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Abstract: In this article, we present a new method that achieves Shannon’s perfect secrecy. To achieve
this property, we will introduce the triple XOR cancellation rule. The approach has two execution
modes: digital signature and data encryption. We provide perfect secrecy proof of the encryption
method. Furthermore, based on our fundamental algorithm, we developed a new strategy for the
blockchain system that does not require proof of work (PoW). However, it is a practical mechanism
for connecting blocks to the chain. Due to the risk that quantum computers present for current
cryptosystems based on prime factorization or discrete logarithm, we postulate that our method
represents a promising alternative in the quantum era. We expect our work to have profound
implications for the security of communications between mobile devices, the Internet of Things (IoT),
and the blockchain.
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1. Introduction

The world economy is highly dependent on digital transactions that take place over
the internet. Therefore, it is crucial to ensure the authenticity and security of the data by
using cryptographic techniques. Public key cryptography is utilized in this scenario to
authenticate users and maintain services via digital signatures and the blockchain.

As quantum computing threatens the viability of current algorithms, public key
cryptography is undergoing a significant upgrade [1–3]. The quantum algorithm developed
by Peter Shor is capable of breaking the security of algorithms based on the computational
problem of factoring large prime numbers [4]. Fortunately, hash functions and secret key
cryptography are resistant to quantum computing since, at least theoretically, increasing
the sizes of the keys is sufficient to prevent the quantum exhaustive search algorithm
from being used [5]. The one-time pad (OTP) cryptosystem should be included in the
post-quantum category [6]. The encryption formula, which is so simple, relies on the XOR
logical operation, as stated by

e = m⊕ k (1)

where e is the encrypted message, m is the cleartext, and k denotes a random key of the
same size as the message to be transmitted. Because there is currently no low-cost, workable
method for creating an arbitrarily long key, the OTP encryption scheme, despite its perfect
secrecy, is largely theoretical.

1.1. Research Motivation

Our goal is to create a cryptosystem that provides perfect secrecy. The main challenge
is in achieving system efficiency. As stated before, perfect secrecy is theoretically possible
but not practically feasible because a key size as large as the data size is required. This is
where our research problem arises: Is it possible to preserve OTP perfect secrecy while using
the triple XOR cancellation? Second, could the system behave efficiently? Furthermore,
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this research aims to extend the scope of previously known cryptographic techniques in
the following dimensions:

1. Scientific: There has been little research on key reusing under OTP. According to [7],
a key that is derived from quantum key distribution (QKD) can be reused without
risk if an attacker’s presence is not discovered during quantum transmission. On the
other hand, it has not been demonstrated that OTP perfect secrecy cannot be efficiently
achieved. Indeed, chaos systems have been used as pseudo-random number genera-
tors (PRNGs), and chaotic cryptography-based systems have been investigated [8,9].
Yet, keys and ciphertext can exhibit short periods, and there is no systematic method
for detecting weak keys [10]. It has been demonstrated that OTP is equivalent to find-
ing the initial condition on a pair of binary maps [11]. In this work, we will introduce
a cryptosystem that we call 3-encryption, which uses the rule of triple cancellation to
achieve perfect secrecy.

2. Technological: Because it is well-known that current public key data protection mech-
anisms do not resist quantum cryptanalysis, the development of new cryptographic
security schemes must be prioritized. Despite the fact that the National Institute of
Standards and Technology (NIST) has published a set of post-quantum algorithms,
the security evaluations and discussions of such algorithms (regarding potential vul-
nerabilities) are ongoing. These algorithms are used in encryption, signing, and key
establishment. Nevertheless, our basic scheme can be simultaneously used for block
chaining, data encryption, and digital signatures. As a result, we envision a multifunc-
tional cryptographic platform that is capable of providing integrated security services.

3. Security: We will demonstrate that the encryption scheme is capable of achieving
perfect secrecy. Surprisingly, our algorithm’s security properties are evaluated using
XOR, hash, and integer addition, which are simple to analyze, and require no complex
mathematical formalism. In the appendix of this document, we will show how the
encryption method achieves perfect secrecy.

1.2. State of the Art

Given the imminent development of quantum computers, the replacement of current
public key cryptography methods based on integer factorization and the discrete logarithm
cannot be postponed. There are various approaches to implement post-quantum cryptogra-
phy: lattice-based, hash-based, code-based, and multivariate polynomial cryptography are
the most significant types.

- Lattice-based cryptography is based on the shortest vector problem’s hardness, which
is proven to be difficult to solve with quantum computers. In the N-th-degree trun-
cated polynomial ring units (NTRUs), lattice-based encryption parameters must be
carefully chosen to prevent known attacks [12,13].

- The security of hash-based cryptography is inextricably linked to the hash function that
is used, such as pre-image resistance and collision resistance. The signature scheme
with hash-based instantiation of a narrow collision resistance function (SPHINCS+)
has been chosen by NIST [14,15].

- Error-correcting codes are the foundation of code-based cryptography, functioning
well for public key encryption. To ensure security, nearly all implemented algorithms
in this class employ large keys. The McEliece public key encryption system and
the Niederreiter cryptosystem are the most representative examples of code-based
cryptography [16,17].

- The difficulty of solving systems of multivariate equations over finite fields underpins
multivariate polynomial cryptography. Rainbow could serve as the foundation for a
quantum secure digital signature because it produces short signatures [18,19].

- Isogeny-based cryptography relies on the difficulty of finding a certain mapping
(called isogeny) between two given supersingular elliptic curves. The Diffie–Hellman
and elliptic curve Diffie–Hellman key-exchange methods can be replaced with the
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supersingular isogeny Diffie–Hellman key exchange (SIKE) as a quantum-resistant
alternative [20].

- Symmetric key cryptosystems are resistant to quantum computer attacks as long as
they use sufficiently large key sizes [21,22]. According to [23], in this study, we suggest
256-bit keys.

In 2022, the NIST announced four candidates to be standardized, plus fourth-round
candidates. One of the chosen methods is a public key encapsulation technique (KEM):
CRYSTALS-Kyber (lattice-based), and three digital signature algorithms: CRYSTALS-
Dilithium (lattice-based), FALCON (lattice-based), and SPHINCS+(hash-based) [24–27].
BIKE (code-based), HQC (code-based), and SIKE (elliptic-curves-based) advance to the
fourth round [24]. Unfortunately, the SIKE algorithm, one of these four candidates, has been
broken at NIST’s security level 1 [28]. Even worse, the rainbow post-quantum signature
scheme (multivariate quadratic equations type) has been revealed to be broken [29,30].

