin”).

4.1.4. Serial Test

The Serial Test is, actually, an Equidistribution test for pairs of elements of the sequence,
i.e., for alphabet (element) size d2. Thus, the Serial Test checks that the pairs of numbers are
uniformly distributed. For PRNGs with binary output, for instance, where d = 2, the test
checks whether the distribution of the pairs of bits, i.e., (00, 01, 10, 11), is as expected.

The test is applied in the following way:

1. We count the number of times in which pairs (Y2j, Y2j+1) = (q, r) occur, for 0 ≤ j ≤ n,
0 ≤ q, r < d.

Cryptography 2023, 7, 54 16 of 30

2. We apply the “Chi-Square” test with d2 − 1 degrees of freedom and probability 1
d2 for

each category (i.e., (q, r) pair).

For the application of the test, the following considerations apply:

1. The value of n should be, at least, 10d2.
2. The test can also be applied to groups of triples, quadruples, etc., of consecutive

generator values.
3. The value of d must be limited in order to avoid the formation of many categories.

4.1.5. Gap Test

The Gap Test counts the number of elements, or gaps, that appear between successive
appearances of particular elements in the sequence and then uses the Kolmogorov–Smirnov
test to compare with the expected, from a random sequence, number of gaps. In other words,
the test checks whether the gaps between specific numbers follow the expected distribution.
In Knuth’s book, the test is defined for sequences of real numbers by examining the length
of gaps between occurrences of Uj over a specific range of these elements. As we discussed
above, the test can easily be transformed into a test for integer values.

In particular, if a, b are two real numbers, with 0 ≤ a < b ≤ 1, our goal is to examine
the lengths of consecutive subsequences Uj, Uj+1, . . . , Uj+r such that Uj+r is between a and
b, while all the other values are not. Thus, this subsequence of r + 1 exhibits a gap of
length r. In what follows, given a, b and a sequence U0, U1, . . . of real numbers, we give
the algorithm that counts the number of gaps, as defined above, with lengths ranging
over 0, . . . , t − 1, as well as the number of gaps of length at least t, until n gaps have
been computed.

Note that the algorithm terminates only when n gaps have been located (see step 6 in
Algorithm 3). After the algorithm has terminated, we will have calculated the number of
gaps of lengths 0, 1, . . . , t and of lengths at least t, in the array variables

COUNT[0], COUNT[1], . . . , COUNT[t].

Algorithm 3 Description of the Gap Test

1: The variables j and s are initialized with the values −1 and 0 respectively - also, we set
COUNT[r] = 0, for all 0 ≤ r ≤ t.

2: We also initialize the variable r to 0.
3: Set j to j + 1 and check whether a ≤ Uj < b - if yes, we go to step 5.
4: Set r to r + 1 and goto step 3.
5: At this point, a gap of length r has been located - if r ≥ t set COUNT[t] to COUNT[t] +

1, otherwise increase COUNT[r] to COUNT[r] + 1.
6: We now check whether n gaps have been located—Set s to s + 1 and if s < n goto step 2.

Using the expected probabilities from a random sequence, we can now apply the
“Chi-Square” test with k = t + 1 degrees of freedom below:

pr = p(1− p)r, 0 ≤ r ≤ t− 1, pt = (1− p)t. (8)

In the probabilities in (8), we set p = b − a, which is the probability of the event
a ≤ Uj < b. As stated in [22], the values of n, t are selected so that COUNT[r] is expected
to be at least 5 (preferably more than 5).

4.1.6. Poker Test

The Poker Test proposed by Knuth involves checking n groups of five successive
elements {Y5j, Y5j+1, Y5j+2, Y5j+3, Y5j+4}, 0 ≤ j < n, where 0 ≤ Y5j+i ≤ d− 1 for i = 0, . . . , 4,
for whether one of the following seven element patterns appears in them, where ordering
does not matter:

Cryptography 2023, 7, 54 17 of 30

• All five elements are distinct.
• There is only one pair of equal elements.
• There are two distinct pairs of equal elements each.
• There is only one triple of equal elements.
• There is a triple of equal elements and a pair of equal elements, different from the

element in the triple.
• There is one quadruple of equal elements.
• There is a quintuple of equal elements.

In other words, we study the distinctness of the numbers in each group of five elements.
Next, we apply the “Chi-Square” test for the number of quintuples in the n groups’ five
consecutive elements that fall within each of the seven categories defined above.

We can generalize the reasoning of the test discussed above by considering n groups
of k successive elements, instead of five. Then, we can calculate the number of k-tuples of
successive elements that have r distinct values. The probability (pr) for this event is given
by the following equation (see [22] for the proof):

pr =
d(d− 1) . . . (d− r + 1)

dk

{
k
r

}
.

See Equation (6) for the computation of
{

k
r

}
, i.e., Stirling numbers of the second kind.

4.1.7. Coupon Collector’s Test

Using the sequence Y0, Y1, . . . , Yn, where 0 ≤ Yj ≤ d − 1, the Coupons Collector’s
Test computes the lengths of segments Yj+1, . . . , Yj+r required to obtain the complete set of
integers from 0 up to d− 1.

The steps of the Coupon Collector’s Test appear in Algorithm 4. Given the PRNG
sequence Y0, Y1, . . . , we count the lengths of n consecutive “Coupon Collector” samplings
using the algorithm that follows. In the algorithm, COUNT[r] is the number of segments
of length r, d ≤ r < t, while COUNT[t] is the number of segments of length at least t.

Algorithm 4 Description of the Coupon Collector ’s Test

1: Initialize j, s to −1 and 0 respectively as well as COUNT[r] to 0, for d ≤ r ≤ t.
2: We initialize the variables q, r to 0, where q contains the number of different elements

of the subsequence with length r—we also set OCCURS[k] to 0, 0 ≤ k < d.
3: We proceed to the observation of the next element in the sequence by increasing r and j

by 1—if OCCURS[Yj] 6= 0 repeat step 3.
4: Set OCCURS[Yj] to 1 and q to q + 1—we have, now, recorder q distinct values, thus if

q < d we return to step 3, otherwise (i.e., q = d) we have a complete set of d distinct
values (i.e., all coupons have been collected).

5: If r ≥ t we increment COUNT[t] otherwise we increment COUNT[r].
6: Set s to s + 1—if s < n, goto step 2.