For this study, we classify digital signature schemes into those that verify the signature
through a mathematical trapdoor function, such as Rivest–Shamir–Adleman (RSA), the
digital signature algorithm (DSA), and NIST post-quantum standards [31–33]. In the second
approach, we consider those that perform signature verification by means of a hash chain.
The Merkle tree-based signature [34], SPHINCS+ [15], the hash chain protocol [35], and the
HMAC-based digital signature [36] are all grouped into this category. Such systems are
post-quantum methods because they are based on the security properties of hash functions.
The signature method we will introduce here uses block chaining; however, the verification
is done with the XOR function and just one hash operation.

We developed the XOR digital signature as the first scheme under this approach.
We have, however, expanded this scheme to perform data encryption. The resulting
cipher scheme is similar to the block chaining of today’s most widely used encryption
algorithms, such as the advanced encryption standard (AES), and Blowfish [21,37]. So, we
will use the encrypted chaining mode (CBC) as the reference system [38,39]. In contrast
to these methods, our approach does not require an iterative process of substitution and
permutations, implying spacetime complexity. Furthermore, the cryptosystem achieves
perfect secrecy, which none of the other schemes do.

Currently, Currently, blockchain is a widely disruptive technology that enables the
permanent recording of transactions across interconnected computer systems [40,41]. The
most serious threat to blockchain is the imminent appearance of quantum computers
capable of breaching its security [42]. The power consumption required during the process
of placing blocks on the chain is the second most serious concern. While there are other
schemes that address energy consumption, such as Ethereum [43] and Litecoin [44,45],
none of them constitute a post-quantum system. Post-quantum blockchain is explained
in [46], whereas quantum and hybrid quantum/classical blockchain protocols are discussed
in [47].

A quantum one-time pad (QOTP) is similar to the traditional one-time pad approach.
The main distinction is that an application of the X and Z Pauli gates constitutes the
quantum operation instead of the XOR operation between the cleartext and key [48].
Furthermore, quantum properties of matter can be used to define a peer-to-peer quantum
cash network, which may be realized in the future quantum internet [49]. The scheme,
called qBitcoin, incorporates a method to perform quantum digital signatures [50].

1.3. Perfect Secrecy

According to Claude Shannon’s basis of secret communication, it is well-known that
OTP allows perfect secrecy [51], at least in theory, as there are currently no real-world
cryptosystems that only use the XOR encryption function (see Figure 1). Even if the
attacker has unlimited computational capacity, an encrypted text has perfect secrecy if the
attacker’s knowledge of the message’s content is the same before and after the adversary
inspects the encrypted text. This means that the encrypted message gives the adversary
no precise information about the cleartext message’s content. This is due to the fact that
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OTP requires that the encryption key’s size match that of the cleartext message [51,52]
Unfortunately, establishing an arbitrarily large secret key between Alice and Bob—the
parties seeking private communication—presents a significant challenge.

Figure 1. The general scheme of the Shannon encryption scheme.

Let us enumerate the properties of perfect secrecy [53,54]:

- The number of possible keys is greater than or equal to the number of possible
plaintexts.

- The key is selected uniformly at random from the key space.
- A key should only be used once.

There are other cryptosystems besides OTP that can provide perfect secrecy. For
example, the Vignère Cipher is a cryptosystem with perfect secrecy, as long as the following
conditions are met: (1) the keyword’s length matches that of the plaintext; (2) it is a
randomly generated string of letters; and (3) the keyword is only used once [53].

What is important to emphasize here is that under perfect secrecy, an exhaustive key
search is pointless because every possible plaintext is a valid candidate. Whatever the
complexity of the cryptosystem, the attacker can only guess the plaintext. The novelty of our
work is that we designed our cryptosystem mainly with the XOR encryption/decryption
relations e = m ⊕ k and m = e ⊕ k. Since k⊕ k = 0, the decryption relation is valid because
the XOR operation is the only reversible Boolean operation; thus, m = e⊕ k = m⊕ k⊕ k,
where k represents the secret key and m denotes the plaintext.

This article will demonstrate that it is not strictly necessary to pre-establish the entire
secret key beforehand in order to obtain perfect secrecy. It should be noted that using a key
re-establishment scheme is another simple option, but it is impractical because it requires
the ongoing exchange between a new secret key and remote users for each round, which
can be written as

mi ⊕ ki = ei for i = 1, 2, . . . (2)

where i denotes the iteration round. We will return to this point later when we discuss
XOR encryption.

1.4. Triple XOR Cancellation Rule

Let us say that k0, k1, and k2 represent three binary strings. The following operations
are used to derive z01, z02, and z12: z01 = k0 ⊕ k1, z02 = k0 ⊕ k2, and z12 = k1 ⊕ k2. The
additive group Z⊕ is defined by z01, z02, and z12 because the following operations can be
directly verified as

z01 ⊕ z02 = z12

z02 ⊕ z12 = z01

z01 ⊕ z12 = z02

(3)
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Let k0
′ be a random variable, then compute k1

′, such that k0
′ ⊕ k1

′ = z01. Now, k2
′

can be chosen, such that k0
′ ⊕ k2

′ = z02. Thus, we want to find out if k1
′ ⊕ k2

′ = z12. To
establish it, we know that z01 and z02 imply the existence of z12 due to the closure of the
additive group. Since k0

′, k1
′ and k2

′ define the same group Z⊕, we have k1
′ ⊕ k2

′ = z12.
Since k0

′ was defined randomly, this implies that for every k0
′, there exist k1

′ and k2
′, which

define the same group Z⊕. Suppose Alice has k0, k1, and k2, then she computes z01, z02, and
z12. If Alice keeps hidden k0, k1, and k2 but publicly shares z01, z02, and z12, an adversary
can derive another set of numbers, k0

′, k1
′, and k2

′, which return z01, z02, and z12 as well.
However, due to perfect secrecy in XOR, Eve cannot derive the original Alice set, k0, k1,
and k2. As a result, we are able to identify Alice as having an advantage, which allows
us to arrive at our fundamental security rule to transmit a message m0 from Alice to Bob,
which is illustrated graphically in Figure 2.

Figure 2. Triple XOR cancellation rule. Here, k0, k1, and k2 are the initial shared secret keys.
The number x0 is a random number chosen by Alice and y0 is computed as y0 = h0 ⊕ x0, where
h0 = f (m0), and f is the hash function applied to the message m0.