After the algorithm has counted n lengths, the “Chi-Square” test is applied to

COUNT[d], COUNT[d + 1], . . . , COUNT[t]

i.e., the number of coupon collection steps of length r, with k = t − d + 1 (degrees of
freedom). The probabilities that correspond to these events are the following (see [22] for
the derivation):

pr =
d!
dr

{
r− 1
d− 1

}
where d ≤ r < t and pt = 1− d!

dt−1

{
t− 1

d

}
.

Cryptography 2023, 7, 54 18 of 30

4.1.8. Permutation Test

The Permutation Test calculates the frequency of appearance of permutations, i.e., differ-
ent arrangements of successive elements in a given sequence of numbers. More specifically,
we divide the numbers of the given sequence into n groups of t elements each, i.e., we
form the sets of t-tuples Ujt, Ujt+1, . . . , Ujt+t−1, 0 ≤ j < n. For each t-tuple, we may have t!
possible permutations or categories. The test counts the frequency of appearance of each
such permutation.

Note that for this test, it is assumed that all numbers are distinct. This is justifiable
if Ui are real numbers (since the probability of equality of two real numbers is zero) but
not justifiable for integer sequences. See [32] for a discussion on how to alleviate this
assumption for the integer sequences of PRNGs.

The frequency of appearance of each permutation is calculated with Algorithm 5
(see [22] for more details). Given a sequence U1, U2, . . . , Ut of distinct elements, the al-
gorithm computes an integer f (U1, U2, . . . , Ut) for which the following is satisfied: 0 ≤
f (U1, U2, . . . , Ut) ≤ t!, and f (U1, U2, . . . , Ut) = f (V1, V2, . . . , Vt) if and only if U1, U2, . . . , Ut
and V1, V2, . . . , Vt have the same relative ordering. The steps of the algorithm are shown below.

Algorithm 5 Calculation of the frequency of appearance of each permutation

1: We initialize f and r to 0 and t, respectively (the algorithm maintains the invariant
0 ≤ f < t!

r!).
2: We find the maximum element of U1, U2, . . . , Ur, let us say Us—we set f to the value

r f + s− 1.
3: We swap the elements Ur and Us.
4: We reduce r by 1—if r > 1 returns to Step 2.

Finally, we apply the “Chi-Square” test for k = t! degrees of freedom with probability
of each permutation (category) equal to 1

t! (see [22] for more details).

4.1.9. Run Test

The Run Test checks the lengths of maximal monotone subsequences of the given
sequence, i.e., monotonically increasing or decreasing, or “runs-up” and “runs-down”,
respectively. In other words, we consider the length of these monotone runs.

Note, however, that in the Run Test, we cannot apply the “Chi-Square” test to the
lengths of the monotone runs, since they are, in general, not independent. Usually, a long
run is followed by a short run, etc. In order to handle this difficulty, we apply the following
procedure, which takes as input a sequence (U0, U1, . . . , Un−1) of distinct real numbers:

1. We use an algorithm that measures the lengths of the monotone runs (this is easy to
accomplish).

2. After the lengths have been computed, we calculate statistical indicator V as follows:

V =
1

n− 6 ∑
1≤i,j≤6

(COUNT[i]− nbi)(COUNT[j]− nbj)aij.

The values of aij, bi and bj are specific constants, which are given in [22] in matrix
form. The value of V is expected to obey the “Chi-Square” distribution for sufficiently
large n, e.g., n > 4000, and a degree of freedom k = 6.

The same test can be applied to “runs-down”.

4.1.10. The Maximum T Test

The Maximum t Test checks if the distribution of the maximum of t random numbers
is as expected. The test works as follows, iterating over n subsequences of t values:

1. We take the maximum value of the given t numbers, i.e., for all n subsequences,
0 ≤ j < n, Vj = max(Ujt, Ujt+1, . . . , Ujt+t−1).

Cryptography 2023, 7, 54 19 of 30

2. We apply the “Kolmogorov-Smirnov” test to the sequence of maximums V0, V1, . . . , Vn−1
with distribution function F(x) = xt, x ∈ [0, 1]. As an alternative, we can apply the
Equidistribution Test to the sequence Vt

0 , Vt
1 , . . . , Vt

n−1.

The verification of the test is to show that the distribution function of Vj is F(x) = xt.
This is because the probability of the event max(U1, U2, . . . , Ut) ≤ x is equal to the probability
of the independent events U1 ≤ x, U2 ≤ x, . . . , Ut ≤ x, which is equal to the product of the
individual probabilities, all equal to x, which gives xt.

4.1.11. Collision Test

The Collision Test checks the number of collisions produced by the elements of a given
sequence of numbers. We want the number of collisions to be neither too high nor too low.
Below, we explain the term collision and highlight the workings of the test.

We consider the general experiment of throwing balls in bins at random. When two balls
appear in a single bin, we have a collision. In our case, the bins are the test categories, and
the balls are the sequence elements or observations to be placed into the bins or categories.
In the Collision Test, the number of categories is assumed to be much larger than the
number of observations (i.e., distinct numbers in the sequence). Otherwise, we can use
direct “Chi-square” tests on the categories as before.

More specifically (see [22]), let us fix, for concreteness, the number of bins or categories
m to be 220 and the number of balls or observations n to be equal to 214. In our experiment,
we throw these n balls into m bins at random. To this end, we convert the U sequence of
real numbers into a corresponding Y sequence of integers for an appropriate choice of d
(see discussion at the beginning of Section 4.1).

In this example, we evaluate the generator’s sequence in a 20-dimensional space using
d = 2, i.e., forming vectors of 20 elements, each of which can be 0 or 1. Each vector j has
the form Vj = Y20j, Y20j+1, . . . , Y20j+19, with 0 ≤ j < n.

Given m and n, the test uses an algorithm (see [22]) to determine the distribution of
the number of collisions caused by n balls (20-dimensional vectors) when they are placed,
at random, into m bins. The corresponding probabilities are provided similarly to the Poker
Test. The probability that c collisions occur in a bin is the probability that n− c bins are
occupied, which is given by

m(m + 1) . . . (m− n + c + 1)
mn

{
n

n− c

}
.

Since n and m are very large, it is not easy to compute these probabilities using the
definition of Stirling numbers of the second kind as given by Equation (6). Knuth proposed
a simple algorithm, called Algorithm S (see [22]) to approximate these probabilities through
a process that simulates the placement of the balls into the bins.

4.1.12. Birthday Spacings Test

The Birthday Spacings Test was proposed by G. Marsaglia in 1984, and it is included
in the Diehard suite of tests. As in the Collision Test, in the Birthday Spacings Test,
we randomly throw n balls into m bins. However, in this test, parameter m, the bins,
represents the number of available “days in a year”, and parameter n represents “birthdays”,
i.e., choices of days in a year.

Given the dates of n birthdays, we start by arranging them into a non-descending
order. That is, if the birthdays are (Y1, Y2, . . . , Yn), where 0 ≤ Yk < m, they are sorted into a
non-decreasing order, say, Y(1) ≤ Y(2) ≤ · · · ≤ Y(n). Then, we define the successive spacings
between birthdays S1 = Y(2) − Y(1), . . . , Sn−1 = Y(n) − Y(n−1), Sn = Y(1) + m − Y(n). We
subsequently rearrange the spacings into non-decreasing order, say, S(1) ≤ S(2) ≤ · · · ≤ S(n).
Finally, we compute the distribution of the random variable R, which counts the number of
these spacings that are equal; it is defined as the number of indices j, 1 < j ≤ n, such that

Cryptography 2023, 7, 54 20 of 30

S(j) = S(j−1). This distribution of R depends on the specific values of m and n, and we can
focus on the cases where R = 0, 1, 2 and at least 3 (see [22]).

As suggested by Knuth, we repeat the test 1000 times and compare the distribution
of R found empirically with this procedure and the theoretical distribution using the
“Chi-square” test for degree of freedom k = 3.

4.1.13. Serial Correlation Test

The idea behind the Serial Correlation Test is to calculate the serial correlation coefficient.
For a given sequence of real numbers, this coefficient is a statistical indicator whereby the
value of Uj+1 depends on the previous value of Uj.

For a given sequence of numbers U1, U2, . . . , Un−1, the serial correlation coefficient is
given by the formula below:

C =
n(U0U1 + U1U2 + · · ·+ Un−2Un−1 + Un−1U0)− (U0 + U1 + · · ·+ Un−1)

2

n(U2
0 + U2

1 + · · ·+ U2
n−1)− (U0 + U1 + · · ·+ Un−1)2

The correlation coefficient always ranges from −1 to 1. When C is 0 or close to 0, it
indicates that Uj+1 and Uj are independent. If C = ±1, Uj+1 and Uj are totally linearly
dependent. Thus, it is desirable to have C equal or close to 0.

However, since the values of U0 and U1 are not, in fact, entirely independent of the
values of U1 and U2, C is not expected to be exactly zero. As suggested by Knuth, a good
value for C is any value between µn − 2σn and µn + 2σn, where

µn = − 1
n− 1

, σ2
n =

n2

(n− 1)2(n− 2)
with n > 2.

For a good PRNG, we expect C to lie between these values around 95% of the time.

4.2. The Diehard Suite of Statistical Tests

As we have already discussed in the introduction, George Marsaglia from University
of Florida has proposed the Diehard statistical test suite for testing the randomness of
RNGs. This suite includes a series of statistical tests, similar in spirit to the tests described
in Section 4.1, aiming at rejecting RNGs that exhibit short period, patterns within the binary
digits and non-uniform distribution of numbers. Today, the Diehard tests, along with the
statistical tests recommended by the NIST [3,4] and those recommended by the German
Federal Office for Information Security (BSI) [2], are considered among the most reliable
ones, since the algorithms that pass these tests unequivocally certify the random generation
of numbers.

In this section, we briefly present the Diehard tests, which include fifteen statistical
tests. Information about these tests can be found in [5] (implementation and source code).
Below, we provide a very brief description of the tests, since they are close to the spirit of
the tests in Knuth’s book [22] (see also Section 4.1):

• Birthday Spacings: We select random points on a large interval. The spacings between
the selected points should be asymptotically exponentially distributed (test connected
with the Birthday Paradox in probability theory).

• Overlapping Permutations: We analyze sequences of five consecutive numbers from the
given sequence. In total, 120 possible orderings are expected to occur with approxi-
mately equal probabilities.

• Ranks of Matrices: We choose a certain number of bits from the numbers in the given
sequence and form a matrix over the elements {0, 1}. We then determine the rank of
the matrix and compare it with the expected rank of a fully random 0–1 matrix.

• Monkey Tests: We view the given numbers as “words” in a language. We count the
overlapping words in the sequence of the numbers. The number of such “words”
that do not appear should follow the expected distribution (test based on the Infinite
Monkey Theorem in probability theory).

Cryptography 2023, 7, 54 21 of 30

• Count the 1 s: We count the 1 s in either successive or chosen numbers from the given
sequence. We then convert the counts to “letters” and count the occurrence of such
five-letter “words”.

• Parking Lot Test: We randomly place unit radius circles in a 100 × 100 square area. We
say that such a circle is successfully parked if it does not overlap with another already
successfully parked circle. After 12,000 such parking trials, the number of successfully
parked circles should follow an expected normal distribution.

• Minimum Distance Test: We randomly place 8000 points in a 10,000 × 10,000 square
area. We then calculate the minimum distance between all the point pairs. It is expected
that the square of this distance follows the exponential distribution for a specific
mean value.

• Random Spheres Test: We randomly select 4000 points in a cube of edge 1000. We
then center a sphere on each of these points, where the sphere radius is the minimum
distance from the other points. It is expected that the minimum sphere volume follows
the exponential distribution for a specific mean value.

• The Squeeze Test: We multiply 231 by random floating numbers in the range (0, 1)
until we obtain as a result 1. We repeat this experiment 100,000 times. The number of
floating points required to obtain 1 should follow an expected distribution.

• Overlapping Sums Test: We produce a sufficiently long sequence of random floating
points in the range (0, 1). We add the sequence formed by 100 successive floating
point numbers. It is expected that these sums follow the normal distribution with
specific variance and mean values.

• Runs Test: We generate a sufficiently long sequence of random floating points in the
range (0, 1). We count ascending and descending runs. These counts should follow an
expected distribution.

• The Craps Test: We play 200,000 games of “craps”, counting the winning games and
the number of die throws for each of these games. These counts should follow an
expected distribution.

5. Application Domains Where Unpredictability Is Essential

In this section, we present the application of cryptographically secure generators in
two domains where unpredictability is one of the major requirements, i.e., cryptographic
key generation and eLotteries.