1.5. Proposal of Our Approach

In earlier works, we introduced hash functions and HMAC-based digital signature
techniques [36,55]. This time, we will base our algorithms on the characteristics of the XOR
function. We claim that the following cryptographic primitives can be supported using
our method.

- Digital signature: It is impossible for the adversary to send a message pretending
to be from her because each user has a public key in their name. By using the XOR
signature algorithm, users can make sure that the current message is connected to
every previous message in the chain, starting with the user identification message.
This topic will be discussed in Section 2.

- XOR chain: The XOR signature model has allowed us to define a new approach to the
blockchain system that we call the XOR chain. We will first present a hash function-
based game called Crypto Bingo in order to conceptualize the XOR chain. Section 3
covers this subject.

- Data encryption: The messages are encrypted so that it is impossible for the attacker to
see their content; however, authorized recipients can recover the messages in original
plain text. Section 4 of the document will address XOR encryption. In Appendix A,
we show the perfect secrecy demonstration.

The introduced schemes are compared to related works in Section 5, which also
discusses some implementation details that highlight the main opportunities and challenges
to take into account. The findings of this research work serve to conclude the document.

2. Digital Signature

In a digital signature, the holder of the public key and the signed message are inex-
tricably linked. A digital signature makes it possible to operate systems remotely, like
payment systems, and it ensures mobile device authentication, signed software downloads,
and certified web browsing. In this section, we will introduce our digital XOR signature
scheme. Nevertheless, the scheme is based on signature techniques that we previously
developed. Therefore, Section 2.1 explains the hash function-based blockchain scheme.
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Section 2.2 describes the method using HMAC functions. In Section 2.3, we introduce the
digital signature method that uses the XOR function.

2.1. The Hash Chain Protocol

This protocol is based on the mathematical characteristics of a lengthy hash chain. For
Alice to send Bob a signed message, users must complete the following actions [35]:

To create a pair of keys (public and private), Alice chooses a random number that we
call the seed sa. She computes the hash chain as f ln(sa), where f denotes the hash function
of the cryptosystem. The hash chain’s length (the number of times the hash function is
applied to the seed sa) is indicated by the exponent ln. The public key becomes f ln(sa).

On the other hand, Alice’s secret value sa is used to define the private key f ln−i(sa),
where 1 ≤ i ≤ ln. This implies that f ln−1(sa), f ln−2(sa), . . . f (sa) constitute the set of Alice’s
private keys, as represented in Table 1. Let us write the hash of the message to be signed as
f (m) = h. The protocol is summarized below:

1. Alice and Bob generate their hash chain, which allows them to define their public and
private keys.

2. They share their public keys over the public channel.
3. Alice computes f ln−h(sa) and publishes it along m.
4. Bob—or any user who wants to verify the signature—just computes h, then

f h( f ln−h(sa)) == f ln(sa).
5. Alice shares a new public key.

Table 1. The public and private keys of the hash chain protocol are specified, where i(j) ≥ 1.

User Public Key Private Keys

Alice f ln (sa) f ln−i(sa)

Bob f ln (sb) f ln−j(sb)

Providing the eavesdropper uses the hash values on the right side of the signature
hash, and assuming we can generate chains that long (a detailed discussion can be found
in [35], the protocol is vulnerable to a man-in-the-middle (MITM) attack. For example, the
hash chain at the top of Figure 3 allows Bob to verify the signature of m0, taking Alice’s
public key f ln−h0(s0) and, thus, checking that f h0( f ln−h0(s0)) == f ln(s0). After Alice
publishes her new public key f ln(s1) (see the hash chain at the bottom of Figure 3), she
signs m1, publishing f ln−h1(s1). However, the attacker can use f ln−h′1(s1) to fake it because
she can compute all the hash values at the right of the signature hash.

Figure 3. The hash values of the hash chain protocol.

The entanglement algorithm, which is based on the following facts, was proposed to
overcome this weakness:

- An attacker can only exploit the hash values at the right-hand side of the signature
hash in the current hash chain, which implies that h′i < hi.

- After a message is signed, some hash points to the left of the signature hash always
remain unused in the previous hash chain.
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If h′i is the hash value of the (fake) message that the attacker is trying to pass off as
authentic, then as a result of Equation (4), Eve cannot compute f δ1(s0) because δ′1 < δ1,
which implies that f δ′1(s0) is at the left of f δ1(s0), as illustrated in Figure 3.

h′1 < h1

h′1
ln

<
h1

ln

(ln − h0)
h′1
ln

< (ln − h0)
h1

ln

h′1 −
h0h′1

ln
< h1 −

h0h1

ln

(4)

If we define δ1 = h1 − h0h1
ln

, then f δ′1(s0) < f δ1(s0). Thus, to authenticate f δ′1(s0),
Equation (5) is used.

f ln−h0−δ1( f δ1(s0)) = f ln−h0(s0) (5)

Let us describe the verification steps of the protocol:

1. Given that Alice has previously published f ln(s1), to sign the message m1, Alice
computes δ1 to obtain f δ1(s0), then she publishes it along m1.

2. Using m0 and m1, Bob computes δ1 and verifies two conditions:
(i) f ln−h0−δ1( f δ1(s0)) = f ln−h0(s0).
(ii) f h1( f ln−h1(s1)) = f ln(s1).

2.2. Digital Signatures Based on HMAC

Digital signatures can be created by taking advantage of the hash-based message
authentication code (HMAC). Alice will carry out the steps listed below if she wants to
send Bob a signed message [36,56], where the symbol < >k denotes the HMAC function
applied with key k:

1. A→ B : < m > f ln−i(sa)
. Alice signs the message (m) by applying the HMAC function

and using her private key f ln−i(sa).
2. A← B : f ln−j(sb). Bob sends his private key f ln−j(sb) to Alice.
3. A→ B : m, f ln−j. Alice verifies Bob’s authenticator because she computes f j( f ln−j(sb)),

which returns Bob’s public key f ln(sb). Then she sends f ln−i(sa) and the message (m)
to Bob.