5.1. Cryptographic Key Generation

In cryptography, there are many cases where random numbers are used. They are
inputs in the generation of session and message keys for symmetric ciphers and in the
generation of large prime numbers for RSA and ElGamal-style cryptosystems for asym-
metric key generation. There are also multiple uses in network security, where random
numbers are used as nonces and challenges in various network protocols. In this section,
we present a mechanism for key generation of a symmetric cipher. In [7,33,34], various
recommendations for the generation of strong symmetric keys and asymmetric key pairs
can be found.

Let B be the key of a symmetric cipher of k-bit length. Then, B shall be determined by

B = U ⊕V

where U is a random bit sequence and V is a number determined independently of U. The
only restriction is that the process used to create U should provide entropy less than k-bit,
i.e., the size of the key. There is no restriction for V. Its bits could be all zeros, which means
that U is used as a key straightforwardly, i.e., B = U. Thus, in this case, a random bit
sequence is used as a cipher key.

In Figure 2, the structure of a PUF-based symmetric key generator is depicted. A
random bit sequence is created by a PUF device. Then, the sequence is encrypted (RSA)
and transmitted to the key generator using the TLS protocol. The entropy of the random bit

Cryptography 2023, 7, 54 22 of 30

sequence is greater than 1024 bit. The pattern generation module selects, from this random
bit sequence, the seed for the key derivation function (KDF) and the value of VN , where
index N ≤ 1024 determines the size of the key. The KDF generates the value of UN , and the
symmetric key is calculated as B = UN ⊕VN . The size of the key is N. The KDF is based
on the Mersenne Twister random bit generator and the one-way hash function SHA-256,
which is an SHA-2 hash function. The input message of the hash function is constructed
through the process that requests the symmetric key. Its format is the name of the module
(e.g., Swatch in Figure 2) followed by 0x00, the identification number of a user, a nonce and
the size of the requested key. The hash function SHA-256 is selected, since the symmetric
algorithm AES operates for 128/192/256-bit key size. Thus, the KDF could provide a key
up to 256 bit.

Figure 2. PUF -based symmetric key generation.

5.2. Online Electronic Lotteries

Online eLotteries represent an application area where the unpredictability of the pro-
duced numbers of each draw is an essential requirement. Naturally, in this application field,
where high financial stakes exist, more requirements are necessary to ensure the validity of
each draw, such as the following:

1. The produced numbers should obey the uniform distribution over the required num-
ber range.

2. It should be infeasible for anyone (even the lottery owner and operator) to predict
the numbers of the next draw, given the draw history, with a prediction probability
“better” than the uniform over the range of the lottery numbers.

3. It should be infeasible for anyone (even the lottery owner and operator) to interfere
with the draw mechanism in any way.

4. The draw mechanism should be designed so as to obey a number of standards; in
addition, there should also be a process through which it can be officially certified (by
a lottery designated body) that these standards are met by the lottery operator.

5. The draw mechanism should be under constant monitoring (by a lottery designated
body) so as to detect and rectify possible deviations from the requirements.

6. The details of the operation of the lottery draw mechanism should be publicly avail-
able for inspection in order to build trust and interest towards the lottery. In addition,
this publicity facilitates auditing (which may be required by a country’s regulation
about electronic lotteries).

One such lottery design has been proposed in [19,20]. A high-level description of the
system components, as well as their roles, is shown in Figure 3.

Cryptography 2023, 7, 54 23 of 30

Figure 3. The architecture of the random number generation system.

Generator and Verifier are the two fundamental interacting agents around which the
protocol is built. In a high-availability configuration, the Generator can be duplicated,
although this is a system-architecture-related decision, not necessary for the protocol we
shall discuss.

To enable pair-wise secure communication, the Generator and the Verifier first execute
a key-exchange protocol in order to end up sharing a secret key. Additionally, each of them
creates a private/public key pair for signing the exchanged communication messages. The
Generator then enters an idle state and generates a packet of random numbers only upon
the Verifier’s request for the next draw, continuing from the last produced draw.

From the Generator’s pool of truly random bits, drawn from physical sources like
semiconductor elements (e.g., shot noise), a series of random bits are chosen as seeds
for the deployed software PRNGs. As an alternative, the Generator may use its current
internal state to construct the next state deterministically without utilizing any fresh, truly
random bits for reseeding the generators. Next, in order to irrevocably link the seed and/or
internal state with the coupon file, the Generator combines the drawn genuinely random
bits and/or its current state (using the XOR operation) with the hash value of the coupon
file. As a result, the coupon file is effectively “frozen”, making it impossible to compare
any future, unauthorized modifications to the internal state of the generator, which was
committed and signed in the logs at the time in which the draw was initiated.

The Naor–Reingold function (see [35]), which is a one-way pseudorandom function, is
then applied to the created bit sequence as a postprocessing safety measure for additional
randomization. Then, the software-based random number generators are seeded using this
bit sequence. There are currently two block-cipher-based generators (DES and AES) and
two cryptographically secure pseudorandom number generators (RSA and BBS) that are
utilized in our protocol, but any number of software-based generators can be employed
in different output configurations. After that, the Generator signs the numbers generated
using the final seed sequence and a bit-commitment mechanism.

On the other side, the Verifier receives the encrypted packet containing the committed
to seeds and signed random numbers, and the Generator shuts down. It initially decrypts

Cryptography 2023, 7, 54 24 of 30

the received packet in order to obtain the signed numbers, as well as the seed that the
Generator is said to have used to generate these numbers. The Verifier then utilizes the
seed to replicate the generator’s creation process after confirming that the generator has
committed to the provided seed. The draw is deemed successful and is finished by the
announcement of the winning numbers if the numbers produced match the numbers
supplied by the generator. A process whereby a warning is issued, the draw is canceled
and the Verifier starts it again (or takes some other step to ensure integrity and continuity)
is enabled if the numbers received do not match the numbers supplied. Notice that the
Verifier function performs an audit of the full drawing process, including the independent
computation of the hashed version of the participating coupons and the internal generation
of truly random bits (seeds).

5.3. The Protocol Components
5.3.1. Prevention of Post-Betting

The ability to detect post-betting, i.e., to detect whether a coupon was placed into
the coupon database after the winning numbers were produced by the generators, is an
important requirement from the protocol. If such an illegal event is detected, the protocol
must be stopped immediately, and the current draw must be canceled without announcing
the winning numbers.

This requirement can be easily satisfied by combining information characterizing the
state of the coupon file just before the winning numbers are produced. The state can also
include information about the truly random seeds obtained from physical sources in order
to start the PRNGs of the lottery. For instance, we can use the coupon file’s hash value as the
file’s state indicator for ensuring integrity and detecting subsequent, to the draw, efforts to
modify it by inserting a new coupon. Then, the hash value of the coupon file along with the
used seeds become input to a pseudorandom functions commonly used in cryptography,
such as the Naor–Reingold function. In this way, we can also detect insider attacks from
corrupted lottery employees who have access to the winning numbers just shortly after
they have been generated and before they are announced.

5.3.2. Signing the Numbers and Authenticating Their Source

Both the Generator and the Verifier create, during the lottery initialization process,
their own RSA key pair and then exchange their public keys. Using their public keys, they
create, jointly, a shared key that they also exchange.

Using the shared secret key, the Generator encrypts the winning numbers and seeds
and signs them with its private key. After receiving this signed packet, the Verifier verifies
the signature of the Generator and uses the shared key to decrypt the winning numbers and
seeds. This encryption and signing process eliminates the risks inherent in authentication
methods like verifying IP addresses of servers, exchanging password phrases, etc. As an
additional security precaution, the RSA key pairs can be periodically refreshed.

5.3.3. Seed Commitment and Reproduction of Received Numbers

An issue that arises after the reception of the winning numbers of the current draw is
whether these numbers were, indeed, generated taking into consideration the coupon file’s
hash value in order to avoid post-betting, as we explained earlier.

To accomplish this, the Verifier sends the hash value of the coupon file (the Verifier
obtained the coupon file after the betting period closed) to the Generator. Upon reception
of the hash value, the Generator draws a seed from the true random number generators,
securely combines it with the hash value (e.g., XORs them together) and then commits
to the result using the Naor–Reingold (NR for short) function (see [35]). This function is
used to process the mixture of seeds derived from the truly random number generators as
combined with the hash value of the coupon file. The result of this processing is given as
an input to the PRNGs deployed by the lottery (four in the case we study). Moreover, the

Cryptography 2023, 7, 54 25 of 30

quality of the seeding process is enhanced; consequently, the overall security of the random
number generation protocol is enhanced by the employment of the NR function.

Following this processing, the Generator transmits a bit commitment to the Verifier,
and it produces the numbers of the current draw and sends them to the Verifier. Then, the
Verifier is able to recreate the numbers using the Generator’s commitment. If the recreated
numbers are identical to the received random numbers, then the verification process is
successful. In this case, the current draw is considered valid, and the winning numbers can
be publicized. Otherwise, an alert is issued for investigating potential malfunction of the
generators or an effort to interfere maliciously with the lottery operation.

With respect to the NR function, a key is a tuple 〈P, Q, g,~a〉, with being P a large
prime, Q being a large prime divisor of P− 1, g being an element of order Q in Z∗P and
~a = 〈a0, a1, . . . an〉 being a uniformly distributed sequence of n + 1 elements in ZQ. Given
an input x of n bits, x = x1 . . . xn, the NR function is defined as follows:

f̃P,Q,g,~a = (ga0)∏xi=1 ai mod P.

In the specific implementation in [19,20], the sizes of P and Q were 1000 bits and
200 bits, respectively. Note that in general, a pseudorandom function is applied for both
further randomizing the input value and serving as a commitment for the generation of the
next winning number sequence, in the case of the lottery. This commitment is based on the
Generator’s inputs, i.e., seeds from physical sources and the coupon file’s hash value, so
that its output (i.e., winning numbers) can be checked for validity. Since the NR function
is pseudorandom, revealing input–output relationships does not affect its security. An
alternative approach is the use of another “verifiable (pseudo)random function”, as defined
in [36].

Finally, the Simplified Optimal Asymmetric Encryption Padding, or SAEP, protocol (see [37])
can be applied before passing the seeds from the NR function to the Generator. Using this pro-
tocol, a padding on the NR function’s output is computed towards security enhancement.
More specifically, if M is the message to be encrypted, the SAEP protocol concatenates M
with a sequence of 0 s; then, it appends to it a random number r. Then, the hash value of
r is computed, XORed with message M and the 0 s. The rmd160 algorithm can be used
as the hash function, among other suitable choices. The message that to be encrypted is
the concatenation of the result of the XOR operation with random number r. The SAEP
protocol is summarized in Figure 4.

Figure 4. SAEP protocol.

In the random number generation protocol examined in this section, message M is
composed of the seeds that must be sent from the Generator to the Verifier. After the
SAEP protocol has been applied, all the information is encrypted and signed with the
Generator’s private RSA key. The result of this process is transmitted to the Verifier for the
verification process.

Cryptography 2023, 7, 54 26 of 30

Upon the reception of the encrypted and signed packet, the Verifier first validates the
signature and then decrypts the message using the shared key. Finally, the Verifier applies
the reverse SAEP process, retrieving the commitment (seeds).

Indicative key sizes are 1000 bits for the encryption process and 2000 bits for the
signature. The number of 0 s used in the SAEP protocol can be approximately 100. Also,
the size of random number r can be approximately 100.

5.3.4. Incorporation of Several True Randomness Sources

The initial randomness, or seed, of a software PRNG must eventually be drawn from a
source of true randomness or physical source. After considering the various sources of true
randomness within a computer (e.g., /dev/random in LINUX, fluctuations in hard disk
access times, motherboard clock frequency drift, etc.) and evaluating the trade-offs between
ease of use and quality of output, it was decided to use commercial hardware generators
known to pass a number of demanding statistical tests (e.g., Diehard—see Section 4.2 for a
brief presentation of the tests).

Moreover, it was important to use several such true randomness sources (see Section 2)
with their outputs XORed, since it is not uncommon to have, after some time, risky
deviations in the physical characteristics of the devices from which the initial randomness
(seed) is drawn. These fluctuations, in turn, may cause the appearance of detectable biases
or patterns in the produced number sequences.