4. A→ B : m, f ln−i. Bob verifies Alice’s authenticator f i( f ln−i(sa)) == f ln(sa)

Because Alice and Bob are unable to verify the freshness of the authentication keys,
f ln−i(sa) and f ln−j(sb), the protocol is susceptible to replay attacks because an eavesdropper
can capture previously used keys. In [35], a trusted third party that acts as an intermediary
between users is introduced to the protocol as a way to move around this restriction.
However, the fundamental protocol is still functional for dedicated point-to-point links
with synchronized users. In this case, i = j and each new key can be verified from the
previous one, i.e., f ( f ln−i) = f ln−i+1.

The HMAC Signature Method

Let us describe the basic idea of the hash chain-based signature. For this explanation,
consider Equation (6)

< h1, f δ1(s0) > f ln−h1 (s1)
(6)

where f ln−h1(s1) is the key of the HMAC function. To validate the signature of the message
m1, Alice sends to Bob m1, δ1, the computed HMAC, and the signature hash f ln−h1(s1). In
addition, Bob is able to obtain the signature hash f ln−h0(s0) (from a public database). Thus,
to validate the signature of m1, the two relations must be satisfied: the security condition
f ln−h0−δ1( f δ1(s0)) = f ln−h0(s0) and the signature condition f h1( f ln−h1(s1)) = f ln(s1). The



Cryptography 2023, 7, 50 8 of 21

basic protocol previously discussed must be expanded to handle the size of the exponent
(the message’s hash value), which is accomplished by utilizing multiple chains. To handle
256-bit hashes, 16 chains of length 216 must be used [36].

2.3. Digital XOR Signature

In this scheme, Alice’s public and private keys—to perform the XOR signature—are
written in Table 2, where k0, k1, and k2 are random binary strings. In this protocol, hj
represents the hash code of the message mj (the message to be signed). The message m0
is assumed to be the user’s credential containing identification data. The XOR signature
process is represented in Figure 4, the execution of variables is illustrated in Table 3, and
Figure 5 depicts the message exchange protocol.

Table 2. Alice private/public key definition to perform XOR signatures.

Private Key Public Key

{k0, k1, k2} {x0 ⊕ k0 ⊕ k2}, {y0 ⊕ k1 ⊕ k2}, {k0 ⊕ k1}

Table 3. Protocol execution for rounds 0 . . . j. The terms cj, lj, rj, and dj are shown after each execution
round. In the last column, we show the results of cj ⊕ lj ⊕ rj ⊕ dj. The authentication rule is f (mj) ==
hj, where hj = hj−1 ⊕ cj ⊕ lj ⊕ rj ⊕ dj.

Round mj
cj = yj−1⊕ lj = rj = yj⊕ dj = cj ⊕ lj⊕
kj ⊕ kj+1 kj ⊕ kj+2 kj+1 ⊕ kj+2 xj−1 ⊕ xj rj ⊕ dj

0 m0 k0 ⊕ k1 x0 ⊕ k0 ⊕ k2 y0 ⊕ k1 ⊕ k2 — h0

1 m1 y0 ⊕ k1 ⊕ k2 k1 ⊕ k3 y1 ⊕ k2 ⊕ k3 x0 ⊕ x1 h0 ⊕ h1

2 m2 y1 ⊕ k2 ⊕ k3 k2 ⊕ k4 y2 ⊕ k3 ⊕ k4 x1 ⊕ x2 h1 ⊕ h2

3 m3 y2 ⊕ k3 ⊕ k4 k3 ⊕ k5 y3 ⊕ k4 ⊕ k5 x2 ⊕ x3 h2 ⊕ h3

4 m4 y3 ⊕ k4 ⊕ k5 k4 ⊕ k6 y4 ⊕ k5 ⊕ k6 x3 ⊕ x4 h3 ⊕ h4

...
...

...
...

...
...

...

j mj yj−1 ⊕ kj ⊕ kj+1 kj ⊕ kj+2 yj ⊕ kj+1 ⊕ kj+2 xj−1 ⊕ xj hj−1 ⊕ hj

Figure 4. Digital XOR signature process between Alice and Bob.
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Figure 5. Message exchange in round j of the XOR signature algorithm.

From Figure 4, we denote the terms as the center term cj (the term arriving from up to
down to the XOR operator), the down term dj (the term arriving from down to up to the
XOR operator), the left term lj (the term arriving from left to right to the XOR operator),
and the right term rj (the term arriving from right to left to the XOR operator). So, we can
state Equation (7) as follows:

cj = yj−1 ⊕ k j ⊕ k j+1

lj = k j ⊕ k j+2

rj = yj ⊕ k j+1 ⊕ k j+2

dj = xj−1 ⊕ xj

(7)

where cj = rj−1. The equation holds for j ≥ 1 but the initial round (j = 0) can be seen in
Figure 4.

In round j, Alice wants to sign mj. Then she computes f (mj) = hj and yj because
yj = hj ⊕ xj, where xj is a chosen random number. In addition, Alice computes cj, lj, rj as
indicated in Table 3. Then, Alice chooses xj+1 to compute dj+1 = xj ⊕ xj+1 and sends dj+1
to DB but retains yj and xj+1 for the next round, as illustrated in Figure 5.

On his side, Bob retrieves dj from Alice’s DB. He computes f (mj) and hj as stated
by Equation (8), where cj = rj−1. To accept the signature, Bob verifies that f (mj) == hj.
Finally, he keeps hj and rj for the next round.

hj = hj−1 ⊕ cj ⊕ lj ⊕ rj ⊕ dj (8)

2.3.1. Security Analysis

Equation (8) can be rewritten as hj
ba = hj−1

b ⊕ hj−1
a ⊕ hj

a (where a denotes Alice, b
denotes Bob, and ba denotes the resulting hash code) because hj−1

a ⊕ hj
a = cj

a ⊕ lj
a ⊕ rj

a ⊕
dj

a, where {cj
a, cj

a, cj
a, cj

a} are the channel terms. However, the term hj−1
b in the equation

is stored on Bob’s side, so the eavesdropper has no way to modify it. If Eve mounts a
man-in-the-middle (MITM) attack, she inserts her numbers in the channel, say hj−1

e, hj
e

(where e denotes Eve), then Equation (8) is hj
be = hj−1

b ⊕ hj−1
e ⊕ hj

e, which, in turn, results
in f (mj

e) 6= hj
ba, where mj

e is Eve’s message.

2.3.2. Key Renewal

Alice can act as a server between other users; thus, she could maintain a separate
chain with each user. Therefore, Alice executes the following procedure: she keeps the
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keys k0 and k1 but updates k2, which is achieved by randomly choosing another binary
string. As a result, the key {x0 ⊕ k0 ⊕ k1} can be kept unchanged but k2 in the other two
keys {y0 ⊕ k0 ⊕ k2}, {k1 ⊕ k2} must be substituted using k2

′ and k2
′′ for the first two cases.

The process is as follows:

- {x0 ⊕ k0 ⊕ k1}, {y0 ⊕ k0 ⊕ k2}, {k1 ⊕ k2}
- {x0 ⊕ k0 ⊕ k1}, {y0 ⊕ k0 ⊕ k2

′}, {k1 ⊕ k2
′}

- {x0 ⊕ k0 ⊕ k1}, {y0 ⊕ k0 ⊕ k2
′′}, {k1 ⊕ k2

′′}

-
...

This is feasible and safe because, as stated before, an adversary cannot derive k0, k1, or
k2, despite knowing {x0 ⊕ k0 ⊕ k1}, {y0 ⊕ k0 ⊕ k2}, and {k1 ⊕ k2}. Any user who wants to
authenticate Alice only needs to verify that the key x0 ⊕ k0 ⊕ k1 remains unchanged. Alice
maintains a separate chain with each user of the system.

3. Blockchain

Blockchain [40] is an unalterable record that maps the transactions of a distributed
service over the internet. It constitutes the support of the transactions of the cryptocurrency
system, such as Bitcoin, at a critical moment, in which advances in classical and quantum
algorithms are becoming evident [57]. The biggest security concern around blockchain is
that it is based on ECDSA, which is vulnerable to Shor’s quantum algorithm [4].

Blockchain allows miners to record and link digital transactions in the system. The
process is carried out by calculating the hash of the previous transaction’s concatenation, a
unique random number (nonce), and the root of the Merkle tree, which groups the miner’s
transactions, as illustrated in Figure 6. If the obtained hash meets a predetermined number
of null bits, for example, a prefix of twenty zeros, the miner can add the block to the chain.
The correctness of the nonce is efficiently verifiable by all miners on the network. Although
blockchain incorporates a method that is suitable for choosing the transaction block without
controversy, miners spend large amounts of (electrical) energy in the relentless search for
the nonce. In fact, miners need to compute a large number of hashes per unit of time, which
entails a large energy cost. In this section, we will discuss a method for choosing a block of
transactions that is both verifiable and incontrovertible.

Figure 6. The miners calculate the hash of the concatenation resulting from the previous trans-
action, a number used only once (nonce), and the root of the Merkle tree, which groups the
miner’s transactions.

The XOR signature method we introduced in Section 2.3 can be exploited to define a
system of transaction-linked blocks to maintain a secure database of such network transac-
tions. To avoid the computational efforts and the required electrical power consumption,
the random selection of the miner could be proposed. However, doubts could prevail about
the integrity of the random selection algorithm. We will reformulate this scenario through
the XOR chain algorithm. However, before introducing the XOR chain, in Section 3.1, we
will discuss a similar scheme from which we have developed the XOR chain algorithm,
denoted as Crypto Bingo.
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3.1. Crypto Bingo

In this section, we will introduce Crypto Bingo, a novel blockchain system that we
created in the context of a gaming scenario. The purpose of Crypto Bingo is to clearly and
irrefutably determine a winner. The winner will be granted the right to have their list of
transactions recorded on the blockchain.

Let us start by stating that each player, say i, registers into the game by posting the
binary number zi that each user chooses randomly. For round j, each player i computes
gij = f xij(wij)||tij, where wij = zi||hij

′, and hij
′ is the hash code that belongs to the winning

player in the previous round. In addition, xij is a random number chosen by each node and
tij is the hash code of their Merkle tree, which identifies the transaction group of player i.
Let us go deeper into this algorithm (see Figures 7 and 8).

Figure 7. Players register hij = f (gij), then they announce gij = f xij (wij)||tij and the pair {xij, tij}.

Figure 8. Diagram of the process to compute hij. Input h′ij represents the hash code of the winner in
the previous round.

- In the first round, the root player computes and registers h01 = f (g01) into the game,
where g01 = f x01(w01)||t01 and w01 = z0 (instead of z0||h01

′ because there is no a
previous winner). In addition, players compute and register hi1 into the game. Then
the root player announces g01 and the player whose gi1 failed the fewest number of
bits wins. This value corresponds to the minimum Hamming distance, denoted as δ.
It is clear that the probability of obtaining the correct bits (e.g., 256 bits) is quite low.
The winner is allowed to place his block into the chain. Let z1 be the winning player
with h11. To be verified, the root player publishes (x01, t01), while player 1 announces
(x11, t11). Then, all players verify that they correspond to h01 and h11, respectively.

As can be deduced from the previous discussion, verifying the winning player’s given
hij and (xij, tij) can be performed efficiently. The players do not require high computational
efforts and there is no concern about energy consumption. More importantly, none of the
players can violate the game’s rules because everyone reveals their registration number zi
from the beginning of the game.
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3.2. XOR Chain

The XOR chain algorithm is based on the XOR signature model discussed previously,
but now we use Equation (9)

cj = yj−1 ⊕ k j ⊕ k j+1

lj = k j ⊕ k j+2 ⊕ xj−1 ⊕ xj

rj = yj ⊕ k j+1 ⊕ k j+2

(9)

where cj = rj−1. The complete execution of the protocol is illustrated in Table 4. In the
following, we will refer to Alice as the root player, denoted with z0 (see Figure 9).

Table 4. We demonstrate the terms cj, lj, and rj after each execution round. The last column shows
the result of cj ⊕ lj ⊕ rj. The XOR chain rule is lj ⊕ rj == hj ⊕ hj+1.

Round cj = yj−1⊕ lj = kj ⊕ kj+2⊕ rj = yj⊕ cj ⊕ lj ⊕ rjkj ⊕ kj+1 xj−1 ⊕ xj kj+1 ⊕ kj+2

0 k0 ⊕ k1 x0 ⊕ k0 ⊕ k2 y0 ⊕ k1 ⊕ k2 h0

1 y0 ⊕ k1 ⊕ k2 k1 ⊕ k3 ⊕ x0 ⊕ x1 y1 ⊕ k2 ⊕ k3 h0 ⊕ h1

2 y1 ⊕ k2 ⊕ k3 k2 ⊕ k4 ⊕ x1 ⊕ x2 y2 ⊕ k3 ⊕ k4 h1 ⊕ h2

3 y2 ⊕ k3 ⊕ k4 k3 ⊕ k5 ⊕ x2 ⊕ x3 y3 ⊕ k4 ⊕ k5 h2 ⊕ h3

4 y3 ⊕ k4 ⊕ k5 k4 ⊕ k6 ⊕ x3 ⊕ x4 y4 ⊕ k5 ⊕ k6 h3 ⊕ h4

...
...