5.3.5. Mixing the Outputs of the Generators: Algorithms M and B

As we discussed in Section 3.2.4, algorithm M takes as input two sequences Xn and Yn
and combines them in order to produce a sequence of enhanced randomness properties.
The algorithm, actually, shuffles the elements of sequence Xn using as indices the elements
of sequence Yn. Thus, the elements of the new sequence are the elements of Xn but in
different order. Algorithm B is similar to M, but it requires only one sequence as input. The
output is, again, a shuffled version of the input sequence.

In the lottery application, however, the involved sequences are composed of 0 s and
1 s; thus, we have implemented slightly different variants of M and B. Now, algorithm
M takes as inputs two bit sequences X and Y, while algorithm B takes as input one bit
sequence X. In what follows, Xout is the output sequence.

V[0] = X [0] ; V[1] = X [1] ;
f o r (j = 2 to length (X) −1)
{

i = Y[j] ;
Xout [j −2] = V[i] ;
V[i] = X[j] ;

}

i = Y [0] ;
Xout [length (X) −2] = V[i] ;
V[i] = X [0] ;
i = Y [1] ;
Xout [length (X) −1] = V[i] ;

Algorithm B outputs a sequence of bits Xout with input a sequence of bits X as follows:

V[0] = X [0] ; V[1] = X [1] ;
f o r (j = 2 to length (X) −1)
{

i = X[j] ;
Xout [j −2] = V[i] ;
V[i] = X[j] ;

}

Cryptography 2023, 7, 54 27 of 30

i = X [0] ;
Xout [length (X) −2] = V[i] ;
V[i] = X [0] ;
i = X [1] ;
Xout [length (X) −1] = V[i] ;

Returning to the generators that the protocol uses, the BBS, RSA/Rabin, DES and AES
generators, we can combine them in many ways so that the protocol can swap, periodically
and (optionally) unpredictably, to different combinations for the generation of the winning
numbers. For instance, at one moment, we can use the BBS and DES generators, combined
with the M algorithm and, at a later time, RSA/Rabin with the B algorithm. This makes
the lottery protocol more secure and less vulnerable to guessing attacks. Each of the four
generators can be used alone or with the B algorithm. In addition, all four generators can
be used in groups of two using the M algorithm and in groups of two, three and four using
the XOR operation on their outputs.

It was desirable to implement the option of periodically modifying (or through an
external signal from the Verifier) the subset of generators whose combined output is used
for the lottery draws. This creates additional difficulty to an observer, as the output
number sequences originate from different types of generators at different times of the
lottery operation.

6. Conclusions

Is it possible to find a method for generating or simulating truly random phenomena,
such as a sequence of bits corresponding to the flip of a fair coin, through a systematic
procedure or algorithm? According to John von Neumann, this question is contradictory
and without meaning, considering anyone who tries to construct random numbers using some
algorithmic method is a sinner. The concept of “method” or systematic procedure appears
to be incompatible with randomness, at least with respect to a property of randomness
that is essential to characterizing a sequence of observations as possessing “randomness”:
unpredictability. Through patient observation, the method can be ultimately revealed before
the eyes of an observer with sufficient time at her/his disposal, as in the famous game
of Eleusis, the game of observation and deductive reasoning. Then, predicting the future
workings of the method becomes trivial: just apply the method and obtain its outputs.

What is next, then, even if true randomness does not really exist? The answer lies in
the construction of unpredictable, in some precise sense, pseudorandom number generators.
The modern science of cryptography, which has its foundations in the science of complexity
theory, provides us with tools for building methods that iteratively produce numbers whose
observation gives absolutely no evidence of what the subsequent numbers will be, unless
an extremely enormous amount of time is expended, which is prohibitive even for the
fastest supercomputers that exist today or in the near and far future. In cryptography’s
toolbox, we have PRNGs based on the famous RSA public encryption scheme, whose
unpredictability is founded on the computational difficulty of the problem of finding prime
factors of large integers; the BBS scheme, based on the quadratic residuosity assumption
and its computational complexity repercussions; schemes based on other problems, such as
that of finding the discrete logarithm in a number field; the AES encryption algorithm; and
other “one-way” (i.e., easy to compute but difficult to invert) functions, such as the SHA
(Secure Hash Algorithms) class of hash functions.

Based on this context, in this paper, we presented the fundamental concepts behind
random number generation processes, as well as the main algorithmic approaches. We
fist discussed the crucial concept of entropy as a measure of the strength and quality of
both physical and non-physical entropy sources, providing some details with respect to
how some recently proposed true random number generators (TRNGs) operate. Then, we
discussed how TRNGs can be deployed in applications where algorithms are required for
the generation of pseudorandom numbers. These algorithms are called pseudorandom number
generators, or PRNGs for short, and deploy TRNGs as entropy sources for producing random

Cryptography 2023, 7, 54 28 of 30

seeds. We also discussed the two main classes of PRNGs, the simple linear congruential
generators (LCGs), which are predictable in polynomial time given a sufficiently long output,
and the cryptographically secure generators, with unpredictability guarantees based on the
high computational complexity of some corresponding number theoretical problem on
which they are based. Another important aspect of random number generator design is
to perform specific randomness tests on the outputs of their implementation. Although it
does not hold, in general, that a generator is strong if it passes all the tests, passing the tests
is considered a good indication of the generator’s quality. In this context, we covered, in
this paper, several widely used statistical tests that can be applied to the outputs of the
generators in order to evaluate their “randomness” quality and identify possible structural
and/or implementation weaknesses. Finally, we discussed an important application do-
main of random number generators where the important property is unpredictability, the
development and operation of eLotteries. Since, in this application domain, huge financial
interests may be at stake if the draw numbers can be guessed, the choice of the supporting
random number generators should be based not only on empirical testing but a strong
theoretical framework. In this paper, we describe a complete design of an eLottery system
that was built and operated for several years in actual eLottery games. We discussed
how the different components, such as true random number generators, cryptographically
secure generators, seed quality enhancement techniques, post-betting prevention and block
ciphers, can be combined towards the generation of long number sequences for which
predictability is impossible in practice.

Space limitations, however, do not allow us to continue any further. As a general
conclusion, we would like to emphasize that the introduction of computational complexity
into application fields such as the generation of random numbers, where the word “method”
suggests predictability and order, allows for the implementation of deterministic approaches
that although they are, in principle, predictable, they are not so in practice. Thus, we suggest,
as a future direction in the random number generation field, the investigation of the
interplay between complexity theory and cryptography as foundations of “randomness”.