...
...

...

j yj−1 ⊕ kj ⊕ kj+1 kj ⊕ kj+2 ⊕ xj−1 ⊕ xj yj ⊕ kj+1 ⊕ kj+2 hj−1 ⊕ hj

Figure 9. In round 1, z1 publishes {h0
z1 , h1

z1} in DB. He computes l1
z1 and r1

z1 but chooses k3
z1 , so

that l1
z1 = l1

z0 . Then, z1 publishes {l1z1 , r1
z1} in DB. The rest of the nodes agree that r1

z1 has the
minimum distance to r1

z0 ; that is, r1
z0 ∼ r1

z1 , and z1 wins the first round.

The notation k j
zi will be used in the following discussion to indicate that the key (k j)

belongs to node zi. To simplify the explanations, we will assume that the winning nodes
appear in order, e.g., z0, z1 . . ., and we only discuss the first two rounds:
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- Round 0 (registration phase): Using his numbers, {k0
z0 , k1

z0 , k2
z0 , x0

z0 , y0
z0}, the root

player, denoted as z0, registers {c0
z0 , l0z0 , r0

z0} in the public DB, where c0
z0 = k0

z0 ⊕
k1

z0 , l0z0 = x0
z0 ⊕ k0

z0 ⊕ k2
z0 and r0

z0 = y0
z0 ⊕ k1

z0 ⊕ k2
z0 . In addition, z0 stores h0

z0

in DB, where h0
z0 = x0

z0 ⊕ y0
z0 . But z0 computes h0

z0 , so that is the root of his Merkle
tree. Then, all players select their own set of numbers, for example, z1 chooses {k0

z1 ,
k1

z1 , k2
z1 , x0

z1 , and y0
z1}, so that they match the public keys of z0.

- Round 1: All nodes, for example, z1 using {x0
z1 , y0

z1 , x1
z1 , y1

z1}, compute h0
z1 =

x0
z1 ⊕ y0

z1 and h1
z1 = x1

z1 ⊕ y1
z1 . But z1 chooses his numbers, so that h1

z1 yields the
root of his Merkle tree. Then, z1 publishes {h0

z1 , h1
z1} in DB to the rest of the nodes.

Now, node z0 publishes {l1z0 , r1
z0} in DB, where l1z0 = k1

z0 ⊕ k3
z0 ⊕ x0

z0 ⊕ x1
z0

and r1
z0 = y1

z0 ⊕ k2
z0 ⊕ k3

z0 . All nodes, for example, z1 using k3
z1 , obtain l1z1 =

k1
z1 ⊕ k3

z1 ⊕ x0
z1 ⊕ x1

z1 and r1
z1 = y1

z1 ⊕ k2
z1 ⊕ k3

z1 . But z1 chooses k3
z1 , so that

l1z1 = l1z0 (as illustrated in Figure 9). Then, z1 publishes {l1z1 , r1
z1} in DB to the rest

of the nodes. If the nodes (or the majority of them) agree that r1
z1 has the minimum

distance to r1
z0 , then z1 wins the first round. Now, DB removes the auxiliary data

from the other nodes but permanently stores {l1z1 , r1
z1}, and {h0

z1 , h1
z1} to enable all

nodes to verify z1 because l1z1 ⊕ r1
z1 = h0

z1 ⊕ h1
z1 . Before the next round takes place,

each node, say z2, selects its numbers again, ensuring that h1
z2 = h1

z1 , where h1
z1 is

the root of the Merkle tree that belongs to z1. However, h2
z2 is the root of the Merkle

tree of the z2 node.

The public XOR chain contains three numbers: {lj, rj, hj}, where the term hj is the root
of the Merkle tree and the chaining process is hj−1 = hj, as indicated in Table 5. Assuming
a 256-bit hash function, it yields 768 bits for each entry.

Table 5. The XOR chain is conformed by the succession {l0z0 , r0
z0 , h0

z0}, {l1z1 , r1
z1 , h1

z1}, . . .
{lj

zj , rj
zj , hj

zj}, where h0
z0 = h0

z1 , h1
z1 = h1

z2 . . ..

j lj rj hj−1 hj

0 l0z0 r0
z0 — h0

z0

↙

1 l1
z1 r1

z1 h0
z1 h1

z1

↙

2 l2z2 r2
z2 h1

z2 h2
z2

↙
...

...
...

...

j lj
zj rj

zj hj−1
zj hj

zj

↙

4. Data Encryption

The secret exchange of sensitive information between remote users is achieved using
data encryption techniques. Our encryption method resembles the cipher block chaining
(CBC) mode, which is frequently employed by symmetric block ciphers. A mode of
operation is a method for concealing patterns in plaintext by encrypting datasets larger
than a block size. This measure prevents statistical frequency attacks, which could be found
in the original plaintext.

In Section 4.1, we will describe the cipher block chaining (CBC) mode. This chaining
mode will allow us to establish a baseline for our XOR encryption scheme. The 3-encryption
algorithm is introduced in Section 4.2.
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4.1. CBC Mode Encryption

Figure 10 illustrates the basic operation of the cipher block chaining (CBC) mode
mechanism: in the first round, an initialization vector (IV) and the data block are XORed,
and then encrypted with the chosen encryption algorithm [38,58]. This encrypted output
replaces the IV in the next round. Therefore, if a plaintext block appears again, CBC ensures
that a different ciphertext is produced because the encryption depends on the previous
plaintext blocks.

Figure 10. CBC mode: Before the encryption process, the plaintext block and the previous ciphertext
block are passed to the XOR function. As a result, each round generates a cipher block that is
dependent on the previous plaintext blocks.

4.2. 3-Encryption

Alice wants to send secret messages to Bob via the triple XOR encryption cancellation
rule depicted in Figure 2. To achieve perfect secrecy, we will use this model but replace the
XOR operation with integer addition. We shall describe the algorithm first, followed by a
discussion of its security.