Author Contributions: Conceptualiztion:, A.B., P.E.N., G.P. and Y.C.S.; methodology, A.B., P.E.N.,
G.P. and Y.C.S.; formal analysis: A.B., P.E.N., G.P. and Y.C.S.; writing—original draft preparation:
P.E.N. and Y.C.S.; writing—review and editing P.E.N. and Y.C.S.; validation, A.B. and G.P. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The work by P.E. Nastou and G. Petroudis was partially supported by the
European Regional Development Fund of the European Union and Greek national funds through the
Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH-
CREATE-INNOVATE (project name: SafeIT and project code: T2EDK-01862).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zenil, H. (Ed.) Randomness through Computation; Collective Volume; World Scientific: 2011. Available online: https://www.

worldscientific.com/worldscibooks/10.1142/7973#t=toc (accessed on 24 October 2023).
2. Killmann, W.; Schindler, W. A Proposal for Functionality Classes for Random Number Generators. In Proceedings of the

Bundesamt Sicherheit der Informationstechnik (BSI), September 2022. Available online: https://www.bsi.bund.de/SharedDocs/
Downloads/EN/BSI/Certification/Interpretations/+AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__
blob=publicationFile&v=4 (accessed on 24 October 2023).

3. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.; Banks, D.; Heckert, A.; et al. A Statisti-
cal Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications, NIST Special Publication
800-22, Reveision 1a, April 2010. Available online: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-2
2r1a.pdf (accessed on 24 October 2023).

https://www.worldscientific.com/worldscibooks/10.1142/7973#t=toc
https://www.worldscientific.com/worldscibooks/10.1142/7973#t=toc
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Certification/Interpretations/+AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Certification/Interpretations/+AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile&v=4
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Certification/Interpretations/+AIS_31_Functionality_classes_for_random_number_generators_e.pdf?__blob=publicationFile&v=4
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-22r1a.pdf

Cryptography 2023, 7, 54 29 of 30

4. Turan, M.S.; Barker, E.; Kelsey, J.; McKay, K.A.; Baish, M.L.; Boyle, M. Recommendation for the Entropy Sources Used for Random
Bit Generation, NIST Special Publication 800-90B, January 2018. Available online: https://doi.org/10.6028/NIST.SP.800-90B
(accessed on 24 October 2023).

5. Marsaglia, G. The Marsaglia Random Number CDROM including the Diehard Battery of Tests of Randomness. Florida State
University, 1995. Available online: https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard/ (accessed
on 25 January 2016).

6. Cachin, C. Entropy Measures and Unconditional Security in Cryptogrphy. Diss. ETH No. 12187. Ph.D. Thesis, ETH Zurich,
Zurich, Switzerland, 1997.

7. Barker, E.; Kelsey, J.; McKay, K.; Roginsky, A.; Turan, M.S. Recommendation for Random Bit Generation (RBG) Constructions.
NIST Special Publication 800-90C Revision 3, September 2022. Available online: https://doi.org/10.6028/NIST.SP.800-90C.3pd
(accessed on 24 October 2023).

8. Viega, J.; Messier, M. Secure Programming Cookbook for C and C++: Recipes for Cryptography, Authentication, Input Validation and More;
O’Reilly Media: Sebastopol, CA, USA, 2003.

9. Chen, T.; Ma, Y.; Lin, J.; Cao, Y.; Liv, N.; Jing, J. A Lightweight Full Entropy TRNG with On-Chip Entropy Assurance. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 2021, 40, 2431–2444. [CrossRef]

10. Prada-Delgado, M.A.; Martinez-Gomez, C.; Baturone, I. Auto-Calibrated Ring Oscillator TRNG Based on Jitter Accumulation. In
Proceedings of the 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Seville, Spain, 12–14 October 2020.

11. Danesh, M.; Venkatasubramaniyan, A.B.; Kappor, G.; Ramesh, N.; Sadasivuni, S.; Chandrasekaran, S.T.; Sanyal, A. Unified
Analog PUF and TRNG Based on Current-Steering DAC and VCO. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2020, 28,
2280–2289. [CrossRef]

12. Zhao, J.; Chen, B.; Wang, W.; Xia, W.; Ye, J.; Bi, H.; Cao, J.; Jin, C.; Yu, X.; Han, G.; et al. A True Random Number Generator
Based on Semiconductor-Vacancies Junction Entropy Source and Square Transform Method. IEEE Trans. Electron Devices 2023, 70,
5484–5488. [CrossRef]

13. Fu, S.; Li, T.; Zhang, C.; Li, H.; Ma, S.; Zhang, J.; Zhang, R.; Wu, L. RHS-TRNG: A Resilient High-Speed True Random Number
Generator Based on STT-MTJ Device. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2023, 31, 1578–1591. [CrossRef]

14. Guajardo, J.; Kumar, S. S.; Schrijen, G. J.; Tuyls, P. FPGA Intrinsic PUFs and Their Use for IP Protection. In Proceedings of the
Cryptographic Hardware and Embedded Systems—CHES 2007: 9th International Workshop, Vienna, Austria, 10–13 September
2007; pp. 63–80.

15. O’Donnell, C.W.; Suh, G.E.; Devadas, S. PUF-Based Random Number Generation. MIT CSAIL CSG Tech. Memo 2004, 481.
16. Cao, Y.; Liu, W.; Qin, L.; Liu, B.; Chen, S.; Ye, J.; Xia, X.; Wang, C. Entropy Sources Based on Silicon Chips: True Random Number

Generator and Physical Unclonable Function. Entropy 2022, 24, 1566. [CrossRef] [PubMed]
17. Blum, M.; Micali, S. How to Generate Cryptographically Strong Sequences of Pseudo-Random Bits. Siam Comput. 1984, 13,

850–864. [CrossRef]
18. Yao, A. Theory and Applications of Trapdoor Functions. In Proceedings of the 23rd Annual Symposium on Foundations of Computer

Science (SFCS 1982), Chicago, IL, USA, 3–5 November 1982.
19. Konstantinou, E.; Liagkou, V.; Spirakis, P.; Stamatiou, Y.C.; Yung, M. Electronic National Lotteries. In Lecture Notes in Computer

Science, Proceedings of the Financial Cryptography: 8th International Conference, FC 2004, Key West, FL, USA, 9–12 February 2004;
Springer: Berlin/Heidelberg, Germany, 2004; Volume 3110, pp. 147–163.