Let us assume Alice and Bob share an initial secret key because they have possibly
performed a secret key establishment algorithm. Actually, they share three positive integers
k0, k1, k2, then users proceed to compute {k1 − k0, k2 − k0, k2 − k1}. In this scenario, there is
no database of any user, so we eliminated the term dj from Equation (7). As a result, we
introduce Equation (10)

lj = mj + k j+2 − k j

rj = mj−1 + k j+2 − k j+1

cj = rj−1

(10)

where messages and keys are positive integers. Suppose Alice starts sending the first
encrypted message m0 to Bob. Users run the protocol depicted in Figure 11. The rounds are
detailed in Table 6, and Figure 12 depicts the message exchange between Alice and Bob.

In the round denoted with sub-index j, Bob applies the deciphering rule specified by
Equation (11)

mj = lj − rj − rj−1 + mj−1 + mj−2 (11)

where the initial round (j = 0) is run as depicted in Figure 11.

4.3. Perfect Secrecy

Our goals to achieve perfect secrecy are enlisted below.

1. Every encryption key must be distinct from any previous key.
2. The number of available keys is greater than or equal to the number of messages in

the system.
3. Every key is chosen randomly and the probability must be the same for all keys.
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Figure 11. Boxes with bold outline imply that these numbers are private and will not be transmitted
over the public channel.

Table 6. Protocol execution for rounds 0 . . . j. The terms mj, cj, lj, and rj are shown after each
execution round. The last column shows the result of lj − rj − rj−1.

Round
lj = rj = cj =

lj − rj − rj−1mj + kj+2 − kj
mj−1 + kj+2 −

kj+1
mj−2 + kj+1 − kj

0 m0 + k2 − k0 k2 − k1 k1 − k0 m0

1 m1 + k3 − k1 m0 + k3 − k2 k2 − k1 m1 −m0

2 m2 + k4 − k2 m1 + k4 − k3 m0 + k3 − k2 m2 −m1 −m0

3 m3 + k5 − k3 m2 + k5 − k4 m1 + k4 − k3 m3 −m2 −m1

...
...

...
...

...

j mj + kj+2 − kj mj−1 + kj+2 − kj+1 mj−2 + kj+1 − kj mj −mj−1 −mj−2

Figure 12. Message exchange in round j of the XOR encrypting algorithm.

Let us proceed with the first point. In Table 6, we can rewrite the j−term of column 2
as lj = mj + k j

′, where k j
′ is the encrypting key computed as k j

′ = k j+2 − k j. Similarly, for
column 3, we can establish that rj = mj−1 + k j

′′, where k j
′′ is derived as k j

′′ = k j+2 − k j+1.
Now, each encrypting key (k j

′, k j
′′) must be distinct from every previous key. We will

accomplish this task by employing an inequality relationship, in which the value of each
key is greater than the preceding one. Thus, in column 2 of Table 6, we must guarantee
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that k2 − k0 < k3 − k1 < k4 − k2 < . . . < kkj+1
− k j−1 < kkj+2

− k j. It implies that k j >

k j−1 + k j−2 − k−3. Also, in column 3 of Table 6, we must verify that k2 − k1 < k3 − k2 <
k4 − k3 < . . . < kkj+1

− k j < kkj+2
− k j+1, which leads us to k j > 2k j−1 − k j−1. Then, by

combining both results, we obtain Equation (12)

k j >
3
2

k j−1 −
1
2

k j−3 (12)

which is equally valid if k j >
3
2 k j−1. Thus, Equation (13) allows us to achieve the first

enlisted point

k j =
3
2

k j−1 + δj (13)

where δj is a positive random number computed in each round.
The second point is strongly related to the first because using a distinct key for each

message guarantees that the key space and message space are comparable. Now, let us
address the third point. We will assume that the number of keys in the system is j and
the key space is product jN, where N is a sufficiently large number. In each round, the
key is chosen from a window containing N keys. Then, the probability of choosing k j is
P(K = k j) =

1
N for j ≥ 0. What follows is the proof of perfect secrecy, which can be found

in Appendix A of this document.
However, because of the structure of our cryptosystem, if a message happens to be

repeated in the next round, the previous one can be deduced, so in the last column of
Table 6, mj−1 −mj−1 −mj−2 = mj−2. This is due to the non-existence of a permutation or
data dispersion process in our system, which, on the other hand, can be done in image
encryption and blockchain encryption approaches.

At this point, we realized that interleaving a random integer between two consecutive
cleartext messages is a convenient way for ensuring secrecy. So, in round 0, instead of
sending m0, the random x0 should be sent. In round 1, Alice inserts the random x1 and then
she sends m1. Moreover, Alice could transmit only one term rather than two as depicted in
Figure 11 over the public channel. So, Alice computes the term lj − rj − rj−1 and then she
sends it to Bob.

Thus, in round j we have that xj − xj−1 −mj−1 precedes the term mj −mj−1 − xj and
the last column in Table 6 becomes mj −mj−1 − xj. Furthermore, as previously established,
the following inequalities must be met in order to maintain perfect secrecy xj−1 − xj−2 <
xj − xj−1 which reduces to xj > 2xj−1 − xj−2 or simply xj > 2xj−1. Consider the following
deciphering rule comparison, where the term in parenthesis denotes a single term (stored
or received from the channel):

— mj = lr − rj − rj−1 + mj−1 + xj where xj = (xj − xj−1 −mj−1) + xj−1 + mj−1 requires
6 additions and 4 terms to be stored: (xj − xj−1 −mj−1), xj−1, mj−1, rj−1.

— mj = (mj − mj−1 − xj) + mj−1 + xj where xj = (xj − xj−1 − mj−1) + xj−1 + mj−1
requires 4 additions and 3 terms to be stored: (xj − xj−1 −mj−1), xj−1, mj−1.

5. Discussion and Future Work

Although our system has not yet been experimentally implemented, we will highlight
some features of our digital signature, block chaining, and encryption schemes, in compari-
son to some of the current pre-quantum and post-quantum cryptosystems. Among all the
features of our system, the most notable is its simplicity, as it only requires XOR operations,
hash, and integer addition. However, in this section, we will identify and discuss the
drawbacks and challenges that we might face during its implementation.

1. Digital signature: To avoid analysis by Grover’s quantum search technique, we shall
assume that the hash code must be at least 256 bits long. Thus, the size of the private
key, {k0, k1, k2}, achieves 3 × 256 = 768 bits. In addition, the size of the public
key, {x0 ⊕ k0 ⊕ k2}, {y0 ⊕ k1 ⊕ k2}, {k0 ⊕ k1} reaches 3 · 256 = 768 bits. These key
sizes are really small compared to current public key cryptosystems. Figure 5 in
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Section 2.3 shows the storage requirements: 1024 bits for Alice, Bob occupies 512 bits,
and DB requires 256 bits. The signature process uses three random numbers, five
XOR operations, and one hash computation. Finally, signature verification needs
four XOR operations, one hash, and one comparison. The main drawback of our
method involves the need for a central node, which can introduce delays in the
signature process.

2. Blockchain: In the blockchain system [40], miners calculate and maintain a unified
chain of all transactions on the network. In the distributed database, a table entry is
768 bits in size. In contrast, the table entry size is 8192 bits in the HMAC chain and
hash chain algorithms. In this scenario, every user calculates and maintains his own
independent chain of transactions. The table entry size in the XOR chain introduced
here is 768 bits. Similar to blockchain, network nodes compute and store copies of a
unified chain of transactions. However, some of the major advantages of our scheme
over blockchain are the following: (1) it does not require proof of work (PoW), and
(2) it is immune to quantum cryptanalysis. The comparison of such parameters is
given in Table 7.

3. The 3-encryption: Figure 12 in Section 4.2 shows the storage prerequisites for 3-
encryption. If we assume that both the message segment and key size are 256 bits,
Alice requires 768 bits and Bob needs the same. The encryption process demands the
generation of one random number, five (adding) operations, and one multiplication.
Decryption takes four (adding) operations. The encryption method holds promise for
exceptional execution performance since it does not necessitate numerous rounds of
substitution and permutation, unlike the symmetric CBC chained mode. However,
as previously stated, our system lacks a data permutation or dispersion mechanism;
thus, if a message is repeated in the next round, the previous one can be inferred.

Table 7. Block chaining schemes are compared below. The sizes are written in bits. PQ stands for
post-quantum while PoW stands for proof of work.

Blockchain Hash Chain HMAC Chain This Work

Table Size Entry 768 8192 8192 768
PQ no yes yes yes
PoW yes no no no

Figure 13 depicts a possible scenario for the implementation of our system: a sensor
network requires message authentication and data encryption. Case (a) shows the digital
signature mode, which requires a central node (R) for the execution of the XOR signature.
In (b), the nodes have a secret initial key that they use to encrypt the data using the XOR
encryption algorithm.

Figure 13. In scenario (a), with the help of central node R, any pair of nodes can exchange signed
data. In (b), Node 1 has an initial secret key with the other nodes in the network, so it can maintain
encrypted communications with them.
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For the initial encryption tests, it is feasible to use a basic pre-shared key scheme.
However, it will be necessary to choose a secure method for the shared secret key exchange.
On the other hand, it is a challenging task to maintain a secret key with each node in
the network. At this point, it would be necessary to analyze whether the central node
could facilitate this task. The digital signature scheme requires the incorporation of a
cryptographic hash function, which will be chosen by prioritizing security and efficiency.

The signature mode depicted in Figure 13 can be used for block chaining. Although
storage is a typical requirement of blockchain, it is still a concern of the system since a set of
bits is accumulated in each round of the signature process. Likewise, the scheme requires
an active node during the signature verification. If the node fails, system transactions could
not be carried out. To reverse this situation, we visualize the following alternatives:

1. Keep a distributed copy of the database among the users of the system, which is the
approach used by the blockchain system.

2. Offline operation. The protocol operates without requiring intervention from the cen-
tral node, which would guarantee the continuity of the system in the event of failures.

We reserve for future investigation the inquiry of whether the 3-encryption system can
operate in stream encryption mode for video/audio traffic applications and will analyze its
efficiency with respect to the current CFB and OFB methods in streaming mode.

6. Conclusions

The possibility of establishing Shannon’s perfect secrecy in a technologically workable
way has not been investigated in sufficient depth. In this paper, we show that our method
provides perfect secrecy. For this purpose, the triple cancellation rule was introduced here,
which is easy to verify and evaluate.

Digital signature and 3-encryption are the two modes of the fundamental algorithm
that have been covered. Digital signatures depend on a central node to verify signatures.
Message encryption does not require a central node, but it uses a shared secret key, which
can be pre-loaded on nodes or exchanged using a key exchange algorithm.

We have found that the digital signature mode can be used to define a block chaining
mode that does not require proof of work (PoW). This method is based on Crypto Bingo, a
similar algorithm that we introduced in this work. The proposed scheme, like blockchain,
requires 768 bits of storage per transaction. However, it is well-known that blockchain and
the algorithms currently used for digital signatures do not support quantum cryptanalysis.
As a result, given the challenges that the development of quantum computers imposes
on cryptographic security, we believe that our scheme represents a secure, efficient, and
simple alternative to performing digital signatures, data encryption, and blockchain.
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Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Perfect Secrecy Proof

We base our proof on the general demonstration of perfect secrecy given in [59]. We
assume plaintexts and keys with fixed (non-variable) length. We must prove that

P
(

M = mj|E = ej
)
= P

(
M = mj

)
for each pair of mj, ej. Every key is generated according to Equation (13), where δj+1 is
a random number. As a result, keys are independent each other and we can add their
probabilities, therefore

P
(
E = ej

)
= ∑

k
P
(
E = ej ∩ K = k j

)
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The message and the key are chosen independently, then

P
(
E = ej ∩ K = k j

)
= P

(
M = ej − k j ∩ K = k j

)
= P

(
M = ej − k j

)
P
(
K = k j

)
= P

(
M = ej − k j

) 1
N

The probability of a key is P(K = k) = 1
N , then M = ej − k j goes through all possible

messages, so
∑
k

P
(

M = ej − k j
)
= 1

then we obtain

P
(
E = ej

)
= ∑

k
P
(
E = ej ∩ K = k j

)
=

1
N ∑

k
P
(

M = ej − k j
)
=

1
N

The conditional probability definition establishes that

P
(

M = mj|E = ej
)

P
(
E = ej

)
= P

(
E = ej ∩M = mj

)
and the independence of K and M produce

= P
(
K = ej −mj ∩M = mj

)
= P

(
K = ej −mj

)
P
(

M = mj
)

multiplying by N because P(E = ej) =
1
N = P(K = ej −mj) leads to

= P
(

M = mj|E = ej
)
= P

(
M = mj

)
which implies that the XOR-encryption method achieves perfect secrecy.
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