20. Konstantinou, E.; Liagkou, V.; Spirakis P.; Stamatiou, Y.C.; Yung, M. “Trust Engineering:” From Requirements to System Design
and Maintenance—A Working National Lottery System Experience. In Lecture Notes in Computer Science, Proceedings of the
Information Security, ISC 2005, Singapore, 20–23 September 2005; Springer: Berlin/Heidelberg, Germany, 2004; Volume 3650,
pp. 44–58.

21. Goldreich, O.; Goldwasser, S.; Micali, S. How to construct random functions (extended abstract). In Proceedings of the 25th
Annual Symposium on Foundations of Computer Science, West Palm Beach, FL, USA, 24–26 October 1984; pp. 464–479.

22. Knuth, D. The Art of Computer Programming. Volume 2, Seminumerical Algorithms, 3rd ed.; Addison-Wesley Professional: Sebastopol,
CA, USA, 1997.

23. Boyar, J. Inferring sequences produced by pseudo-random number generators. J. Assoc. Comput. Mach. 1989, 36, 129–141.
[CrossRef]

24. Boyar, J. Inferring sequences produced by a linear congruential generator missing low-order bits. J. Cryptol. 1989, 1, 177–184.
[CrossRef]

25. Kranakis, E. Primality and Cryptography; Wiley-Teubner Series in Computer Science: Hoboken, NJ, USA, 1986.
26. Blum, L.; Blum, M.; Shub M. A Simple Unpredictable Pseudo-Random Generator. SIAM J. Comput. 1986, 15, 364–383. [CrossRef]
27. Carmichael, R.D. On composite numbers P which satisfy the Fermat congruence aP−1 ≡ 1 mod P. Am. Math. Mon. 1919, 26,

137–146.
28. Alexi, W.; Chor, B.; Goldreich, O.; Schnorr, C. RSA and Rabin Functions: Certain Parts are as Hard as the Whole. SIAM J. Comput.

1988, 17, 194–209. [CrossRef]
29. Shparlinski, I. On the linear complexity of the power generator. Des. Codes Cryptogr. 2001, 23, 5–10. [CrossRef]
30. Mcrypt Cryptographic Library. Available online: ftp://mcrypt.hellug.gr/pub/crypto/mcrypt (accessed on 24 October 2023).

https://doi.org/10.6028/NIST.SP.800-90B
https://web.archive.org/web/20160125103112/http://stat.fsu.edu/pub/diehard/
https://doi.org/10.6028/NIST.SP.800-90C.3pd
http://doi.org/10.1109/TCAD.2021.3096464
http://dx.doi.org/10.1109/TVLSI.2020.3011648
http://dx.doi.org/10.1109/TED.2023.3302277
http://dx.doi.org/10.1109/TVLSI.2023.3298327
http://dx.doi.org/10.3390/e24111566
http://www.ncbi.nlm.nih.gov/pubmed/36359655
http://dx.doi.org/10.1137/0213053
http://dx.doi.org/10.1145/58562.59305
http://dx.doi.org/10.1007/BF02252875
http://dx.doi.org/10.1137/0215025
http://dx.doi.org/10.1137/0217013
http://dx.doi.org/10.1023/A:1011264815860
ftp://mcrypt.hellug.gr/pub/crypto/mcrypt

Cryptography 2023, 7, 54 30 of 30

31. Kelsey, J.; Schneier, B.; Ferguson, N. Yarrow-160: Notes on the Design and Analysis of the Yarrow Cryptographic Pseudorandom
Number Generator. In Sixth Annual Workshop on Selected Areas in Cryptography; Springer: Berlin/Heidelberg, Germany, 1999.

32. Koçak, O.O.; Sulak, F.; Doğanaksoy, A.; Uğuz, M. Modifications of Knuth Randomness Tests for Integer and Binary Sequences.
Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat. 2018, 67, 64–81.

33. Barker, E.; Roginsky, A.; Davis, R. Recommendation for Cryptographic Key Generation. NIST Special Publication 800-133
Revision 2, June 2020. Available online: https://doi.org/10.6028/NIST.SP.800-133r2 (accessed on 24 October 2023).

34. Barker, E.; Kelsey, J.; Recommendation for Random Number Generation Using Deterministic Random Bit Generators. NIST
Special Publication 800-90A Revision 1, June 2015. Available online: https://doi.org/10.6028/NIST.SP.800-90Ar1 (accessed on 24
October 2023).

35. Naor, M.; Reingold, O. Number-theoretic constructions of efficient pseudo-random functions. In Proceedings of the 38th IEEE
Symposium on Foundations of Computer Science, Miami Beach, FL, USA, 19–22 October 1997.

36. Micali, S.; Rabin, M.; Vadhan, S. Verifiable Random Functions. In Proceedings of the 40th Annual Symposium on the Foundations
of Computer Science (FOCS ‘99), New York, NY, USA, 17–18 October 1999; pp. 120–130.

37. Boneh, D. Simplified OAEP for the RSA and Rabin functions. In Lecture Notes in Computer Science, Crypto 2001; Springer:
Berlin/Heidelberg, Germany, 2001; Volume 2139, pp. 275–291.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.6028/NIST.SP.800-133r2
https://doi.org/10.6028/NIST.SP.800-90Ar1

	Introduction
	Sources of Randomness
	Pseudorandom Number Generation
	The Linear Congruential Generator
	Cryptographically Secure Generators
	The BBS Generator
	The RSA/Rabin Generator
	Generators Based on Block Ciphers
	Algorithms M and B

	Randomness Tests
	Practical Statistical Tests
	The ``Chi-Square'' Test
	Kolmogorov–Smirnov Test
	Equidistribution or Frequency (Monobit) Test
	Serial Test
	Gap Test
	Poker Test
	Coupon Collector's Test
	Permutation Test
	Run Test
	The Maximum T Test
	Collision Test
	Birthday Spacings Test
	Serial Correlation Test

	The Diehard Suite of Statistical Tests

	Application Domains Where Unpredictability Is Essential
	Cryptographic Key Generation
	Online Electronic Lotteries
	The Protocol Components
	Prevention of Post-Betting
	Signing the Numbers and Authenticating Their Source
	Seed Commitment and Reproduction of Received Numbers
	Incorporation of Several True Randomness Sources
	Mixing the Outputs of the Generators: Algorithms M and B

	Conclusions
	References

